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ABSTRACT 

This paper presents a new asset portfolio optimization model which considers the Conditional 
Value at Risk – CVAR as a risk measure.  Based on Kriging Method, it creates a surface to 
describe CVAR.  This new method led to results similar to those obtained by ROCKAFELLAR 
(2000). The results under stress scenarios were compared to Markowitz model. 
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1. INTRODUCTION 
This paper introduces a new model for calculating the optimal investment portfolio composition. 
The new model, based on the Kriging Model, is believed to be better approach to the portfolio 
composition problem since it does not assume a predetermined response probability distribution. 
Besides, it requires substantially less variables and constraints to reach similar results to well 
known models.  Moreover, this new model calculates the relative error to the future estimates, 
offering a substantial contribution to the models available in the literature. 
 
Portfolio Management Theory, introduced by MARKOWITZ (1952), considers the variance of 
portfolio returns as a risk measure.  Though this model has been used by practitioners for 
decades, it’s well known that this risk measure applies only to symmetrical distributions of 
returns (SZEGO, 2002), which does not apply to most of the real cases.  The CVAR  Model, 
introduced by  ROCKAFELLAR and URYASEV (2000), considers the Conditional Value at 
Risk (CVAR) as a risk measure, overcoming the limitations of the previous model.  Moreover, it 
proposes a mathematical formulation that transforms the problem of calculating the CVAR in a 
linear programming problem. However, the discretization of the problem requires a large number 
of variables and restrictions, which grows with the sample size. The proposed model also utilizes 
the CVAR as a risk measure, but instead of considering an analytical expression for CVAR in 
terms of probability distribution of returns, it considers estimates of CVAR calculated in a grid of 
𝑅𝑁, representing the different portfolios. These estimates are used to construct a response surface 
- the risk surface - which is the objective function of the optimization model. 
 
The three models mentioned above are applied to a portfolio composed of four stocks negotiated 
in BM&F BOVESPA.  The results of such application show that the primary investment 
recommendations obtained by the three presented models are the same.  Moreover, the calculated 
portfolio compositions are similar, and the portfolios calculated by the Kriging Model rely 
somewhere in between the previous models.  Therefore, the new proposed model can be 
considered more appropriate to the portfolio composition problem since it presents a simpler 
solution than the CVAR Model in terms of variables and restrictions, and it calculates the 
estimate error, reaching similar results. 
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2. PORTFOLIO COMPOSITION MODELS 
Portfolio Management Theory introduced by MARKOWITZ (1952) studies the problem of 
composing an optimal portfolio of financial assets. The objective is to find a portfolio with 
minimum risk, satisfying constraints on the return of the portfolio. Markowitz considers the 
variance of portfolio return as the risk measure. Although this model has been used for decades, it 
is well known that this measure applies only to symmetrical distributions of returns  (SZEGO 
(2002)) and does not consider the tail of distributions. 
 
Some other risk measures have been considered in literature, such as the Value at Risk - VAR. 
The VAR can be defined as greatest loss that might occur with α% of probability in a fixed time 
horizon, but it does not analyze the tail of the resulting return distribution. ROCKAFELLAR 
(2000) proposed a new risk measure to cover the limitations presented, the Conditional Value at 
Risk – CVAR. CVAR is a coherent risk measure (ARTZNER (1999)) which can be defined as 
the average of values that exceed the VAR, for a fixed confidence level.    
 
The portfolio problem can be generally written as:  
 
Minimize:    𝑟𝑖𝑠𝑘(𝑋) 
 
Subject to:    (1) ∑ 𝐸(𝑅𝑖)𝑥𝑖 ≥ 𝐺𝑛

𝑖=1  
     (2) ∑ 𝑥𝑖 = 1𝑛

𝑖=1  
     (3) 𝑥𝑖 ≥ 0, 𝑖 = 1, … ,𝑛 
 
Where 𝑥𝑖 is the weight of asset 𝑖 in the portfolio, 𝐸(𝑅𝑖) is the expected return of the asset i, 
where 𝑖 = 1,2, … ,𝑛, and  𝑟𝑖𝑠𝑘(𝑋) is a risk measure written in terms of portfolio composition. 
 
Constraint (1) refers to the average return of the portfolio, which must be equal or greater than a 
fixed return level. Constraint (2) assures that the total amount of available resources will be 
invested.  Constraint (3) does not allow short sales. 
   
