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RESUMO 

Dados de degradação são, em geral, modelados  utilizando um modelo de regressão não 
linear com coeficientes aleatórios. A estimação por máxima verossimilhança (MV) é 
frequentemente implementada nesses casos utilizando a suposição de normalidade dos efeitos 
aleatórios é frequentemente utilizada. Infelizmente esta suposição pode não ser realista ou válida 
na prática. A má-especificação da distribuição dos efeitos aleatórios leva a estimativas viciadas 
de características da confiabilidade tais como quantis da distribuição do tempo até a falha e do 
tempo médio até a falha. Neste artigo utilizamos  a Probability Integral Transformation (PIT) 
proposta por Nelson (2006) para obter  estimativas de MV quando se assume que os efeitos 
aleatórios têm distribuição não normal. Em particular, o método é utilizado para um modelo de 
perfil linear de degradação com efeitos aleatórios com distribuição Weibull. O método é aplicado 
a uma situação real.   

PALAVRAS CHAVE. Dados de degradação. Modelo de efeitos aleatórios. Confiabilidade. 

MAIN AREA: 1) ESTATÍSTICA; 2) MODELOS PROBABILÍSTICOS. 

 

ABSTRACT 

Degradation data are usually modeled by a nonlinear regression model with random 
coefficients. Maximum Likelihood (ML) estimation is often implemented in those cases using 
normality assumption of random effects.  Unfortunately this assumption may be unrealistic or 
invalid in practice.  Misspecification of the random effects distribution leads to biased estimates 
of the reliability figures of interest such as quantiles of the time to failure distribution and the 
mean time to failure. In this paper we use the Probability Integral Transformation (PT) proposed 
by Nelson et al. (2006) for obtaining ML estimates when the random effects are assumed to have 
non-normal distribution. In particular, the method is used for a linear path degradation model 
with Weibull distributed random effects. The method is applied to a real situation.   

KEYWORDS. Degradation data. Random effects model. Reliability. 

MAIN AREA:  1) STATISTICS; 2) PROBABILITY MODELS . 
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1. Introduction 
 
In modern high-reliability applications, manufacturers have to face short product 

development times and, consequently, the reliability tests must be conducted with severe time 
constraints. In addition, high-reliability components or products may last for many years so one 
might not expect to see failures in the reliability testing or very few, if any, on the field in a 
reasonable amount of time. This will result in limited information about reliability needed for 
product design and reliability improvement. Even using the technique of accelerating the life by 
testing at higher levels of stress (accelerated life testes) provide little help, because  no failures 
are likely to occur in a reasonable amount of time. If, however, we could monitor, over time, a 
degradation (or a performance) variable that is closely related to failure (e.g., length of a fatigue 
crack, light output of a laser or the amount of wear of automobile tires) on all the test units, there 
would be a large amount of reliability information. 
             Usually, in order to conduct a degradation test, one has to prespecify a threshold level of 
degradation, obtain measurements of degradation at different fixed times, and define that failure 
occurs when the amount of degradation for a test unit exceeds that level. Thus, these degradation 
measurements may provide some useful information to assess reliability even when failures do 
not occur during the test period.  
              In the literature, there are basically two major approaches of modeling for degradation 
data. One approach is to use stochastic models.  Whitmore and Shenkelbert (1997) and  Patterson 
and Thompson (1971)  for example,  used Wiener diffusion processes with a drift to explain 
degradation paths, with the advantage being that a time-to-failure distribution is readily available, 
i.e., the inverse Gaussian distribution.  
              An alternative approach is to consider more general statistical models. Degradation in 
these models is modeled by a function of time and some possibly multidimensional random 
variables. These models are called general degradation path models. In this case the degradation 
measurements of the individual units are modeled using the same functional form and differences 
between individual units using random effects. These models take the general form:     
                                                 ijiijij atDY εβ += );;(                                                                     (1) 
where ),...,2,1;,...,2,1( iij mjniY ==   is the random variable representing the amount of degradation 

of the thi  unit  at a prespecified time ijt ; im  is the number of repeated degradation measurements 

taken on the thi  unit; );;( iij atD β  is the actual degradation path of the thi unit ; t
paaaa )...,,( ,21=  

is a 1×p   vector of fixed effects that describes population characteristics; t
ikii ),...,( 1 βββ = is a  

