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A Multistage Linear Stochastic Programming Model for

Optimal Corporate Debt Management

Abstract

Large corporations fund their capital and operational expenses by issuing bonds with

a variety of indexations, denominations, maturities and amortization schedules. We

propose a multistage linear stochastic programming model that optimizes the bond

issuance policy to fund a predetermined project portfolio. Cash flows are uncertain,

affected by financial, macroeconomic and business specific risk factors. Our objective

function combines a mean-risk trade-off measured at the end of the planning horizon

and penalties for highly leveraged debt portfolios at each intermediate stage. Avoiding

the curse of dimensionality common in long term multistage stochastic models, the

full event tree representation of uncertainty is used only in the initial planning stages.

The remainder of the horizon uses independent path sub-samples, adopting a fixed-rule

policy approximation. Assuming null cash returns, an illustrative example presents

a sensitivity analysis of the first stage solution and the stochastic efficient frontier of

mean-risk trade-off. Based on a realistic example with stochastic cash returns, we

underscore the importance of the intermediate penalties in obtaining suitable solutions.

Based on the proposed model, a financial planning software tool has been implemented

and deployed in Brazilian oil company Petrobras.
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1. Introduction

In large corporations, the goal of debt management is the dynamic bond issuance

under uncertainty, with the purpose of optimally funding their capital and operational

expenses. Debt portfolios are structured as a mix of securities with differing indexa-

tions, denominations, maturities and amortization schedules, in an attempt to balance

the expected cost of servicing the debt with risks inherent to interest rates, corporate

revenues and costs. In addition to corporate and regulatory operational constraints,

debt management must take into account fluctuations in total debt, assets and cash sav-

ings, along with other financial performance measures affecting the company’s stock

price and credit rating. In face of the required modeling flexibility, there is a firmly

established literature with applications of Multistage Stochastic Programming (MSP)

techniques to debt management and, more generally, to Asset Liability Management

(ALM) problems. Starting with Bradley and Crane [2], ALM models have been devel-

oped for several different applications including insurance companies [3] and pension

funds [11, 6, 10]. More recently, similar techniques were especialized for optimal

sovereign bond issuance, also dealing with the trade-off between minimum expected

cost and minimum risk [1, 4, 5]. For the corporate case, Xu and Birge [22] introduce

a simplified model that maximizes shareholder value over production strategy and div-

idend distribution policy, considering a single short term debt instrument. However,

their model requires the availability of known risk neutral probabilities, an unrealistic

assumption especially for companies without a portfolio of tradable assets. To the best

of our knowledge, the literature lacks models describing corporate bond issuance under

uncertainty, dealing with both the complexity of the dynamic decision process and the

trade-off among expected costs, risks and financial performance measures, as observed

in practice.

In this article, we present an MSP model for a corporation financing a predeter-

mined set of projects, considering a universe of fixed and floating rates debt instru-

ments. Uncertainty is represented by an event tree with a hybrid information structure,

used to avoid exponential complexity with the number of stages. In the first part of the

horizon, we build a detailed event tree with a full range of debt instruments available to

the decision maker. For the other portion of the time horizon, the event tree is formed

by a subsample approximation of uncertainty realizations, with a predetermined pol-

icy rule allowing only short-term debt. Our optimization model describes the dynamic

decision process where, at every yearly stage, the state of the system is represented by

the current cash holdings and the past debt portfolio. It takes into account the mean-

risk trade-off between expected cost of debt service and expected value of corporation

insolvency. Additional operational constraints express corporate debt valuation and

the current asset value used to compute the leverage ratio at each stage. Lewellen and

Emery [12] asserts that most reasonable characterizations of corporate debt manage-

ment policies adopt a borrowing strategy organized around leverage ratio targets. We

integrate this performance measure into the objective function, modeling it as a convex

piecewise linear penalty of the computed excess leverage.

For an illustrative example with null cash returns and no intermediate penalties, we

present a sensitivity analysis of the risk aversion level. Considering different scenario

trees, we solve the problem for each risk aversion level and compute efficient frontiers
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and related solutions. For a realistic example with stochastic cash returns, we make

a sensitivity analysis of the excess leverage penalties and show the importance of our

multi-criteria objective function to obtain suitable policies. Computations were carried

out with a financial planning software tool implemented for a financial and risk man-

agement group at Brazilian oil company Petrobras. In our illustration we consider a

fictitious, although realistic, project data set.

The remaining content of this article is organized as follows. Section 2 describes

our multistage stochastic programming model, with a comprehensive presentation of

all elements in the formulation. In Section 3, we perform a series of sensitivity anal-

yses of the optimal solution considering an illustrative example. Section 4 we present

the assumptions of a realistic application of our model to the oil industry and show the

importance of the excess leverage penalties. Finally, section 5 summarizes the contri-

butions of this paper and outlines the directions of future research.

2. Multistage Stochastic Programming Model

Multistage stochastic programming is a natural framework for long-term financial

planning problems, corporate debt management in particular. The model must describe

a dynamic setting where, at a given stage, a decision is taken facing an unknown future.

