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Abstract

We consider the problem of staffing service centers with quality-of-service (QoS) constraints. In our

work, we focus on doubly stochastic service center systems; that is, we focus on solving service center

staffing problems when the arrival rates are uncertain in addition to the inherent randomness of the

system’s inter-arrival times and service times. We introduce formulations that handle staffing deci-

sions made over two adjacent decision periods (stages). In our models, we minimize the staffing costs

over two decision stages while satisfying a service quality constraint on the second stage operation. A

Bayesian update is used to obtain the second-stage posterior arrival-rate distribution based on the first-

stage prior arrival-rate distribution and the observations in the first stage. The problem considered in

this paper is a single-class single-station service center with random arrival rate. A two-stage stochastic

recourse formulation is built to analyze the relationship between the staffing decisions over the two pe-

riods. After reformulation, we show that our two-stage model can be rewritten as a newsvendor model.

We then provide an algorithm which solves the two-stage staffing problem under several commonly

used QoS constraints.

1 Introduction

Service centers, which handle more than 70% (Borst et al. [4]) of the customer-business interactions

in the US, have been viewed as the modern business frontier. With estimated annual expenditures

exceeding $300 billion (Gilson and Khandelwal [6]), the service center industry has received increased

attention from both business and from the operations research community. With 60-80% (Aksin et al.

[1]) of the service center operating costs coming from labor costs, service center managers are tempted

to reduce the number of servers so as to cut labor costs. However, doing so may risk quality of service,

such as making customers wait too long, causing them to either abandon the system or fume over poor

service. Such outcomes may incur penalty costs (for third-party providers) or damage the corporate
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image. This naturally gives rise to an interest in finding an optimal staffing policy to attain the desired

trade-off between service quality and operational efficiency.

Service center systems are stochastic systems because they contain random elements like: the ar-

rival of customers; the time it takes agents to serve customers; and, the time before a customer abandons

the system. Queueing models are usually used to represent such stochastic systems. In recent work, re-

searchers have begun to realize the importance of incorporating arrival-rate randomness into the model

formulations. Bassamboo et al. [2] consider a fluid approximation for multi-class, multi-type call cen-

ters. They use a linear-programming based method to solve for an asymptotically optimal staffing and

routing policy that minimizes the staffing cost and abandonment penalty. Bassamboo and Zeevi [3]

extend the work in [2], using a data-driven method that provides the optimal staffing level without

knowing the probabilistic structure of the arrival rates. Also using a fluid approximation, Gurvich et al.

[7] build a chance-constrained formulation, which yields the staffing and routing policy for multi-class,

multi-type call centers with arrival rate uncertainty. Their procedure provides a feasible solution that is

nearly optimal. In our work, we do not appeal to fluid limits and instead employ queueing models with

full short-time-scale stochastic dynamics to formulate service center staffing problems.

In the works we sketch above, a single staffing decision is made in a model that, once the arrival

rate uncertainty is revealed, operates in steady state. Such a model does not account for the level of

adaptivity that exists in some systems. For this reason, we also introduce a model that allows us to adjust

staffing levels in, say, two adjacent four-hour time stages. In doing so, it is important to capture costs

incurred for increasing or decreasing the level of the workforce over these time scales. In our work,

we apply stochastic programming with recourse to model the staffing decisions over two adjacent time

periods. Robbins and Harrison [9] formulate a service center problem as a two-stage mixed integer

stochastic program to combine the staffing policy and staff scheduling decision, the decision made after

the staffing policy is made, into a single optimization program. Gans et al. [5] propose an approach to

include arrival-rate updates, again using a two-stage stochastic program with recourse. In both [5] and

[9], the authors focus on the service center scheduling problem or the scheduling problem nested within

the staffing problem. In the following of the paper, we first consider the situation where we assume the

staffing decision for the first decision stage has been made, and focus on the relationship between the

optimal second stage staffing decision and the observations from the first stage. Then, we consider the

situation where the first stage staffing decision is not given and needs to be made while taking into

consideration the expected second stage staffing cost.