1×k vector or the  thi  unit random effects that represent an individual unit´s characteristics; ijε   is 

the random error associated to the thi  unit at time ijt . The deterministic form of );;( iij atD β  
might be based on empirical analysis of the degradation process under study, but whenever 
possible it should be based on the physical-chemical phenomenon associated with it. It is 
generally assumed that: 1) the ijε  are  independent  and identically distributed (iid) as );0( 2

εσN , 

a normal distribution with mean zero and variance 2
εσ  (fixed and unknown); 2) the vectors of 

random effects ),...,1(),...,( 1 nit
ikii == βββ  are iid as )|( θβΛ , where )|( θβΛ is a multivariate 

distribution function, which may depend on an unknown (fixed)  1×q  parameter vector  θ   that 
must be estimated from the data and 3)  the  { ijε }´s  and { }iβ ´s are independent of each other 

),...,2,1;,...,2,1( imjni ==  . 
                  The distinguishing feature of the degradation data analysis for reliability assessment is 
the need to be implemented in two stages.  In the first one, a mixed model (linear or nonlinear) is 
fitted to the repeated degradation measurements data and the vector of (fixed)  parameters 

ttta );;( 2
εσθ  is estimated. In fact, this first stage is a longitudinal data analysis (Verbeke and 
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Molengberghs, 2000). Once the model parameters are estimated, the second stage comprises the 
estimation of the failure time distribution F(t). In the literature a good amount of papers have 
been dealing with the problem of parameter estimation. For example, Lu and Meeker (1993) 
developed statistical methods  using degradation measures to estimate a time-to-failure 
distribution.  They considered a nonlinear mixed-effects model and proposed a two-stage method  
to obtain point estimates and confidence intervals of percentiles of the failure time distribution. 
The authors assumed that the vector of random effects β , or some appropriate 
reparameterization  followed a Multivariate Normal Distribution (MVN) with vector mean βµ  
and variance-covariance matrix βΣ . Other authors worked on approximations for the likelihood 
function in order to obtain the restricted maximum likelihood estimators, all under the normality 
assumption of the random effects. Examples are the works by Lindstrom and Bates (1990), 
Pinheiro and Bates (1995, 2000) among others. A good reference on degradation models under 
the normality assumption is Meeker and Escobar (1998).   

       Nevertheless, in many situations, there is a need for suitable methods to fit mixed 
models with non-normal random effects. Verbeke and Lesafre (1996), Molenberghs and Verbeke 
(2005, chap. 23) for example, proposed mixed models with mixtures of normals as random 
effects of the so-called heterogeneity model. However the implementation of these methods is 
challenging in practical data analysis. The difficulties related to parameter estimation in models 
with non-normal random effects lead to the development of alternative computational techniques 
in particular, two methods are available that employ transformation results. For mixed models 
with non-normal random effects, Nelson et al. (2006)  proposed a simple computational method 
that uses the probability integral transformation (PIT) method to obtain the maximum likelihood 
estimates (MLE). It can conveniently be implemented using Gaussian quadrature tools already 
available in commercial statistical softwares, thus providing a practical estimation solution to 
mixed models with non-normal random effects. The authors used the procedure   Proc 
NLMIXED available in the statistical software SAS/STAT(SAS Institute Inc.) in all the examples 
discussed in their paper. But the method can also be used with other commercial softwares such 
as MATLAB (MathWorks, Inc.), R (general public licence; www.r-project.org) and S-Plus 
(TIBCO Software Inc.).  

In this paper we present the preliminary results of a  research work related to the use of 
linear and nonlinear models  with non-normal random effects to analyze degradation data.  We 
show here  how the Probability Integral Transformation (PIT) method can be used for fitting 
degradation path models with non-normal random effects, in particular,  INA A model with 
Weibull  distributed random effects. A simple linear path model is assumed. The approach is also 
applied to the wheel degradation data described in Freitas et al. (2009).  