Considering the variance as risk measure we can write  𝑟𝑖𝑠𝑘(𝑋) = 𝑥𝑡 ∑ 𝑥,  (∑  is the covariance 
of returns) and the model can be solved by Quadratic Optimization techniques. If we consider the 
VAR as risk measure, the  function 𝑟𝑖𝑠𝑘(𝑋)  presents local minimum and the resulting model is 
difficult to solve (RIBEIRO (2004)).  
 
ROCKAFELLAR and URYASEV (2000) considered Conditional Value at Risk – CVAR as risk 
measure. According to QUARANTA (2008), considering 𝑥 ∊  𝑋 ⊂  𝑅𝑁 a decision vector 
representing a portfolio, y  ∊  𝑌 ⊂  𝑅𝑁 the future return of the assets that form a portfolio and 
𝑧 = 𝑓(𝑥,𝑦) the function of portfolio losses, the CVAR is calculated as: 
 

𝐶𝑉𝐴𝑅(𝑥,𝑎) =  𝐸{𝑦|𝑓(𝑥,𝑦) ≤ 𝑎} 
 
Where a is the VAR of the portfolio.  ROCKAFELLAR (2002) showed that CVAR can be 
written as   𝐹𝛼(𝑋,𝑎) = 𝐶𝑉𝐴𝑅(𝑋,𝑎) = 𝑎 + 1

1−𝛼 ∫ [𝑓(𝑋,𝑌) − 𝑎]+𝑝(𝑌)𝑑𝑦 
𝑌∊𝑅𝑚  , with  

 
  [𝑡]+ = 𝑚𝑎𝑥{0, 𝑡} and  α the confidence level.  
 
ROCKAFELLAR (2002) proposed a mathematical formulation that transforms the problem of 
calculating the CVAR in a linear programming problem. However this approach assumes 
discretization of the probability distribution Y, generating vectors 𝑦1,𝑦2, … ,𝑦𝑞.  Given the q 
scenarios, the approximated function for 𝐹𝛼(𝑋,𝑎) becomes: 
 

1531



September 24-28, 2012
Rio de Janeiro, Brazil

𝐹�𝛼(𝑋,𝑎) = 𝐶𝑉𝐴𝑅(𝑋,𝑎) = 𝑎 +
1

𝑞(1 − 𝛼)�
[𝑓(𝑋,𝑌𝑘) − 𝑎]+

𝑞

𝑘=1

 

 
It is easy to see that the resulting optimization model can be transformed in a linear programming 
model with the introduction of auxiliary variables µ𝑘.  
 
Minimize:    𝐹�(𝑋,𝑎) = 𝑎 + 1

𝑞(1−𝛼)
∑ µ𝑘
𝑞
𝑘=1  

 
Subject to:    (1) 𝑥𝑖 ≥ 0 𝑓𝑜𝑟 𝑗 = 1, … ,𝑛 
     (2) ∑ 𝑥𝑗 = 1𝑛

𝑗=1  
     (3) 𝑋𝑇𝑌 ≥ 𝐺 
     (4) µ𝑘 + 𝑋𝑇𝑌𝑘 + 𝑎 ≥ 0 
     (5) µ𝑘 ≥ 0, 𝑘 ∊ {1,2, … , 𝑞} 
 
Despite the advantages CVAR model over Markowitz model, it offers one major disadvantage:  
the need to include a large number of variables and restrictions, which grows with the sample 
size. 
 

3. A NEW PORTFOLIO MODEL 
Instead of considering an analytical expression for CVAR in terms of probability distribution of 
returns, this paper proposes a new approach. We consider estimates of CVAR calculated in a grid 
of   𝑅𝑁, representing different portfolios. These estimates are used to construct a response surface 
- the risk surface -  which is the objective function of the optimization model.  The response 
surface is created based on Kriging Model (RIBEIRO (2004), YIN (2011)).   
 