Once decisions are implemented, the next period information is revealed and the pro-

cess is repeated for the next stage. Figure 1 illustrates this dynamic decision process

where uncertainty gradually reveals itself over time.
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Figure 1: Dynamic decision process

A standard approach in MSP models is to represent uncertainty by a discrete event

tree as depicted in Figure 2, where nodes indicate the state of the process at decision

points and arcs the realizations of uncertainty before the next stage. Formally, the

information structure given by an event tree can be understood as a filtered probability

space [4] generating a deterministic equivalent of the MSP model. A complete path in

the event tree is called a scenario and a policy is defined as the set of decisions for all

stages and scenarios. This information structure requires that decisions be based solely

on past information, expressed in the MSP model formulation by the non-anticipativity

constraints, which stipulate decision variables at a given stage must be equal if their

scenarios share the same node in the event tree. For instance, given a generic policy

Xt(s),∀ t ∈ {0, 1, 2}, s ∈ {1, 2, 3, 4} and the information structure in Figure 2, we would

include X0(1) = X0(2) = X0(3) = X0(4), X1(1) = X1(2) and X1(3) = X1(4) as non-

anticipativity constraints.

Given this tree structure, we can immediately observe that the size of the deter-

ministic equivalent grows exponentially with the number of stages. Some authors have
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Figure 2: Information structure given by an event tree

dealt with this curse of dimensionality applying large scale optimization techniques

[15, 16], while others approximate the original multistage problem by reducing the

number decision variables with the adopting single policy rule [19]. A policy rule is a

function of the uncertainty realization that generates a unique sequence of feasible de-

cisions for each time of the planning horizon. This framework fits into the independent

scenario structure as stated in [19], however it usually leads to a suboptimal solution

when compared to the original multistage one. Indeed, one could define a set of policy

rules generally leading to a non-convex optimization problem.

With the purpose of reducing the high dimensionality of our final formulation, we

propose a hybrid approach comprising a traditional multistage model for the first T ∗

periods and an independent-scenario structure with simple policy rule for t > T ∗. For

the latter, we represent uncertainty by a subsample of the full event tree structured as

independent scenarios as illustrated in Figure 3. In our model, a full set of securities

is considered for t ≤ T ∗, while for t > T ∗ we allow only short term bonds to ensure

the minimum cash threshold. This framework is motivated by the assumption that

most investments take place at the first part of the planning horizon where the decision

process is described in more detail.

2.1. Definitions

Preparing a complete formal statement of the model, let us first define parameters,

risk factors and decision variables used in the formulation.

4
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Figure 3: Hybrid model for T ∗ = 2 and T = 4

Scalar Parameters.

T : Planning horizon

T ∗: Detailed planning horizon for t = 0, . . . ,T ∗ − 1

S : Number of scenarios

ω: Weighted average cost of capital (WACC)

c: Initial cash

p: Risk aversion parameter (penalty coefficient for insolvent scenarios)

nX: Number of fixed rate bonds

nY: Number of floating rate bonds

K: Number of targets for the leverage ratio

Sets.

H = {0, . . . ,T − 1}

H∗ = {0, . . . ,T ∗ − 1}

S = {1, . . . , S }

K = {1, . . . ,K}
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X = {1, . . . , nX}

Y = {1, . . . , nY}

Vector parameters.

γk: k-th target for leverage ratio, ∀k ∈ K

θk: Penalty for excess leverage exceeding the k-th target, ∀k ∈ K

xt: Payment at t ∈ H ∪ {T } of pre-existing fixed-rate bonds

yt: Outstanding face value at t ∈ H ∪ {T } of pre-existing floating rate bonds

∆yt: Amortization at t ∈ H ∪ {T } of the pre-existing floating rate bonds

Mi
X

: Maturity of fixed rate bond i,∀i ∈ X, where Mi
X
≤ T − T ∗ + 1

Mi
Y
: Maturity of floating rate bond i,∀i ∈ Y, where Mi

Y
≤ T − T ∗ + 1

∆Xi
j
: Amortization rate of fixed rate bond i,∀i ∈ X, for its j-th payment, ∀ j ∈
{
1, . . . ,Mi

X

}
, where

∑Mi
X

j=1
∆Xi

j
= 1

∆Y i
j
: Amortization rate of floating rate bond i,∀i ∈ X, for its j-th payment, ∀ j ∈
{
1, . . . ,Mi

Y

}
, where

∑Mi
Y

j=1
∆Y i

j
= 1

Risk factors.

ft(s): Cash flow at time t ∈ H ∪ {T }, under scenario s ∈ S

rt,τ(s): Annual effective yield to maturity τ, during period t ∈ H , under scenario s ∈ S

ρt(s): Cash account return during period t ∈ H , under scenario s ∈ S

αi
t(s): Coupon of fixed rate bond i ∈ X issued at time t ∈ H , under scenario s ∈ S

ψt,k(s): Risk premium at time t ∈ H , under scenario s ∈ S over the yield to maturity k

2.2. Decision variables

These sets of variables include implementable policies such as the amount issued

for each bond and also auxiliary variables to describe the state of the firm, e.g., cash

account, asset and debt values. Note that we implicitly assume the non-negativity

constraints of decision variables if not specified.