The outline of the paper is as follows. Section 2 describes briefly the motivating 
situation. Section 3 presents the PIT method proposed by Nelson et.al (2006). Section 4 shows 
the details of the likelihood maximization for Weibull  random effects in a linear degradation 
path model where the PIT transformation is used . Section 5 shows the results of the re-analysis 
of  the wheel degradation data and a comparison to the ones obtained by Freitas et al. (2009). 
Finally, Section 6 presents final remarks and suggests directions for future work. 

 
2. Motivating situation 
We use the train wheel degradation data from Freitas et al. (2009)  as  the motivating example. 
The complete database includes, among other information, the diameter measurements of train 
wheels, taken at equally spaced inspection times (in Km):  000,600,...,000,50,0 1321 === ttt . The 
wheels are labeled according to their working positions in a given car using a three-dimension 
indicator vector, representing in this order: position (side) within an axle (left=0; right=1); truck 
position (front=0; back=1) and axle position within a truck (outer=0; inner=1). The diameter of a 
new wheel is 966 mm. When the diameter reaches 889 mm the wheel is replaced by a new 
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one.``Failure" of the wheel is then defined to occur when the degradation ((i.e., 966-[observed 
diameter measure at time t])   reaches the threshold level mmD f 77= . As in Freitas et al. (2009) 
we use in this paper the degradation measurements of the wheels labeled [0,0,0] of the 
locomotive cars only (a total of 14 units). One of the purposes of the study is to estimate the 
mean distance to failure (MTTF) and time to failure some quantiles of the failure time 
distribution. 

 
 

3. The Probability Integral Transformation (PIT) 
method. 
 

We briefly present the PIT (Probability Integral Transformation) method by Nelson et 
al. (2006).  First recall that in order to estimate the parameters of the general degradation path 
model (1) using the maximum likelihood method, one has to maximize the (marginal) likelihood  
function given by (Meeker and Escobar, 1998): 

       2 2 2

1 1

( , , ) ( | , , ) ( | , , ) ( | )
i

n n

i i i i i
i i

L a f y a L f y a f d
β

ε ε εθ σ θ σ β σ β θ β
= = Ξ

⎧ ⎫⎪ ⎪
= = = ⎨ ⎬

⎪ ⎪⎩ ⎭
∏ ∏ ∫               (2) 

where 
iβ

Ξ denotes the limit of the multiple integral in iβ ; t
miii i

yyy ),...,( ,1= is the vector of 

degradation measurements  for the thi  unit and tt
n

t yyy ),...,( 1=  is the vector comprising all the 
degradations measurements (for all the n units) and )|( θβ if  denotes the density of the random 
effects vector iβ ,   typically non-normal.  Although the random effect can be vector valued, let 
us illustrate the method for the scalar case (i.e., iβ  has dimension 1, for i=1,…,n).  Therefore we 
can write the contribution of the thi  profile (unit) to the marginal likelihood as: 

               2 2

1

( | , , ) ( | , , ) ( | )
i

i

m

i i ij i i i
j

L f y a f y a f d
β

ε εθ σ β σ β θ β
=Ξ

⎧ ⎫
= = ⎨ ⎬

⎩ ⎭
∏∫                                  (3) 

In order to accommodate non-normal random effects within the numerical integration 
techniques available in commercial softwares, Nelson (2006) used the probability integral 
transform. The procedure is described next. 

Suppose that random effects (assumed continuous) have a non-normal 
distribution )|( θβ if .  Let iη  be a random effect distributed as a Standard normal, that is, 

(0,1)i Nη : . Then, using the probability integral transform, ( )i iυ η=Φ  has a  
(0,1)Uniform distribution. Here, is the standard normal cumulative distribution function (CDF). 