Given q pairs ( ){ }q
j

jj yw 1
)()( ; = , with nj Rw ∈)(  and y(j) = f(w(j)), the Kriging Model creates a 

polynomial approximation of a function f(.),  )()(
1

)( wewf
q

j

j
j +∑

=

α . The random errors 𝑒(𝑤) are 

correlated, normally distributed, with mean equal to zero and variance 𝜎2.  The covariance 
between the errors is given by 𝑐𝑜𝑣 �𝑒�𝑋𝑖�, 𝑒�𝑋𝑗�� = 𝜎2 ∑  𝑖𝑗 , where ∑  𝑖𝑗 is the correlation 
between two errors (∑  𝑖𝑗 = 𝑅(𝜃,𝑑ℎ) = 𝑐𝑜𝑟𝑟�𝑋𝑗 ,𝑋𝑗�). 
 
An unbiased estimator of 𝑓(𝑋∗) is given by RIBEIRO (2002) and LOPHAVEN (2002): 
𝑓(𝑋∗) = ∑ 𝛽𝑗∗𝑓𝑗𝑚

𝑗=1 (𝑋∗) + 𝑟 ′𝛴−1(𝑦 − 𝐹𝛽∗)    with   𝛽 = (𝐹𝑇𝛴−1𝐹)−1 𝐹𝑇𝛴−1𝑦.  Vector r is the 
correlation vector between errors related to 𝑋∗ and the other points in the sample, ∑  is the 
correlation matrix between the points in the sample, y is the vector of the values observed for 
CVAR, and F is the matrix with the values calculated in the points of the sample.  
 
The Gaussian correlation is given by 𝑅(𝜃,𝑑ℎ) = exp (−𝜃ℎ𝑑ℎ2) with the distance measure 
between two points depending on parameters 𝜃ℎ and 𝑝ℎ: 
 

𝑑�𝑋𝑖 ,𝑋𝑗� = �𝜃ℎ

𝑛

ℎ=1

|𝑥ℎ𝑖 − 𝑥ℎ
𝑗|𝑝ℎ 

According to JONES (1998), the 𝜃ℎ parameter measures the influence or “activity” of the 
variable 𝑥ℎ.  The exponent 𝑝ℎ is related to the smoothness of the function in relation to the points 
h.  Similarly to QUEIPO (2002), we adopt 𝜃ℎ = 1 and 𝑝ℎ = 2.   
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The first step to the application of the model relates to the definition of an appropriate sample to 
the experiment.  Two techniques are considered: 

1. Random Generation:  generates points that are normally distributed in the interval [0,1], 
the mean equals to zero and the variance equals to one. 

2. Deterministic Generation:  each face of the hypercube [0,1]𝑛 is subdivided in a defined 
number of intervals which generate other cubes which vertices are the points of the 
sample (RIBEIRO (2004)). 

 
Once the sample generation technique is chosen, the correlation and the regression are defined 
and the model is constructed as follows: 

a. Generate a sample of points �𝑋𝑖�𝑖=1
𝑞

 , satisfying the constraints  𝑋𝑖 ∊ 𝑅𝑛 and 0 ≤  𝑥𝑗𝑖 ≤
1, 𝑖 = 1, … ,𝑛; 

b. For each vector 𝑋𝑖, calculate   𝑦𝑖 = 𝐶𝑉𝐴𝑅(𝑋𝑖) 
c. Construct the approximating function (𝑋𝑖;𝑌𝑖); 
d. Solve the resulting optimization model 

4. RESULTS 

To analyze the model, a portfolio with four stocks negotiated in BM&F BOVESPA was 
considered: Cosan LTD (CZLT11), Itaú Unibanco PN (ITUB4), BMFBovespa ON (BVMF3) and 
Gerdau PN (GGBR4). 
 
The sample considers daily returns of each stock from October 2009 to August 2011, totalizing 
474 points. A hypothesis test showed that returns were not normally distributed at 5% 
significance level. During the considered period, three trend scenarios were clearly defined: the 
first scenario was of relative price stability, the second of price rise, and the third of price 
decrease of the stocks.  The figure above shows the three considered scenarios. 
 

 
Figure 1: Definition of three scenarios for analysis. 

 

 

4.1 The Markowitz Model 
To apply the Markowitz Model two parameters were considered for each scenario: (1) the mean 
return of each stock for each scenario, and (2) the covariance matrix between the four assets for 
each scenario.  The covariance may be considered constant in the three different scenarios. 
Applying the formulation proposed by MARKOWITZ (1952) to each of the three scenarios, the 
obtained Efficient Frontiers are presented below. 
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Figure 2: Efficient Frontiers for each scenario using the Markowitz Model. 
 