Xi
t, j

(s): Outstanding face value at time t + j of fixed rate bond i ∈ X issued at t ∈ H∗,

under scenario s ∈ S, where j ∈
{
0, . . . ,min(t,Mi

X
− 1)
}

Y i
t, j

(s): Outstanding face value at time t + j of floating rate bond i ∈ Y issued at

t ∈ H∗, under scenario s ∈ S, where j ∈
{
0, . . . ,min(t,Mi

Y
− 1)
}

6
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Ct(s): Cash savings at time t ∈ H , under scenario s ∈ S

C+
T

(s): Positive part of terminal cash savings under scenario s ∈ S

C−
T

(s): Negative part of terminal cash savings under scenario s ∈ S

Dt(s): Debt value at time t ∈ H , under scenario s ∈ S

D̃t(s): Debt value at time t ∈ H , under scenario s ∈ S excluding current issued bonds

At(s): Asset value at time t ∈ H , under scenario s ∈ S, where

At(s) ∈ R,∀t ∈ H , s ∈ S

It,k(s): Excess leverage at time t ∈ H , scenario s ∈ S, for the leverage limit k =

1, . . . ,K

2.3. Balance constraints

Amortization. These constraints update the outstanding face value of each bond after

amortization payments. For each bond i issued at t under scenario s, the outstanding

face value at t + j is the outstanding value at t + j − 1 minus the j-th amortization

payment.

For fixed rate bonds, we have

Xi
t, j(s) = Xi

t, j−1(s) − ∆Xi
j.X

i
t,0(s), ∀i ∈ X \ {1}

∀t ∈ H∗,∀s ∈ S

∀ j ∈ {1, . . . ,Mi
X
− 1}.

For floating rate bonds, we have

Y i
t, j(s) = Y i

t, j−1(s) − ∆Y i
j.Y

i
t,0(s), ∀i ∈ Y

∀t ∈ H∗,∀s ∈ S

∀ j ∈ {1, . . . ,Mi
Y
− 1}.

Cash balance. Cash balance constraints keep track of inflows and outflows at every

stage of the system. We define them differently for the four portions of the planning

horizon.

For t = 0,∀s ∈ S,

Ct(s) = c + ft(s) − xt − ytρt−1(s) − ∆yt +
∑

i∈X

Xi
t,0(s) +

∑

i∈Y

Y i
t,0(s).

Total cash at the end of the first period is the initial value updated with new cash

flow, minus payments and amortization for pre-existing debt, plus borrowing income,

all at t = 0. Observe that the total current issuance is composed of two summations,

adding all types of fixed and floating rate bond.

7
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For t ∈ H∗ \ {0},∀s ∈ S,

Ct(s) =
(
1 + ρt−1(s)

)
Ct−1(s) + ft(s) − xt −

(
ytρt−1(s) + ∆yt

)

+
∑

i∈X

Xi
t,0(s) +

∑

i∈Y

Y i
t,0(s)

−
∑

i∈X

min(t,Mi
X

)∑

j=1

(
αi

t− j(s)Xi
t− j, j−1(s) + ∆Xi

j.X
i
t− j,0(s)

)

−
∑

i∈Y

min(t,Mi
Y

)∑

j=1

((
ρt−1(s) + ψt− j,Mi

Y
(s)
)
Y i

t− j, j−1(s) + ∆Y i
j.Y

i
t− j,0(s)

)
.

As in t = 0, total cash is the previously accrued value updated with all current

inflows and outflows, but also includes payments and amortization of new fixed and

floating rate bonds.

For t ∈ H \ H∗,∀s ∈ S,

Ct(s) =
(
1 + ρt−1(s)

)
Ct−1(s) + ft(s) − xt − ytρt−1(s) + ∆yt

+ X1
t,0(s) −

(
α1

t−1(s)X1
t−1,0(s) + ∆X1

1 .X
1
t−1,0(s)

)

−
∑

i∈Xt

min(t,Mi
X

)∑

j=t−T ∗+1

(
αi

t− j(s)Xi
t− j, j−1(s) + ∆Xi

j.X
i
t− j,0(s)

)

−
∑

i∈Yt

min(t,Mi
Y

)∑

j=t−T ∗+1

((
ρt−1(s) + ψt− j,Mi

Y
(s)
)
Y i

t− j, j−1(s) + ∆Y i
j.Y

i
t− j,0(s)

)
,

where

Xt =
{
i | i ∈ X \ {1}, Mi

X
≥ t − T ∗ + 1

}
,

Yt =
{
i | i ∈ Y,Mi

Y
≥ t − T ∗ + 1

}
.

For the simplified portion of the horizon (T ∗ ≤ t < T ), cash balance constraints

differ as new issuances are limited to short term bonds. Note also that summations

limits in the terms corresponding to payments and amortization of long term bonds

account for only those issued during the detailed horizon.