Applying the probability integral transform once more, ( | )iF β θ  has also a (0,1)Uniform  

distribution, where ( | )iF β θ  is the CDF of iβ  with parameter θ. Consequently, 
1( | )i iFβ υ θ−=  has density )|( θβ if , where 1(. | )F θ−  is the inverse CDF of iβ . Consequently 
1 1( | ) ( ( ) | )i i iF Fβ υ θ η θ− −= = Φ  has the non-normal distribution of interest.   Therefore using 

probability theory for transformations, the authors re-wrote the contribution of the  thi  profile to 
the marginal likelihood (equation (3)) in terms of the normal random effect  iη  as : 

              2 1 2

1

( | , , ) ( | , ( ( ) | ), ) ( )
i

i

m

i i ij i NOR i i
j

L f y a f y a F d
η

ε εθ σ η θ σ φ η η−

=Ξ

⎧ ⎫
= = Φ⎨ ⎬

⎩ ⎭
∏∫              (4) 

where NORφ  is the standard normal probability density function. Numerical integration techniques 
can be used to approximate the marginal likelihood in (4) and other nonlinear mixed-effects 
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models when no closed-form solution exists. In addition, standard maximization methods (e.g. 
Newton-Raphson, quasi-Newton) can be used to solve for ttta );;( 2

εσθ . The authors used the 
Gaussian quadrature technique, which approximates the function in (4)  by a weighted average of 
the integrand evaluated at a number, Q, of predetermined abscissas (quadrature points) 

( 1,..., )qd q Q=  over the random effects iη  (Pinheiro and Bates (1995); Davidian and Gallant 
(1993); Lesaffre and Spiessens (2001)). The authors implemented the methodology in two 
examples using the PROC NLMIXED  available in the software SAS. The PIT method can be 
extended in a straightforward manner to two or more independent non-normal random effects, 
i.e., cases where ),...,1(),...,( 1 nit

ikii == βββ  . However, when correlation is present between  two 
or more non-normal random effects, the PIT method becomes more complicated and requires  the 
use of multivariate probability integral transform approach (Genest and Rivest, 2001). 
 

4. Likelihood maximization for Weibull random effects 
in a linear degradation path model: numerical solution 
base on the PIT method.  
 

 In this section we present the details of a numerical solution based on the PIT method 
to estimate the mean time to failure and other reliability figures for the degradation model 
proposed for the motivating situation described in Section 2. Freitas et al. (2009) used a linear 
(straight line) degradation path model to analyze the train wheel degradation data. First, recall 
that under the general degradation path model described in Sections 1 and 3 the likelihood 
function takes the form of the equation (2).  In order to get the maximum likelihood estimates  

2ˆˆ ˆ, ,MV MV εα θ σ of 2, , εα θ σ  respectively, it is necessary to maximize equation (2)  or equivalently,  
the log-likelihood which, given the model assumptions can be written as: 

       2

1 1

1log log ( | , , ) log ( ) ( | )
i

i

mn

NOR ij i i
i j

L f y a z f d
β

ε
ε

θ σ φ β θ β
σ= =Ξ

⎧ ⎫⎡ ⎤⎪ ⎪
= = ⎨ ⎬⎢ ⎥

⎣ ⎦⎪ ⎪⎩ ⎭
∑ ∏∫                       (5) 

where 
[ ( , , )]

;ij ij i
ij NOR

y D t
z

ε

α β
φ

σ

−
=  is the standard normal probability density function and 

)|( θβ if is the probability density function of the (non-normal) random effects vector iβ . 
Freitas et al. (2009) used the following degradation path model in the analysis of the 

wheel degradation data: 
 

(6)                                   nts)(measureme ,...,1   (units); ,...,1     1);( iijij
i

ijiijij mjnittDY ==+=+= ε
β

εβ  

(here, 14 wheels and 13,in m= =  for i=1,2,…,14).  In addition to the general degradation path 

model assumptions (Section 1 ) , we  assume that the ´
i sβ  are iid. according to a Weibull (α,δ) 

distribution with probability density function given by: 

                            ( )
-1

| , exp -   f
α α

α β β
β α δ

δ δ δ

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞= ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 (α>0,  δ>0 ,β>0)                            (7) 

In this case, it is possible to prove that the failure time T has also a Weibull distribution, in other 
words, with the model (7) and a specific fD  

 
      ).,(),(~),(~ δαδαβ fi DscaleshapeWeibullTWeibull =⇔  
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In addition, here ( ), t
θ α δ=  and with the general model assumptions, we have: 