2 Two-stage Staffing Problem with Given First-stage Staffing Decision

We consider the problem of staffing a service center with a single class of customers and a single type

of agent under a quality-of-service (QoS) constraint. The queueing model we use to represent such a

service staffing problem is an M/M/n model. We further assume the system we study has a stochastic

arrival rate. That is, we assume that arrivals to the system occur according to a doubly stochastic

Poisson process. In operating the service center over two time periods (stages), we assume that: (i)

the distribution of the arrival rate for the first stage is known or has been previously estimated; (ii) the

staffing level for the first stage, x1, is given at the beginning of the first stage; and, (iii) the number of

customers who arrive during the stage, n, is observed. We update the distribution of the arrival rate

for the second stage based on n and then pick the staffing level, x2, for stage two based on the updated

distribution. Figure 1 illustrates these time dynamics.

The service center’s manager has two competing concerns. First the manager is concerned with the

staffing cost for the second stage (we do not consider the cost for the first stage here, since the staffing
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Figure 1: Time Dynamics of the Problem when x1 is Given

level for the first stage is given), and hence would tend to hire as few servers in the second stage as

possible. Second, the manager is concerned with service quality, which will be poor if an insufficient

number of servers are hired. In this section, we use the function α(x2,λ ) to represent any quality

service metric which depends on x2 and λ , for example, this function could be the probability that a

customer must wait, under a second period staffing level x2 given arrival rate λ . We use Λ to denote the

arrival rate as a random variable, and use λ to denote a deterministic value. Without loss of generality

we assume that each server has unit service rate.

Let c be the unit staffing cost, c+ be the unit staffing cost for additional service agents, c− be the unit

salvage cost for sending unneeded service agents home and ε , which takes a value between the minimal

and maximal possible values of service quality, be the service quality level threshold. Let FΛ(λ ) be the

CDF of the random arrival rate Λ, and α(x2,λ ) be the value of the QoS metric, conditioned on Λ = λ .

The optimization model that minimizes staffing costs subject to the QoS constraint is then:

min
x2≥0

cx1 + c+(x2 − x1)
+− c−(x1 − x2)

+ (1a)

s.t.

∫ ∞

0
α(x2,λ )dFΛ(λ ) ≤ ε. (1b)

The integral in the QoS constraint in (1) simply gives the unconditional value of this QoS metric.

In our call volume forecasting model we assume that the prior distribution for Λ is gamma(α,β ).
The first period calls are then observed and used to produce an updated estimate for the distribution of

Λ, i.e., the posterior distribution which is used in the second period. Since gamma is a conjugate prior

when a Poisson likelihood function is used, the posterior distribution for Λ is also gamma. In particular,

assume the prior distribution for the call volume Λ is gamma(α,β ) with probability density function

g1(λ1;α,β ) =
β α

Γ(α)
λ α−1

1 e−βλ1 for λ1 ≥ 0.

After observing n arrivals over l ∈ R+ minutes in the first stage, we obtain the estimated arrival rate

distribution for the second stage (the posterior distribution), which is gamma(α +n,β + l) with density

function

g2(λ2;n,α,β , l) =
(β + l)(α+n)

Γ(α +n)
λ α+n−1

2 e−(β+l)λ2 for λ2 ≥ 0.

To focus on the dependency of the second stage optimal staffing level on the number of observed arrivals

in the first stage, in our problem, we assume l is fixed. Thus, to simplify the notation, we eliminate l
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from the parameter set of the posterior distribution, and denote its density function as g2(λ2;n,α,β ) In

this case, model (1) can be written as:

min
x2≥0

cx1 + c+(x2 − x1)
+− c−(x1 − x2)

+ (2a)

s.t.

∫ ∞

0
g2(λ ;n,α,β )α(x2,λ )dλ ≤ ε. (2b)

Numerical Examples. To investigate the properties of the second-stage optimal solution, we solve the

problem using various parameters in the prior distribution. Let x∗2(n;α,β ) denote the optimal second-

stage staffing level as a function of n for the parameter set (α,β ). In the experiments, we use the

probability that a customer must wait for service as the service quality measurement. That is we assume

α(x2,λ2) = P(wait > 0 | x2,Λ2 = λ2).

