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ABSTRACT 

The purpose of this paper is to present an Integer Linear Programming model for a lot-
sizing problem. The problem considers demands, inventory policies, backorder costs and the 
search of an efficient use of resources (machines and workers). The real-world case used to 
illustrate the model is from a Colombian company, which produces raw material for the bakery 
industry. The short term planning for the company under study is critical, because there is a 
multi-product environment where resources are shared between different references and 
processes. The computational experiments show the effectiveness of the proposed model. 
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1. Introduction   
 

The operations planning in the short term field of manufacturing is a widely studied 
area. There are many cases of research projects by considering the specific characteristics of a 
particular manufacturing system. These studies try to represent a real-world case offering support 
for future decision-making processes. The definition of lot-sizing problem (LSP) considers 
features and decision variables from the production and inventory control area, and their impact 
on the service level. Usually, the objective function for the LSP is to minimize the sums of the 
total holding cost, of the stock-out cost, and of the other costs, which affect the operation of each 
system. 

In particular, our problem considers several characteristics which increase the 
complexity of the traditional LSP. Karimi et al. (2003) propose a general classification about the 
most frequent issues to consider in a lot-sizing problem. In this work, we have considered 
planning horizon, number of levels, number of products, several patterns of demands, holding 
inventory, back-orders, and setups structures. Different models by including one item for 
uncapacitated and capacitated versions of the LSP have been proposed in Brahimi et al. (2006). 
In particular, these models consider one product, few production stages, and known demands. 

Aksen et al. (2003) introduce the concept of immediate lost sales by considering 
inventory policies for a single product; while Absi and Kedad-Sidhoum (2008) consider 
inventory policies for a multi-item capacitated model by adding setup times. Robison et al. 
(2009) and Jans and Degraeve (2007), introduce three important concepts about inventory 
management: stockout, back-orders and holding cost. All of these approaches consider a dynamic 
demand environment. 

Capacity constraints and relaxed demand constraints with a penalty are considered in 
Aksen (2007). This relaxation can include variables to represent back-orders and inventory levels 
among different periods. Other mathematical approaches can be found in Abad (2000), Toso et 
al. (2009) and Kovacs et al. (2009) propose set of constraints and set of variables to represent the 
multiple stage condition for the LSP. In these works, a new concept is introduced: scheduling 
with sequence-dependent setups. All conditions previously presented increase computational 
complexity increasing the computing time. Heuristic approaches for the LSP are proposed by Xie 
and Dong (2002) and Minner (2009). Some special characteristics to represent and solve 
stochastic models are described by Paternina-Arboleda and Das (2005). In this work, relevant 
references for a stochastic lot scheduling problem are considered.  

A production program in a multi-product environment must consider three fundamental 
aspects: i) the type of products to schedule, ii) the amount of products to produce, iii) the time to 
make the products. The first aspect generally is solved by giving priority to an item for which is 
close to stockout or reorder point. The other two aspects are closely related, if small batches are 
scheduled. The way of scheduling lots, their sizes, and its frequency, are the main causes of the 
final performance for the objective function. Set larger lots imply a greater efficiency, but also 
imply more scheduling time for a single product at a given time. This decision could affect the 
responsiveness of the system. 

In this paper, the considered real-world case has a batch system for the production of 
bakery raw materials industry. Currently, different dry products (dough improvers, premixes, and 
sugar among others), and a wide range of liquid essences are produced. In general, these products 
represent about seventy different references with approximately two thousand tons annually. In 
addition, a two-stage multi-product environment with deterministic demands allowing back-
orders and holding inventory is considered. Due to similarity inside each family of products, 
setups are considered constant with an independent sequence. 
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2. Mathematical model 
 

Let us introduce the following notation for our proposed formulation: 
Sets: 
1. set of products indexed by i, where i=1,..., I 
2. set of shifts indexed by j, where j=1,..., J 
3. set of days indexed by k, where k=1,..., K 
4. set of machines indexed by m, where m=1,..., M  
 
Subsets 
1. subset of production machines indexed by m, where m ∈α ⊂ M 
2. subset of packing machines indexed by m, where m ∈β ⊂M 
3. subset of products with a production stage indexed by i, where i∈μ ⊂ I 
4. subset of products with production and packing stage indexed by i, where i∈θ ⊂ I 
 
Parameters 
Him: time required to produce one kilogram of each product i at machine m (hr/kg) 
Pm:  hard-work force required per shift at machine m (number of persons) 
MO: total persons available 
RPi: maximum requirement of product i (kg) 
ISi: initial stock of product i (kg) 
RDik: daily requirement of product i at day k (kg/day) 
CIi: holding cost of product i ($/kg-day) 
CBi: backorder cost of product i ($/kg-day) 
CHm: overtime cost at machine m ($/hr) 
HM: maximum overtime (hr) 
HT: time available per shift (hr/shift) 
A: setup time (hours/setup) 
TML: minimum lot-size (kg) 
 
Decision Variables 
xijkm: amount of product i scheduled in shift j of day k at machine m (kg) 
yjkm: 1 if shift j is scheduled in day k at machine m, 0 otherwise 
hejkm: overtime in shift j in day k at machine m (hr) 
fik: backorder of product i in day k (kg) 
sik: inventory of product i in day k (kg) 
wipik: work in process of product i in day k (kg) 
wijkm: 1 if product i is scheduled in shift j in day k at machine m, 0 otherwise 
 
Objective Function 

The performance of the system is defined by three different sets of costs: holding cost, 
backorder cost, and overtime cost. The first set (holding cost) is related to the operations required 
to control and manage items, and to the financial value of investment in products, work in 
process and raw materials. The second set (backorder cost) is associated to the decreasing value 
defined by the final customer. Finally, the third set (overtime cost) is considered as a linear ratio 
which represents additional time for each machine. 