                              2 2
1

1 1| , ( , ); ( ,..., ) ;
i i i i

indep
t

i i i Y i i im Y m
i i

Y N t t Iε εβ σ µ µ σ
β β =Σ = Σ:  

(where 
imI is the identity matrix i im m× . Therefore, the log-likelihood (5) takes the form: 

    
2 2

2

1 1

exp{ ( ( / )) /(2 )}
log ( | , , ) log ( | )

2

i

i

mn
ij ij i

i i
i j

y t
f y a f d

β

ε
ε

ε

β σ
θ σ β θ β

πσ= =Ξ

⎧ ⎫⎡ ⎤− −⎪ ⎪
= ⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∏∫           (8) 

where     ( ) ( )
-1

| | , exp -   .i i
i if f

α α
β βα

β θ β α δ
δ δ δ

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞= = ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

                                        

In order to calculate the integrals in (8) we use the PIT method. Therefore the log-
likelihood (8)  is re-written as: 
 

(1/ ) 2 2

1 1

exp{ [ ( / ( log(1 ( ))) )] /(2 )}
log log ( )

2

i

i

mn
ij ij i

i i
i j

y t
f d

η

α
ε

ε

δ η σ
η η

πσ= =Ξ

⎧ ⎫⎡ ⎤− − − −Φ⎪ ⎪
= Φ⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∏∫          (9) 

where ( ) and ( )i iη φ ηΦ  are the standard normal cumulative (CDF) and probability density 

functions (PDF) respectively; 
11( ( ) | ) ( log(1 ( )))i iF αη θ δ η− Φ = − −Φ  is the Weibull inverse 

CDF evaluated at ; and ( , )
iη

Ξ = −∞ ∞ defines the limits of integration. Note that the integrand in 

the log-likelihood (9) is multiplied by ( )iφ η , consequently the significant mass points are 
concentrated in the rage (-3.5; 3,5). We use the optimization algorithm based on the adaptative 
barrier (Lang, 2010)  and the software R (version.14.1)  in all calculations.   

 

5. Motivating situation revisited 
 

We need to estimate the distribution of the time to failure –the amount of time (in Km) 
it takes to achieve a degradation threshold level of mmD f 77= . In the analysis of the same data 
set, Freitas et.al (2009)  came up to the conclusion that the random effects normality assumption 
was inadequate. The authors based their conclusion on probability plots constructed for the 
pseudo-failure times calculated via the approximate method of analysis (Meeker and Escobar, 
1998).  Weibull and lognormal probability plots indicated that both distributions were suitable to 
describe the wheels failure times. Since linear degradation path models like the one postulated in 
(6) were used, it was possible to conclude that Weibull and lognormal wer also appropriate to 
describe the random effects distribution. Therefore they used these two distributions in (1) a 
Failure Time Analysis (FTA), performed on the censored and observed failure times) and (2) an 
approximate analysis, performed on the pseudo failure times. A third analysis was implemented 
using a LME (linear mixed effects model-LME). In that case, parameters estimates were obtained 
by the maximum likelihood method and the traditional random effects normality assumption.  
                Here, we fit the Weibull distributed random effects degradation path model (6) to the 
wheel degradation data using the PIT transformation, as briefly described in Section 3 and 4 
(LME+PIT). In addition we compare the results to the ones obtained previously by Freitas et al. 
(2009) for the Weibull case. The results are summarized in Table 1.  
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                 Table 1 . Interval and point estimates obtained by each method 

 Method Distribution a           Estimates )10( 3 Km×  
   MTTF   10.0t     50.0t  

LME+PIT          Weibull   1062.14 
[789;1362] b  

  383.78 
[210;694] 

   995.42 
[714;1321] 

Approximate Weibull   1060.88 
[804; 1400] c  

  383.35 
 [208; 707] 

  994.25 
[727; 1359] 

LME   Normal    1914.15 
[850;9913] c  

  400.00 
[311; 534] 

  701.33 
[540; 980] 

Failure Time 
Analysis(FTA) 

Weibull    971.77     
[422;2239] c  

 

  471.60 
[228;766] 

  937.13 
[459;1912] 

         a: random effects distribution; b: 95% C.I – parametric Bootstrap;  
         c: 95% CI – asymptotic normality ML estimators. 