We use the Jagers-van Doorn continuous extension of the Erlang-C formula [8], that is

α(x2,λ2) =

[

λ2

∫ ∞

0
te−λ2t(1+ t)x2−1dt

]−1

.

The prior distribution for Λ is such that EΛ = α/β and Var Λ = α/β 2. In the experiments, when we

vary α and β , we want them vary in such a way that α/β is fixed while α/β 2 is varied. The prior

distribution is more concentrated about the mean EΛ = α/β as the variance α/β 2 shrinks. Figure 2

shows the plot of x∗2(n;α,β ) versus n for different sets of (α,β ). The figure depicts the solutions of

(2) for parameter sets (α,β ) = (2.5,0.5), (5,1), (10,2), (25,5). All the experiments in section 2 are

performed on a PC with Intel Core Due CPU P9600 processors at 2.66GHz and 2.67GHz, and 2.00 GB

of RAM. We summarize our observations on the numerical results shown in Figure 2 in the propositions

and conjecture in the following paragraph.

Characterizing Solutions. Define A as the subset of R
2
+, on which the queueing system is stable.

In most applications, an unstable system does not satisfy any reasonable QoS constraint. For ex-

ample, suppose we consider the problem for a M/M/n system and α(x,λ ) is the probability a cus-

tomer waits for service, then the system is only stable when x > λ . If x < λ , the stationary wait-

ing time is infinite. Thus for the M/M/n system, we consider quality measurement functions on set

A = {(x,λ ) ∈ R
2
+

⋂{x > λ > 0}}. Before we state our results, we first give some conditions on the

service quality measurement function α(x,λ ) : A → R+,

(A1) α(x,λ ) is a continuous function on A, and

lim
x→∞

α(x,λ ) = 0,∀λ > 0,

and

lim
λ→0

α(x,λ ) = 0,∀x > 0.

(A2) α(x,λ ) is a continuous function on A, and α(x,λ ) is strictly decreasing in x for any λ > 0 and

strictly increasing in λ for any x > 0.

(A3) α(x,λ ) is a continuous function on A, and α(x,λ ) is differentiable in λ on A.
∂α(x,λ )

∂λ is strictly

decreasing in x for any λ > 0.
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Figure 2: Function x∗2(n) for Gamma Prior Distribution

(A4) For any service quality level threshold ε ,

sup
x>0

α(x,λ ) > ε, ∀λ > 0.

(A5) The distribution of Λ satisfies
∫

A dFΛ(λ ) > 0.

Remark 1. Notice that α(x,λ ) represents a QoS metric at arrival rate λ when we have x service

agents. Our problem is a bi-criteria problem, the more service agents we have, the higher the staffing

cost would be, and the lower the service quality would be. In our model, to control the service quality,

we require α(x,λ ) to be less than some pre-assigned threshold value ε in the constraint. Condition (A1)

implies that when the arrival rate approaches 0, or when we have a large number of service agents, the

service quality approaches the ideal level. Condition (A2) indicates that the service quality improves

as the number of service agents increases, and deteriorates as the arrival rate increases. Thus, for most

commonly used service quality measurements, such as the utilization and the continuous version of the

probability a customer waits (given in [8]), conditions (A1) and (A2) hold. Condition (A4) further

guarantees the existence of the solution to model (1).

Remark 2. When condition (A2) holds, the function α(x,λ ) is strictly increasing in λ for any x >
0. Condition (A3) is indicates that as more service agents are added, increased call volumes have a

decreasing detrimental effect on the quality of service.

Proposition 1. Consider model (1) except replace the objective function with Cx1
(x2), where Cx1

(x2) is

strictly increasing in x2, and assume conditions (A2), (A4) and (A5) hold for α(x2,λ ). Then there exists

a unique solution to the associated model, denoted as x∗2, where x∗2 solves
∫ ∞

0 α(x2,λ )dFΛ(λ ) = ε .