The optimal solutions are represented as follows: 

 
Figure 3: Optimal Portfolio Composition for each scenario calculated using the Markowitz 

Model. 
 
The above results were obtained with the solution of a quadratic optimization problem with 4 
variables and 3 restrictions. 
 

4.2 The CVAR Model 
To apply the CVAR Model we assumed a confidence level of 90% and a fixed time horizon of 1 
day.  Similarly to the previous section, the efficiency frontiers of the optimal portfolio, for each 
scenario, are presented below.   
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Figure 4: Efficient Frontiers for each scenario using the CVAR Model. 
 
 
Below the portfolio compositions calculated using the CVAR method are presented. 
 
 

 
Figure 5: Optimal Portfolio Composition for each scenario calculated using the CVAR 

Model. 
 
The above results were obtained with the solution of a discrete linear optimization problem with 
100 variables and 104 restrictions (100 simulations performed). 
 

4.3 Kriging Model 

4.3.1 Estimating the CVAR 
The first step to apply the Kriging model consists in obtaining the CVAR values of the portfolio 
formed by the combination of assets previously defined.  VAR was obtained through historical 
data (non-parametric method) with 90%  confidence level.  For the historical returns, the average 
daily return between October 2009 and August 2011, totalizing 474 observations, was used. The 
CVAR is calculated as the average of the returns inferior to those defined for the VAR. 
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4.3.2 Sample Selection 
Two sample generation methods were considered to apply Kriging method. In the Random 
Method, the portfolio compositions for the four defined assets were generated randomly, so that 
0 ≤ 𝑥𝑗

(𝑖) ≤ 1, forming a sample of 100 different portfolio compositions.  In the Deterministic 

Method, the values of 𝑥𝑗
(𝑖) were defined so that they were equally distributed in the analyzed 

region.  The condition ∑ 𝑥𝑗
(𝑖)4

𝑗=1  was relaxed to facilitate graphical representation. 
The figure below represents the samples referring to the stocks ITUB4 and CZLT11.  These 
assets were chosen arbitrarily to make the representation easier. 

 
Figure 6: Graphic representation of the Random Sample and Deterministic Sample for two 

arbitrarily define assets. 
 
The CVAR for the portfolios was determined using both samples.  It was calculated as the 
average of returns lower than the VAR, which was defined by percentile at a confidence level of 
90% and the fixed horizon of 1 day.  Next, an approximation of the Conditional Values at Risk 
was calculated, according to the Kriging model with the four assets.  The figure below shows the 
response surfaces generated for both samples.  We selected only the points in which allocations 
in BVMF3 and GGBR4 were 25% and 50%, to facilitate illustration. 
 

 
Figure 7: Smoothened response surfaces when applied the DACE method. 

 
The differences in the sample methods that represent the portfolio composition of each asset may 
be observed by the error calculated as: 
 

𝑓(𝑋) − 𝐶𝑉𝐴𝑅(𝑋) 
 
Where 𝑓(𝑋) represents the value of the CVAR approximated by the DACE adjustment.  The 
figure below shows this error. 
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Figure 8: Error of the Kriging approximation for random and deterministic samples. 

 
Figure 8  shows the high sensibility of the Kriging method to the sample definition methodology.  
As the random sample offers greater error than the deterministic sample,  CVAR values 
calculated using the deterministic sample will be used in the optimization models. 
 

4.3.3 Correlation Function Selection 
All correlation functions proposed by LOPHAVEN (2002) were analyzed and Gaussian 
Correlation function was selected as it led to the smallest error. 
 

4.3.4 The Kriging Model Application 
The Kriging Model, which interpolates the data, depends on the sample points, the type of 
regression, the correlation model and the value of θ. These parameters are presented below. 
 

- The sample is composed by the combination of four assets previously chosen, and was 
generated by deterministic process, which divides the surface grid in n equidistant 
intervals, defining the distance between two consecutive points 𝑥𝑗

(𝑖); 
- The CVAR was calculated as the average of the values inferior to the calculated VAR, 

which was defined by the historical series method; 
- The defined regression method was the linear regression, which utilizes a polynomial of 

degree 1 to approximate the function; 
- The defined correlation method was the Gaussian, since this offers a better 

approximation of the function according to the value of the mean squared error; 
- The definition of this correlation method implies in the determination of the 𝑝ℎ, which is 

equal to 2 in the case of the Gaussian correlation; 
- In an approach similar to QUEIPO (2002), it is defined 𝜃 = 2. 