8
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For t = T, s ∈ S,

C+t (s) −C−t (s) =
(
1 + ρt−1(s)

)
Ct−1(s) + ft(s) − xt − ytρt−1(s) + ∆yt

−
(
α1

t−1(s)X1
t−1,0(s) + ∆X1

1 .X
1
t−1,0(s)

)

−
∑

i∈Xt

min(t,Mi
X

)∑

j=t−T ∗+1

(
αi

t− j(s).Xi
t− j, j−1(s) + ∆Xi

j.X
i
t− j,0(s)

)

−
∑

i∈Yt

min(t,Mi
Y

)∑

j=t−T ∗+1

((
ρt−1(s) + ψt− j,Mi

Y
(s)
)
Y i

t− j, j−1(s) + ∆Y i
j.Y

i
t− j,0(s)

)
.

At the end of the planning horizon, we do not consider new debt issuance. Infea-

sibility is avoided by expressing the left hand side with two components and allowing

for negative values in the final cash balance. Under scenario s, C+
T

(s) represents the ter-

minal cash savings, while C−
T

(s) the outstanding obligations at the end of the horizon.

We can also interpret C−
T

(s) as the cash requirement to avoid insolvency. Note that we

construct the ob jective function such that C+
T

(s) C−
T

(s) = 0.

Asset valuation. Net asset value at time t under scenario s is the conditional expecta-

tion of the present value of future project cash flows. Based on Miller and Modigliani

[13, 14], we use the weighted average cost of capital (WACC) of the firm denoted by

ω as the discount rate.

Then, for t ∈ H , s ∈ S:

At(s) = Ct(s) +
1

|S(t, s)|

∑

s̃∈S(t,s)

T−t∑

k=1

ft+k(s̃)

(1 + ω)k
,

where S(t, s) = {s̃ ∈ S | N(t, s) = N(t, s̃)}. Note that S stands for S(0, s), ∀s ∈ S.

Debt valuation. The market value of total outstanding debt at time t under scenario s is

defined as the face value of current bond issues plus the market value of the previously

issued debt. For fixed rate bonds, the market value is the net present value of their pay-

ments, discounted by the interest rate associated with each instrument. The outstanding

face value defines the marked value for previously issued floating rate bonds.

For t ∈ H∗, s ∈ S,

Dt(s) =
∑

i∈X

Xi
t,0(s) +

∑

i∈Y

Y i
t,0(s) + D̃t(s)

where, for t = 0,

D̃t(s) =

T−t∑

k=1

xt+k(
1 + rt,k(s)

)k + yt

9
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while for t ∈ H∗ \ {0},

D̃t(s) =
∑

i∈X/{1}

(Mi
X
−1)∑

k=1

min(t+k,Mi
X

)∑

j=k+1

αi
t+k− j

(s) Xi
t+k− j, j−1

(s) + ∆Xi
j
Xi

t+k− j,0
(s)

(
1 + rt,k(s)

)k

+

T−t∑

k=1

xt+k(
1 + rt,k(s)

)k +


∑

i∈Y

min(t,Mi
Y
−1)∑

j=1

Y i
t− j, j(s)

 + yt

As in the cash balance constraints, for the detailed horizon, the value of currently

issued bonds are computed as summations over all types of fixed and floating rate

instruments. The value of previously issued debt, D̃t(s), has different definitions for

the initial stage and the remainder of the detailed horizon.

For the simplified horizon, the total debt value is the currently issued short term

bond, plus the market value of the all other instruments issued during the detailed

horizon.

Then, for t ∈ H \ H∗, s ∈ S,

Dt(s) = X1
t,0(s) + D̃t(s)

where,

D̃t(s) =
∑

i∈X̃t

(Mi
X
−1)∑

k=1

min(t+k,Mi
X

)∑

j=t+k−T ∗+1

αi
t+k− j

(s)Xi
t+k− j, j−1

(s) + ∆Xi
j
.Xi

t+k− j,0
(s)

(
1 + rt,k(s)

)k

+

T−t∑

k=1

xt+k(
1 + rt,k(s)

)k +


∑

i∈Ỹt

min(t,Mi
Y
−1)∑

j=t−T ∗+1

Y i
t− j, j(s)

 + yt

and

X̃t =
{
i | i ∈ X,Mi

X
≥ t − T ∗ + 2

}
,

Ỹt =
{
i | i ∈ Y,Mi

Y
≥ t − T ∗ + 2

}
.

Non-anticipativity. Thus far, our model formulation described only the relationships

of decision variables within each scenario. The non-anticipativity constraints preserve

the dynamic structure of the model by stating the equality of variables across different

scenarios when they share the same history, or, equivalently, are associated with the

same node in the event tree. This guarantees implementable optimal policies, where it

is possible to state the corresponding dynamic programming equations. First, we define

N as the set of nodes in the tree and function N(t, s) : H ×S → N , mapping stage t in

scenario s into its corresponding node. Then, we define the subsets of decision variable

indexes for each node, Un = {(t, s) | N(t, s) = n} ∀n ∈ N . For each non-singleton

subset Un∗ , we select a canonical element (t∗, s∗) and build the equality constraints

linking corresponding decision variables with their counterparts associated with the

other elements of the set.
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For n∗ ∈ {n ∈ N | |Un| > 1},

Xi
t∗,0(s∗) = Xi

t,0(s),∀i ∈ X,∀(t, s) ∈ Un∗/(t
∗, s∗),

Y i
t∗,0(s∗) = Y i

t,0(s),∀i ∈ Y,∀(t, s) ∈ Un∗/(t
∗, s∗).