Proof. Let h(x2) =
∫ ∞

0 α(x2,λ )dFΛ(λ ). We have α(x2,λ ) is strictly decreasing in x2 for any λ > 0 on

A. Thus (A5) implies that h(x2) is strictly decreasing in x2. (A4) and the continuity of α(·, ·) imply

the existence of x∗2. Since Cx1
is strictly increasing in x2 and α(x2,λ ) is continuous, the solution to
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the optimization model is achieved at the boundary of the feasible region, that is, x∗2 is the solution to
∫ ∞

0 α(x2,λ )dFΛ(λ ) = ε . Also x∗2 is unique, since h(x2) is strictly monotone in x2.

Remark 3. Note that by Proposition 1, x∗2 solves equation

∫ ∞

0
α(x2,λ )dFΛ(λ ) = ε

and hence does not depend on x1.

Proposition 1 above can be applied to model (1) where function α(x,λ ) may represent any QoS

satisfying (A2), (A4) and (A5), and the arrival rate distribution need not be gamma. Proposition 2 and

Conjecture 3 below are only for the specified model (2) in this section.

Proposition 2. Let x∗2(n;α,β ) denote the optimal solution to model (2) for the parameter set (α,β ),
given that n customers are observed in stage 1. Assume (A1) - (A5) hold for α(x2,λ ) and the shape

parameter α , in the prior gamma distribution, is a positive integer. Then the optimal solution x∗2(n;α,β )
is a strictly increasing function of n for any fixed (α,β ).

Proof. From Proposition 1, given fixed α , β , and n, x∗2(n;α,β ) solves
∫ ∞

0
α(x2,λ )dFΛ(λ ;n,α,β ) = ε,

and is unique. Also, we have
∫ ∞

0
α(x2,λ )dFΛ(λ ;n,α,β ) =

∫ ∞

0
α(x2,λ )dP(Λ ≤ λ | n,α,β )

= α(x2,λ )P(Λ ≤ λ | n,α,β )|∞0
−
∫ ∞

0
P(Λ ≤ λ )d(α(x2,λ ))

=
∫ ∞

0

∂α(x2,λ )

∂λ
dλ

−
∫ ∞

0

∂α(x2,λ )

∂λ
P(Λ ≤ λ | n,α,β )dλ

=
∫ ∞

0

∂α(x2,λ )

∂λ
P(Λ > λ | n,α,β )dλ .

The second-stage arrival rate follows gamma distribution with shape parameter α + n and scale

parameter β + l. Since we assume α is an integer and n is the total number of arrivals in the first

stage, which is also an integer, the shape parameter in the posterior distribution is still an integer. Let

G(· | α,β ) be the CDF of gamma distribution. When the shape parameter can only take integer values,

we have

G(λ | α1,β ) > G(λ | α2,β ), ∀λ > 0,α2 > α1 > 0,β > 0.

This implies that in the posterior distribution, P(Λ > λ | n,α,β ) is strictly increasing in n for any λ > 0,

that is

P(Λ > λ | n1,α,β ) < P(Λ > λ | n2,α,β ), ∀n1 < n2 ∈ Z+.

Together with condition (A3), we have that for ∀n1 < n2 ∈ Z+, x1
2 < x2

2, where xi
2 satisfies

∫ ∞

0

∂α(xi
2,λ )

∂λ
P(Λ > λ | ni,α,β )dλ = ε, i = 1,2.

6
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This implies our result.

Remark 4. Notice that in Proposition 2, we require that the shape parameter of the prior distribution,

α , take only integer values. We need this to get the dominance condition of the CDF of the posterior

gamma distribution. In our application, the meaning of the shape parameter is the number of arrivals

observed. Thus, it makes practical sense to assume that the initial shape parameter is a positive integer.

Conjecture 3. For any parameter sets (α1,β1) and (α2,β2), if α1

β1
= α2

β2
and α1

β1
2 < α2

β2
2 , then

∂x∗2(n;α1,β1)
∂n

<

∂x∗2(n;α2,β2)
∂n

for any n > 0.

Remark 5. If we fix the mean of the prior distribution while letting the variance of the prior distribution

decrease, the prior distribution is then more concentrated around its mean. Conjecture 3 indicates that

if this is the case, then the prior has more weight in the second stage staffing decision.