 
The figure below shows the approximated surface for all three analyzed scenarios. 
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Figure 9: Approximation of the Kriging Method to the function of CVAR. 

 
4.3.5 The Efficient Frontier Estimate 

 
The figure below shows the results of the study. 
 

 
 

Figure 10: Calculated Efficient Frontiers for each scenario using the Kriging Model. 
 

. 
The figure below shows the different portfolio compositions for different risk levels calculated 
using the Kriging Model. 
 

1538



September 24-28, 2012
Rio de Janeiro, Brazil

 
Figure 11: Optimal Portfolio Composition for each scenario using the Kriging Model. 

 
The above results were obtained with the solution of a linear optimization problem with 4 
variables and 3 restrictions. 
 
The efficiency frontier recommends greater investment in GGBR4, CZLT11 and BVMF3 for 
scenarios 1, 2, and 3 respectively, as the investor’s risk aversion reduces. 
 
Comparing the portfolio compositions of the three analyzed methods, it’s clear that the results are 
similar in terms of general investment allocations within the portfolio.  Specifically, when 
comparing the Markowitz Model with the Kriging Method, the greatest squared deviation of 
portfolio composition for a given level of return is 0,042, demonstrating a strong similarity in  the 
results offered by these two methods.  The similarity of the results between the Markowitz Model 
and the Kriging Method is a strong indication of the soundness of the latter method. 
 
When comparing the results of both the Markowitz Model and the Kriging Method with the 
CVAR Model, the greatest squared deviation of portfolio compositions is 0,064 for any given 
level of return in the right-hand half of the curve, also indicating a strong similarity between the 
three methods when considering high risk levels.  However, in the left-hand half of the curves, 
the squared deviation between its results and the results of the other two models is as great as 
0,38.  Because this specific region is of great concentration of points, the difference might be 
explained by the relatively small number of simulations utilized to apply the CVAR model 
(around 100).  An increase on the number of simulations of the CVAR model should make the 
results even more similar, but with the cost of further increasing in the number of variables and 
restrictions, and thus computational capacity. 
 
The above discussion reinforces the advantages of the Kriging Model, which can generate sound 
risk analysis with the need of substantially less variables and restrictions, less computational 
capacity and without the need of estimating a determined probability distribution which doesn’t 
necessarily occur. 
 
  

1539



September 24-28, 2012
Rio de Janeiro, Brazil

7. CONCLUSIONS 

This study introduced the Kriging Model as an alternative to the investment portfolio 
optimization models existing in today’s literature.  Though the Kriging Model uses the CVAR as 
a risk measure, similarly to the CVAR model, it requires substantially less variables and 
constraints in the optimization problem than the latter, representing a more appropriate solution. 
Moreover, it calculates the error of future estimates, offering a substantial contribution to the 
models available in the literature. 
 
Together with the Markowitz Model and the CVAR Model, the Kriging Model was applied to a 
portfolio composed of four assets negotiated in BM&F BOVESPA, in three different scenarios: 
(1) price stability, (2) price rise and (3) price decline (stress scenario).  The results show similar 
primary recommendations by each model: greater investment in GGBR4, CZLT11 and BVMF3 
for scenarios 1, 2, and 3 respectively. This indicates that the portfolio compositions obtained by 
the new proposed model are similar to those obtained by the Markowitz Model and the CVAR 
Model, especially when considering high risk levels.  In fact, the portfolio compositions 
calculated by new model rely somewhere in between the portfolio compositions calculated using 
the Markowitz Model and the CVAR Model, except for the price stress scenario, in which the 
new model’s results are similar to those calculated using the Markowitz Model.  This results were 
obtained with considerably less variables and restrictions than the CVAR Model, facilitating it’s 
application.  Last, the Kriging Model considers the relative error to the estimate, offering a 
substantial opportunity do further developments and extensions. 
 
Other extensions of this work include the application of the Kriging Model without the 
hypothesis of homogeneous variance of the errors, refining the method and the results. One last 
extension of this work would be the application of the Kriging Model to multiple future return 
periods, which is not presented in this work.  
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