Note that it is sufficient to consider only the constraints corresponding to Xi
t,0

(s)

and Y i
t,0

(s) since all other decision variable are consequently determined.

2.4. Objective function

The objective function in our model includes two contrasting components. The

first measures the mean-risk trade-off between expected terminal cash savings and risk

of default at the end of the horizon, expressed by a utility function on the terminal

cash. For a risk neutral agent, since all accrued borrowing costs are accounted in the

cash balance, we can easily establish that maximizing the expected terminal cash is

equivalent to minimizing the expected future cost of servicing the debt. The latter

quantity is commonly used as part of the objective in the debt management literature

[1, 4, 5], combined with Conditional Value-at-Risk (CVaR) [17] as a risk aversion

measure to be minimized or constrained. As shown in Shapiro [20], CVaR is not time

consistent. Akin to non-anticipativity which forces identical decisions for scenarios

sharing the same past, time consistency requires that optimality and feasibility should

not depend on future scenarios that cannot happen when conditioned by the state at

the moment of the decision. We argue that CVaR is inappropriate as a risk aversion

measure for dynamic multistage stochastic programming models. As a matter of fact,

including CVaR in the objective function may lead to suboptimality of the first stage

decisions as illustrated in Rudloff et al. [18].

The second component of the objective function takes into consideration the com-

pany’s debt worthiness based on financial performance measures available to market

agents. Ideally, we would have included in the model an adjustment in interest rates re-

flecting the company’s credit rating. However not only estimation of these corrections

would not be possible with the available data, but it would greatly increase complexity,

prohibitive even in moderately sized instances of MSP models. We propose instead a

practical approach where a penalty function increasingly discourages excess leverage

at intermediate stages of the planning horizon.

2.4.1. Terminal cash utility function

The utility function U(CT ) assigns a value to a scenario at the end of the horizon

based of the final cash balance. For the sake of ease in economic interpretation, we

propose a piecewise linear function

U (CT ) = C+T − p C−T ,

where a negative terminal cash value is penalized by the risk aversion parameter p >=

1. The expected value of the utility function is

E
[
U (CT )

]
= E
[
C+T
]
− pE

[
C−T
]
,

11
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1

p>1 C
T

U(C
T
)

Figure 4: Terminal cash utility function

combining the expected terminal cash savings with the penalized expected value of

insolvency.

This approach for measuring risk aversion is closely related to integrated chance

constraints, which have also been used in financial planning problems [8], in particular

in ALM models [9]. Observe in Figure 4 that coefficient p is a risk aversion parameter,

with p = 1 representing a risk neutral agent.

2.4.2. Excess leverage penalty

The second part of our objective function deals with the effect of market perception

in a company’s bond issuance policy. As recommended by Lewellen and Emery [12]

in a comparison of corporate debt management policies, firms should manage their

debt by following a target on the Debt-to-Asset ratio. This ratio is also used frequently

by market analysts as an indicator of the company’s financial performance. Given

this background, our model guides the optimal policies by including in the objective a

penalty for high leverage debt positions. We propose a piecewise linear function that

increasingly penalizes the excess leverage based on a sequence of threshold values for

the Debt-to-Asset ratio. Denoted by γ1 ≤ . . . ≤ γK , these values correspond to critical

leverage levels as established by debt managers. In the objective function, we impose

a cumulative penalty for violating each one of the leverage levels in each scenario, at

each time period. First, we define the amount of excess leverage above each critical

leverage level,

It,k(s) =
[
Dt(s) − γkAt(s)

]+
= max

(
0,Dt(s) − γkAt(s)

)
, ∀t ∈ H , s ∈ S, k ∈ K .

In the linear programming formulation of the model, this last expression is stated

by initially adding as constraints the following inequalities,

It,k(s) ≥ 0, It,k(s) ≥ Dt(s) − γkAt(s),∀t ∈ H , s ∈ S, k ∈ K .
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The equality in the definition of variables It,k(s) is guaranteed only in the optimal

solution from the construction of the objective function which includes a penalty on

each excess leverage value,

θkIt,k(s) ∀t ∈ H , s ∈ S, k ∈ K ,

where θ1 ≤ . . . ≤ θK are positive penalty factors also assigned by debt managers.

The excess leverage penalty computes the total future values for each critical level

violation in all scenarios,

∑

k∈K

θk

∑

t∈H

It,k(s)

T∏

τ=t+1

(
1 + ρτ(s)

)
∀s ∈ S.

In its final form, we state the full objective stated by taking the expected values

over all scenarios,

max S −1
∑

s∈S

(
C+T (s) − pC−T (s) −

∑

k∈K

θk

∑

t∈H

It,k(s)

T∏

τ=t+1

(
1 + ρτ(s)

))
,

noting that the penalty functions take negative signs in the maximization objective.