We assume the doubly stochastic Poisson process is governed by a gamma distribution. One may

be tempted to simplify the problem by using a discrete distribution to model the arrival rate, so as to

make the problem easier to solve. However, discretizing the distribution may result in badly behaved

solutions, as demonstrated in [10].

3 Two-stage Staffing Problem

Now we start to consider the true two-stage problem. We extend the problem considered in the above

section to a two-stage problem, in which the first stage staffing decision, x1, is also a decision variable.

Similar to the problem previous section, we still consider the problem of staffing a service center with a

single class of customers and a single type of agents under a quality-of-service (QoS) constraint. Again

we assume that arrivals to the system occur according to a doubly stochastic Poisson process and the

queueing model we use to represent the staffing problem is an M/M/n model. Considering operating

the service center over two time periods, we assume that: (i) the distribution of the arrival rate for the

first stage is known or has been previously estimated; (ii) the staffing level for the first-stage, x1, is

selected at the beginning of the first stage; and, (iii) the number of customers who arrive during the first

stage, n, is observed. We update the distribution of the arrival rate for the second stage based on n and

then pick the staffing level, x2, for stage two based on the updated distribution. Figure 3 illustrates these

time dynamics.

3.1 Model Formulation

We start with the following general two-stage model. Let N denote the number of arrivals in the first

stage, and let n represent a realization of N. Then the two-stage model is as follows:

min
x1≥0

cx1 +ENh(x1,N), (3a)

where h(x1,N|N=n) = min
x2≥0

c+(x2 − x1)
+− c−(x1 − x2)

+ (3b)

s.t. QoS constraint. (3c)

7
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Figure 3: Time Dynamics of the Problem when x1 is Optimized

It is obvious that the optimal second-stage staffing level x∗2 does not depend on the first-stage staffing

level x1, as long as the QoS constraint is only on the second-stage service quality. The second-stage

optimal staffing level x∗2 is affected by the observation from the first-stage, N, since the posterior distri-

bution of the arrival rate depends on N. So x∗2 is a function of N, and thus x∗2 is a random variable, which

we denote by x∗2(N). The specific of function x∗2(N) is determined by the QoS constraint. The optimal

second-stage cost, on the other hand, depends on the value of x1. This means the optimal first-stage

staffing level x∗1 is determined by the distribution of the optimal second-stage staffing level x∗2(N).

3.2 Two-stage Model with Constraint on Utilization

Now we describe in detail our two-stage model using utilization as the metric in the QoS constraint. In

this case, the model is

min
x1≥0

cx1 +ENh(x1,N), (4a)

where h(x1,N|N=n) =min
x2≥0

c+(x2 − x1)
+− c−(x1 − x2)

+ (4b)

s.t. PΛ2|N=n

(

Λ2

x2
< δ

)

≥ 1− ε. (4c)

Here, ε and δ are some pre-selected values between 0 and 1.

It is obvious that in (4), x∗2(N)|N=n is determined only by the second-stage constraint and we have

x∗2(N)|N=n ∈ argmin

{

x ≥ 0 : PΛ2|N=n

(

Λ2

x
< δ

)

≥ 1− ε

}

.

As before, we assume that Λ1 ∼ gamma(α,β ), and we use a Bayesian update to obtain the dis-

tribution of Λ2 after observing N. That is, after observing n arrivals over l ∈ R+ minutes in the first

stage, we have Λ2 ∼ gamma(α + n,β + l). Thus, using FΛ2|N=n
(·) to represent the CDF of the gamma

distribution for Λ2 given N = n, (3.2) becomes

x∗2(N)|N=n ∈ argmin

{

x : FΛ2|N=n
(δx) =

γ(α +n,(β + l)δx)

Γ(α +n)
≥ 1− ε,x ≥ 0

}

.

8
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Let Gn(·) be the CDF of a gamma distribution with parameters α +n and (β + l)δ , then we have

FΛ2|N=n
(δx) = Gn(x)

and

x∗2(N)|N=n = ⌈G−1
n (1− ε)⌉. (5)

We re-write (4) with the optimal second stage staffing level, x∗2:

min
x1≥0

cx1 +EN [c+(x∗2(N)− x1)
+ − c−(x1 − x∗2(N))+].