 
The main observations from Table 1 are: 
1. The point estimates obtained through the maximization of the transformed 

likelihood (i.e., LME model + PIT transformation) are very similar to the ones 
obtained with the approximate method. On the other hand, the confidence intervals 
constructed with the former have smaller widths than the ones provided by the 
latter, suggesting a higher precision of the estimates obtained with the method here 
implemented. This was already expected. The fitted model is very simple (a straight 
line) and  the pseudo-failure times obtained through least squares estimation were 
well explained by a Weibull distribution. 

2. The point estimates obtained with the random effects normality assumption (LME-
normal) and the ones obtained with the other two methods, namely, the LME-PIT 
and the approximate are very different, with the mean covered distance (MTTF) 
being the worst case. On the other hand, the confidence intervals provided by the 
LME-normal fit have the smallest width among all the other methods used 
(including the FTA). This can be explained by the fact that the main effect of the 
misspecification of the random effects distribution is on the bias of the estimates, 
not on their precision.  

3. Finally, as it was expected, the confidence intervals based on the traditional FTA 
have larger widths than the ones provided by the other three approaches discussed 
here. This is probably a consequence of the large number of censoring observations. 
Only 3 out of 14 units achieved the threshold level during the observation period. 

 
 

 
6. Concluding remarks and future work 
 

In this paper we show how the Probability Integral Transformation can be used as a 
estimation method for mixed models with non-normal random effects, In particular, we 
implemented the PIT method to fit a linear degradation path model with Weibull random effects, 
This model is used to analyze  the wheel degradation data described originally by Freitas et al. 
(2009). We highlight some of the main points next: 
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1. The results obtained with the LME+PTT  and the approximate method were quite 
similar. This is due to the simplicity of the degradation path model postulated for 
the degradation data (a straight line).  The approximate method first fits the straight 
line models by least squares to each one of the wheels profiles independently. Then,   
each fitted curve is used to  find the pseudo-failure time,  the time when the  fitted 
profile crosses the threshold level.   A  traditional failure time analysis is then 
performed on those pseudo failure times as if they were  actually the observed 
failure times.  For the particular case under study, the level of extrapolation was low  
and the pseudo failure times were well explained by a Weibull distribution. 
Although the point estimates of those two methods are similar, the PIT method 
provided estimates with higher precision.  It should be emphasized that when the 
approximate method is used, the prediction error (due to the estimation of the 
pseudo failure times) is not taken into account since the pseudo failure times as 
used as if they were the observed data.  Therefore, the confidence intervals shown 
in Table 1 should be in fact wider them the ones provided.  

2. Even for this simple model, we can see the impact of the misspecification of the 
random effects distribution on the parameter estimates. The point estimates 
obtained using the LME-normal, in other words,  ML estimation using the 
normality assumption of the random effects  are quite different from the ones 
obtained with the LME+PIT and the approximate method. 

3.  Since the PIT method can be conveniently implemented in standard software (e.g., 
R, SAS, S-PLUS, Matlab), it can be used with more complex degradation path 
models where the normality assumption cannot be used. 

4. The degradation path model used for this data set was quite simple. Consequently, it 
was possible to verify the inadequacy of the normality assumption and identify 
appropriate candidates. Unfortunately, in most of the practical problems, this 
assumption is hard to verify, especially in cases for which the profile equation has 
more than one random effect (in other words, the random effect is actually a vector 
valued random variable).  

 
There are still important questions that should be addressed in future work. I would be interesting 
to implement also the Likelihood Reformulation Method (LR) (Liu and Yu, 2008)  and study 
both PIT and LR though a simulation study, using also vector valued random effects. Other 
distributions should also be studied. In addition, it is important to study the performance of the 
PIT method in the case of vector valued random effects.  As far as the real data is concerned, it is 
important to model and understand the effect of the position on the wheel degradation 
mechanism. Therefore, it is necessary to model all the wheels jointly.  
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