3. Illustrative example

In this section, we illustrate some key features of the model by building a simplified

example where uncertainty is considered only on the term structure of the interest rates.

We assume a project portfolio generating the deterministic cash flow stream given by

Figure 5. With a planning horizon T = 15, the deterministic flows are repeated for all

scenarios, setting the values for risk factors ft(s). We also assume a null return for the

cash account, with ρt(s) = 0 for all time periods and scenarios.

!"#$###%##&
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!(#$###%##&
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#%##&

)#$###%##&
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Figure 5: Deterministic cash flows for an illustrative project
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Based on this uncertainty framework, the model is further specified by the portfolio

of available debt instruments and the generation of the event tree. The resulting prob-

lem is solved for the maximization of the terminal cash utility only. When compared to

a complete instance of the implemented model, this example allows for a larger num-

ber of scenarios in the event tree. The low computational effort in the solution of each

instance also permits building the efficient frontier for the risk aversion parameter.

3.1. Debt instruments

We consider nine types of bonds of varying maturities and amortization schedules:

Fixed Rate Bonds

Short Term: 1-year short-term bond

Fixed-5 Final: 5-year bond with full amortization at the end

Fixed-10 Final: 10-year bond with full amortization at the end

Fixed-5 Constant: 5-year bond with constant amortization bond

Fixed-10 Constant: 10-year bond with constant amortization bond

Floating Rate Bonds

Floating-5 Final: 5-year bond with full amortization at the end

Floating-10 Final: 10-year bond with full amortization at the end

Floating-5 Constant: 5-year bond with constant amortization

Floating-10 Constant: 10-year bond with constant amortization

Expressing these definitions as parameters of the model, we have nY = 4 and

nX = 5. Note that the set of fixed-rate bonds include short-term instruments indexed

by i = 1 in X = {1, 2, 3, 4, 5}. Amortization schedules are defined as:

For i ∈ {1, 2, 3},

∆Xi
j =

{
1, for j = Mi

X

0, otherwise

For i ∈ {4, 5},

∆Xi
j =

1

Mi
X

, ∀ j = 1, . . . ,Mi
X .

Maturities are defined as:

Mi
X =



1, for i = 1

5, for i ∈ {2, 4}

10, for i ∈ {3, 5}

For the floating rate bonds, we have Y = {1, 2, 3, 4}, with the amortization sched-

ules defined as:
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For i ∈ {1, 2},

∆Y i
j =

{
1, for j = Mi

Y

0, otherwise

For i ∈ {3, 4},

∆Y i
j =

1

Mi
Y

, ∀ j = 1, . . . ,Mi
X .

Maturities are defined as follows:

Mi
Y =



1, for i = 1

5, for i ∈ {2, 4}

10, for i ∈ {3, 5}

3.2. Scenario tree generation

Scenarios for the MSP are generated by the forecasting model presented in Vereda

[21], which supplies the estimated parameters for Brazilian and American term struc-

ture of the interest rates in the following state space framework:

ηt = A + B ξt

ξt = Φ ξt−1 + Σ
1/2εt, εt ∼ N(0, I).

Based on the Adjusted Random Sampling of Kouwenberg [11], we compute an

event tree that approximates the original stochastic vector εt, using antithetic values

along with a variance adjustment. For the sake of implementation efficiency, we gen-

erate the residual tree nodewise, i.e., ǫ(n), ∀n ∈ N .

Given a node n, let us denote Q(n) = {q1, q2, . . .} the set of all possible successor

nodes, with Q(n) = |Q(n)|. Using antithetic values, we match the zero mean and all

null higher odd moments for each univariate stochastic component of ǫi(q), ∀q ∈ Q(n).

After initializing εi(q) = 0, ∀q ∈ Q(n), we sample via Monte Carlo simulation the first

k = 1, . . . , ⌊Q(n)/2⌋ elements and generate the antithetic values for the remainder for

j = Q(n) − k,

ǫ(q j) = −ǫ(qk).

Note that this procedure ensures null conditional odd moments of the simulated

ǫi(n) for each component i, i.e.,

E

[
ǫ

p

i
|n ∈ N

]
=

1

Q(n)

∑

q∈Q(n)

ǫ
p

i
(q) = 0, ∀p = 1, 3, 5, . . . .

Returning to the original notation, we define the unadjusted residuals as

ε̃t(s) = ǫ(n),∀t ∈ H ∪ {T }, s ∈ S such that n = N(t, s).

Then, we adjust the variance of ε̃i,t for each stage t and for each component i.