(6)

Model (6) can be re-written as:

max
x1≥0

EN [−cx∗2(N)− (c+ − c)(x∗2(N)− x1)
+ − (c− c−)(x1 − x∗2(N))+].

(7)

Model (7) has the form of a standard newsvendor’s problem. Therefore, the solution is given by:

x∗1 ∈ argmin

{

x ≥ 0 : PN(x∗2(N) ≤ x) ≥ c+− c

c+− c−

}

.

Now, we discuss the distribution of x∗2(N). As mentioned before, x∗2 is a function of N. Thus to

obtain the distribution of x∗2, we need to obtain the distribution of N. Under our assumptions, Λ1 ∼
gamma(α,β ), and N ∼ Poisson(Λ1). Use g(λ ;α,β ) to stand for the PDF of a gamma distribution with

parameters α and β , we have

P(N = n) =
∫ ∞

0
g(λ ;α,β )P(N = n|Λ1 = λ )dλ

=
∫ ∞

0
g(λ ;α,β )

λ ne−λ

n!
dλ

=
∫ ∞

0

β α

Γ(α)
λ α−1e−βλ λ ne−λ

n!
dλ

=
β αΓ(n+α)

Γ(α)n!(β +1)α+n

∫ ∞

0

λ α+n−1e−(β+1)λ (β +1)α+n

Γ(n+α)
dλ

=
β αΓ(n+α)

Γ(α)n!(β +1)α+n
.

Notice that in the above formula, if α is a positive integer, then

P(N = n) =

(

n+α −1

n

)(

1

β +1

)n(
β

β +1

)α

.

This implies that N has a negative binomial distribution with parameters α and
β

β+1
, when α is an in-

teger. That is N ∼ NegBin(α, β
β+1

). There are a couple variations of the negative binomial distribution.

Here, we are using the version of the negative binomial distribution that counts the number of failures

before the αth success. With this version, the PMF of the negative binomial distribution is

P(K = k|p,α) =

(

α + k−1

k

)

pα(1− p)k, k ∈ Z+.

9
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It is possible to extend the definition of the negative binomial distribution to the case of a positive real

parameter α . The PMF for this extended negative binomial distribution is

P(K = k|p,α) =
Γ(k +α)

Γ(α)k!
pα(1− p)k, k ∈ Z+.

Denote the CDF of the extended negative binomial distribution as

H(k;α, p) = P(K ≤ k|p,α) =
k

∑
i=0

Γ(i+α)

Γ(α)i!
pα(1− p)i, k ∈ Z+.

We have that N ∼ H(·;α, β
β+1

). We now provide the algorithm for solving the two-stage model (4) by

summarizing the content in this section.

step 1 (find n∗ corresponding to x∗1)

select n∗ ∈ argmin
{

k ∈ Z+ : H(k,α, β
β+1

) ≥ c+−c
c+−c−

}

;

step 2 (obtain x∗1 = x∗2(N)|N=n∗ )

select x∗2(N)|N=n∗ ∈ argmin
{

x : FΛ2|N=n∗ (δx) = γ(α+n∗,(β+l)δx)
Γ(α+n∗) ≥ 1− ε,x ≥ 0

}

;

Now, we discuss about the above algorithm in detail. Let Fx∗2(N)(·) be the CDF of x∗2(N), which is a

càdlàg function. We define the generalized inverse of Fx∗2(N)(·). Let F−1
x∗2(N)(y) = infx∈R

{

Fx∗2(N)(x) ≥ y
}

.

We want to obtain the smallest x∗1 that satisfies

x∗1 ≥ F−1
x∗2(N)

(

c+− c

c+− c−

)

,

or equivalently

Fx∗2(N)(x
∗
1) ≥

c+− c

c+− c−
.

That is

P(x∗2(N) ≤ x∗1) ≥
c+− c

c+− c−
,

or equivalently

P(N ≤ x∗−1
2 (x∗1)) ≥

c+− c

c+− c−
.