Indeed, to suit the hybrid tree structure, our procedure matches the unconditional vari-

ances in opposition to the conditional approach of Kouwenberg [11]. Therefore the

adjusted residuals are given by

εi,t(s) =
ε̃i,t(s)

√
1
S

∑
s∈S ε̃

2
i,t

(s)

, ∀s ∈ S.
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Figure 6: Efficient Frontier

3.3. Solution and Sensitivity analysis

Sensitivity analysis examines the robustness and stability of the optimal solution

vis-à-vis changes in the input parameters and data uncertainty. With the objective func-

tion limited to the terminal cash utility function, without the excess leverage penalty,

this experiment builds the efficient frontier for the risk aversion parameter p. Since

the proposed model is only tractable for relatively small event trees, the optimal so-

lution is subject to estimation errors. Given a value for p and the methodology de-

scribed in 3.2, we generate N independent event trees whose sets of scenarios are

denoted by Si, ∀i = 1, . . . ,N. Then, we solve the problem for each scenario set, us-

ing the optimal solution to compute the two components of the objective function,

C+
i
= S −1∑

s∈Si
C+

T
(s) and C−

i
= S −1∑

s∈Si
C−

T
(s), ∀i = 1, . . . ,N.

Ultimately, we build the efficient frontier corresponding to each scenario set Si

by solving the problem for each value of p and linearly interpolating the observed

points to compute the curve C+
i

vs C−
i
, ∀i ∈ {1, . . . ,N}. In our experiment, we assumed

N = 1000 and p ∈ {1, 50, 100, 200, 500, 1000, 2000}, generating 7000 instances of the

model. The resulting efficient frontier is represented in Figure 6, where the average and

95% percentile are obtained from the distribution of all possible values of C+ given a

fixed level of risk C−.

From the results of this experiment, we can also develop a sensitivity analysis

for the first stage decision with respect to the risk aversion parameter p. For each

i = 1, . . . ,N, we take the first stage optimal solution for each scenario set Si, Zi =

(X1
0,0, . . . , X

nX
0,0
,Y1

0,0, . . . ,Y
nY
0,0

), indicating the amounts issued in fixed and floating rate

bonds, for all maturities and amortization schedules. Then, we compute the sample
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Figure 7: First Stage Decision and Risk Aversion

average approximation Z = N−1∑N
i=1 Zi. for all values of p. The stacked bar graph in

Figure 7 indicates the amounts corresponding to each available debt instrument, ex-

pressing the behavior of the optimal solution with respect to risk aversion level. Note

that for the risk neutral case, p = 1, the short term bond is preferred while the risk

averse case, p > 1, long term bonds are increasingly more attractive. The explanation

for this behavior is that the cost of long term debt is locked until maturity, while issu-

ing a short term portfolio in the first stage decision involves refinancing in the future,

subject to uncertainty in borrowing cost and hence higher risk.

4. Application to the oil industry

Application of the proposed model to a real-world problem requires further as-

sumptions, complete specification of risk factors and inclusion of the excess leverage

penalty into the objective function. These features were implemented in a financial

planning software tool deployed in a risk management organization at Brazilian oil

company Petrobras. Two auxiliary modules have been developed for the generation of

risk factor scenarios: An integrated interest and exchange rates forecasting model and

a simulator for future spot prices of crude oil, its byproducts and natural gas. Consid-

ering the same debt instruments as before, we specialize the various elements of our

multistage stochastic programming model for this application and present results based

on a fictitious, although realistic, project data set.

4.1. Risk factors

The model formulation constraints refer explicitly to scenarios for interest rates and

risk premiums. We call those Financial Risk Factors. In addition, Project Risk Factors

are reflected indirectly in the scenarios for cash flows generated by the project portfolio,

including market prices for crude oil and natural gas. In an attempt to approximate
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continuous flow of revenues and expenditures distributed over each planning stage, we

assume the average values during the period. The detailed description of the forecast

models is available in [21] and [7].

Financial Risk Factors. An integrated forecast model provides scenarios for interest

and exchange rates.

rt,τ(s): Annual effective yield for bonds denominated in US$, issued by the company

ρt(s): Risk free interest rate, assumed to be US government bond 1-year yield

ψt,k(s): Risk premium associated with the company for the corporate bonds denomi-

nated in US$

Note that there is a unique mapping between the fixed rate coupons and the term

structure of the interest rate. Therefore, αi
t(s) must be derived from the corresponding

term structure rt, j(s), ∀ j = 1, . . . ,Mi
X

, assuming the net present value of future pay-

ments is equal to its face value. Without loss of generality, we compute the coupon

using a unit face value, i.e.,

1 = αi
t(s)


1

1 + rt,1(s)
+

Mi
X∑

j=2

1 −
∑ j−1

k=1
∆Xi

k(
1 + rt, j(s)

) j

 +
Mi

X∑

j=1

∆Xi
j

(
1 + rt, j(s)

) j .

Then, the coupon is defined as

αi
t(s) =

1 −
Mi

X∑

j=1

∆Xi
j

(
1 + rt, j(s)

) j




1

1 + rt,1(s)
+

Mi
X∑

j=2

1 −
∑ j−1

k=1
∆Xi

k(
1 + rt, j(s)

) j



−1

.

Project Risk Factors. We assume all stochastic cash flows generated by the project

portfolios to be an affine functions of project risk factors. Besides market prices for

crude oil and its byproducts, exchange rates are also considered risk factors in this

category, as the project portfolio includes multi-currency investments. Based on these

risk factors, investments and production data, a preprocessor to the optimization model

computes scenarios for the cash streams ft(s), dt(s) and lt(s).

4.2. Computational experiments

The financial planning software tool implemented from our model uses Matlab to

perform all of the data preparation and solution presentation. The linear programming

formulation was implemented with the MOSEL modeling language, using the Xpress

optimization suite as the solver. The computational experiments were carried out on an

Intel(R) Core(TM) i7 CPU based computer with 24Gb RAM and 8 processors.

As opposed to the illustrative example presented in Section 3 where we assume a

null return for the cash account, savings are now invested in short term US government

bonds subject to stochastic returns. This key assumption closely matches the actual

corporate financial strategy. However, it increases the probability of outlier scenarios

where the income generated by the cash account is greater than the costs of some
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Figure 8: Short Term Stochastic Interest Rate (1-year maturity)

c Initial cash savings $18.00

ĉt Minimum cash (∀t ∈ H) $5.00

p Risk aversion parameter for insolvent scenarios 2

ω Weighted average cost of capital (WACC) 8.8%

K Number of leverage rate segments 3

Table 1: Base case parameter values.

debt instruments. The optimal policy for these scenarios would be a highly leveraged,

possibly unbounded, debt portfolio. Under these circumstances, intermediate excess

leverage penalties are added to the objective function, avoiding unrealistic solutions.

We have chosen the specific set of interest rate scenarios illustrated in Figure 8 and

Figure 9 to emphasize the effect of our multi-criteria objective function.

In this experiment, we consider a base case with a 48-year horizon (T = 48) starting

from 2010, a 6-year detailed horizon (T ∗ = 6), 1024 scenarios and the set of parameters

defined in Table 1. With this specification, the resulting equivalent deterministic linear

program has 820534 rows, 813056 columns and 4559468 non-zero matrix elements.

We compare the solutions of the problem under two assumptions for the excess leverage

penalties {θk}
K
k=1

. As presented in Table 4.2, in Case 1 we assume zero penalties and an

arithmetic progression in Case 2.

Examining the optimal solutions for both cases, we first compare the expected bond

issuances for the detailed portion of the horizon. Figure 10 shows the average amount

issued for each bond on each stage t ∈ H∗. For Case 1, the total debt issued is much

higher than the amount required to fulfill the minimum cash requirement of the firm,
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Figure 9: Expected Term Structure of the Interest Rate

Index (k) Break point (γk)
Additional Penalty (θk)

Case 1 Case 2

1 35% 0 1

2 50% 0 1

3 100% 0 1

Table 2: Leverage parameter values.
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indicating the presence of scenarios with cash saving earnings above debt costs. This

effect disappears in Case 2.

The impact of imposing intermediate penalties is further illustrated by analyzing the

behavior of the stochastic leverage ratio, Dt(s)/At(s). Figure 11 displays in different

colors the probability that the leverage ratio belongs to each range of target values,

noting that all scenarios have the same solution in the first stage.

The solution for Case 1 counters the intuitive premise that a firm with a fixed project

portfolio should not be unnecessarily exposed to risk from uncertain financial returns.

In Case 2, the intermediate penalties discourage risky policies with high leverage ratios

occurring in a small subset of scenarios. The last leverage range, Dt(s)/At(s) ≥ 100%,

defines the insolvency state at each stage, when debt exceeds total assets. As antic-

ipated, the leverage penalty also reduces the insolvency probability at intermediate

stages. This experiment suggests that debt managers use the proposed model interac-

tively, tuning risk aversion parameters in the intermediate excess leverage penalties to

avoid highly leveraged portfolios.

5. Conclusion

We propose a multistage linear stochastic programming model for optimal bond

issuance of a firm considering fixed and floating interest rate bonds with different ma-

turities and amortization patterns.

We proposed an approximation for a numerically intractable long term multistage

problem. We assume a hybrid model where the first T ∗ stages are represented by a full

event tree and the remainder described by subsamples approximated by independent

paths. For the first period, we considered a full bond portfolio, while the simplified

period considers only short term debt. Nonetheless suboptimal, we argue that our

solution is a good approximation when most of the expenses are due over the first

stages.

Moreover, we proposed a objective function as the expected utility function that

minimizes the cost of funding and penalizes negative values for the cash account at

the terminal stage. In addition, we include intermediate excess of leverage penalties

considering the market values of assets and debt. To do so, we develop valuation

methods within the stochastic programming and considering a convex piecewise linear

penalty with break points related to threshold levels of leverage. We examined the

behavior of the model in an illustrative example that evidences the importance of this

penalty function to introduce an appropriate risk aversion to the model.

To sum up, this work develops a corporate debt management model via MSP to

handle multiplicity of bond characteristics while minimizing expected costs, risks and

performance measures. By virtue of the dimensionality curse of MSP models, we

introduce an approximation for the information structure of uncertainty represented by

a detailed event tree in addition to a subsample of independent scenarios. Indeed, we

argue that this representation is a good approximation for a set of projects where most

investments due on the detailed period.
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Case 1: No intermediate penalties
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Case 2: Additive intermediate penalties
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Figure 10: Expected Optimal Bond Issuance
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Case 1: No intermediate penalties
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Case 2: Additive intermediate penalties
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Figure 11: Stochastic Leverage Ratio
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