Denote x∗−1
2 (x∗1) as n∗. In step 1, we solve for this n∗, and in step 2, we find x∗1 by evaluating function

x∗2(n
∗).
The experiments described in this paragraph show the results of solving (4) with various value of α

and β using the algorithm described above. In the experiments, we fix α to be 900, and let β decrease

from 45 to 10 with a unit decrement. In such a way, the coefficient of variation of the first-stage arrival

rate,

√
var(Λ1)

mean(Λ1)
, is fixed, while the mean of the first-stage arrival rate, mean(Λ1), varies from 20 to 90.

The service quality threshold value, ε , is set to be 0.05. We conducted the experiments in MATLAB

7.11 (64 bit), and it took 0.22 seconds for MATLAB to finish the experiments. All the experiments in

section 3 are performed on a PC with Intel Core i7-980 processors at 3.88GHz, and 24.00 GB of RAM.
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3.3 Two-stage Model with Constraint on Probability of Waiting

As mentioned before, the QoS constraint can be of any type. When we use constraints other than the

utilization constraint appearing in (4), step 1 is the same. However, in step 2, the function x∗2(·), which

is determined by the second-stage constraint in the model, is different, and the level of difficulty in

solving the problem with other kinds of QoS constraints depends on the level of difficulty in evaluating

the function x∗2(·).
To illustrate the complexity introduced by applying other types of QoS constraints, we apply model

(3) to an M/M/n queueing system with a QoS constraint on the probability of waiting. In particular,

we have

min
x1≥0

cx1 +ENh(x1,N), (8a)

where h(x1,N|N=n) =min
x2≥0

c+(x2 − x1)
+− c−(x1 − x2)

+ (8b)

s.t. PΛ2|N=n
(P(wait > 0|x2,Λ2) < δ ) ≥ 1− ε. (8c)

In solving (8), the only difference from solving (4) is the function of x∗2 of N. In (8), function x∗2(N) is

determined by finding

x∗2(N)|N=n ∈ argmin
{

x : PΛ2|N=n
(P(wait > 0 | x2,Λ2) < δ ) ≥ 1− ε,x ≥ 0

}

.

Using the Jagers-van Doorn continuous extension of the Erlang-C formula [8] for P(wait > 0 | x2,Λ2),
we have

x∗2(N)|N=n ∈argmin{x ≥ 0 :

PΛ2|N=n

(

[

Λ2

∫ ∞

0
te−Λ2t(1+ t)x−1dt

]−1

< δ

)

≥ 1− ε

}

.

Because of the complexity of the formula for P(wait > 0 | x2,Λ2), once we obtain n∗ from step 1,

it is not as easy as it is for the utilization constraint model to evaluate x∗2(n
∗). Instead of the relativity

explicit formula appearing in (5), one needs to apply a line search to perform this evaluation.

In the next set of experiments, we solved (8) with the same set of values on α and β as in the exper-

iments for solving (4). The ε and δ in (8) are both set to be 0.05. As we mentioned above, line searches

on x2 are needed in step 2 of the algorithm. The lower and upper bounds of the line search are set to

be 1 and 120, and the tolerance level of the line search is set to be 0.01. We conducted the experiments

again in MATLAB 7.11 (64 bit), and it took 1054.91 seconds for MATLAB to finish the experiments.

These experiments demonstrate that our algorithm can efficiently solve the two-stage problem for more

complex QoS measures using line searches. Although the solution times are obviously much greater

than the times needed with the simple utilization metric, they are still quite reasonable.

4 Conclusion

In this work, we build a two-stage stochastic program with recourse to analyze the relationship between

the staffing decisions over two adjacent time periods. A Bayesian update is applied to the arrival rate in

the second time period once the new observations arrive during the first time period. The model inte-

grates arrival-rate updates and dependence in staffing decisions over two contiguous time periods. The

model minimizes the first stage staffing cost and the expected second stage staffing cost while satisfying
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a service quality constraint on the second stage operation. The Bayesian update yields the second-stage

arrival-rate distribution based on the first-stage arrival-rate distribution and the observations in the first

stage. The second-stage distribution is used in the constraint on the second stage service quality. After

reformulation, we show that we can rewrite our two-stage model as a newsvendor model. We provide

an algorithm that solves the two-stage staffing problem under some commonly used QoS constraints.
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