 
Min Z=��CIisik  +��CBifik+���CHm

mkjkiki

hejkm (1) 
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Constraints 
Constraints (2) ensure that the sum of persons in each shift for each machine must not 

exceed the total available hard-work force. 
 

�� Pm
jm

yjkm≤ MO,  ∀ k (2) 

 
Constraints (3) limit the production capacity. The maximum capacity is expressed as the 

sums of the time available for each scheduled HT, and of the overtime, minus the sum of the 
setup time employed by each assigned product. These constraints are considered as production 
efficiency if the size of the programmed batch is larger, and the number of setups is smaller. 
 

�Him
i

xijkm≤HTyjkm+hejkm -�Awijkm
i

,  ∀ j,k,m (3) 

 
Constraints (4) add overtime according to the maximum number of possible hours. 

 
hejkm ≤HMyjkm ,  ∀ j,k,m      

(4) 

Constraints (5), (6) and (7) make logical relations between shift programming and 
scheduled products during the available shifts by considering maximum and minimum lot-size, 
and setup time for each product. 
 

wijkm≤yjkm,   ∀  i,j,k,m (5) 

xijkm ≥TMLwijkm,  ∀ i,j,k,m (6) 

xijkm≤RPiwijkm,  ∀ i,j,k,m (7) 

Constraints (8) include back-orders and inventory control to keep inventory balance 
among days. The basic expression considered is initial stock + production-required product = 
final inventory. The final inventory is shown as a linear combination of fik and sik. Indeed, only 
one of these variables will be activated each time, because the penalty cost of each of them in the 
objective function. 
 

ISi+�� xij1m
m∈αj

-RDi1= si1 -fi1 , ∀i∈ µ (8) 

 
Finally, the multi-period issue is restricted in (9). The final inventory for a given period 

k-1 is calculated. 
 

�� xijkm
m∈αj

+si k-1-fi k-1-RDik= sik -fik ,  ∀i∈µ ,k >1 (9) 

 
Equations (10) and (11), represent the condition expressed in (9) for products belonging 

to the subset θ. 
 

ISi+�� xij1m
m∈βj

-RDi1= si1 - fi1 , ∀i∈θ (10) 
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�� xijkm
m∈βj

+si k-1-fi k-1-RDik= sik - fik ,  ∀i∈θ, k >1 (11) 

 
Due to products θ have two stage processes, which must be connected to ensure process 

flow and work in process. Constraints (12) described the first period, and constraints (13) 
described the multi-period stage. 
 

�� xij1m
m ∈αj

- �� xij1m
m ∈βj

=wipi1,   ∀i∈θ (12) 

�� xijkm
m ∈αj

+wipi k-1- �� xijkm
m ∈βj

=wipik ,  ∀ i ∈θ, k>1 (13) 

 
Constraints (14) are the non-negativity constraints. 

xijkm,hejkm,fik, 𝑠ik,wipik≥0,  ∀ i,j,k,m (14) 

 
3. Results 
 
Scenarios 

Three different instances were selected to represent the behavior of the system and the 
relations between variables, constraints and parameters in the proposed model. These scenarios 
have different demands, initial stocks and production requirements. Table 1 shows the 
information of the initial stock; the overall demand, and the production requirement used by 
instances. 

 

 
 

Each scenario has different performance, because the different production 
requirements. Consequently, the computing time and the function objective value are different. 
 
Computational Results 
 

The tests were carried out by using CPLEX 12.3 on an Intel Core i5 2.3 GHz processor 
with 4 GB of memory. In the used real-world case, the computing time of the proposed model is 
relevant, in order to be considered as support decisions tool for a short period term. Indeed, 
computing time must be efficient according to the planning horizon. Figure 1 shows the results of 
the used computing time to find the optimal solution. The behavior for months A and C are 
similar respect to the computing time. It can be inferred by the fact of the relations with the total 
number of kilograms used by the company. In the case of month B, which amount is smaller 
almost by thirty tons, the computing time is reduced. 

The proposed instances consider seventy products, five work stations, three shifts, and a 
planning horizon of twenty four days. 

Month A 139944 374400 234456
Month B 159888 366600 206712
Month C 113029 352200 239171

Table1.Instances features (kg)

Instance Production 
Requirement

Initial       
Stock

Overall  
Demand
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Performance of the objective function 

 
Table 2 details the costs obtained for each instance. We have compared the final results 

with the traditional planning method used by the company. It is worth to note that the proposed 
model outperforms the currently used method respect to the overall cost. Indeed, the main 
reductions of the costs occur in backorder cost and inventory cost. 
 

 
 
 
Lot size 
 

The lot size is a significant issue related to the efficiency and the cost of the production 
program. In a multi-product environment, a big lot size of a given product can delay the 
production for the other products, because the shared resources (machines and hard-work force). 
In the previously traditional planning method, the considered lots had an average of two thousand 
kilograms. The proposed ILP model is able to find a more equitable replenishment of the 
different products. Smaller lots are found as described Table 3. In this table, the following 
notation is used: Average is the average size of the lots, STD is the standard deviation for 
scheduled lots, Q1 is the first quartile (lowest 25% of lots), Q2 is the second quartile (data set in 
half), and Q3 is the third quartile, lowest 75%. 

 
 
 
 

Instance Inventory Backorder Overtime Overall Cost
Month A 2616 3713 284 6612
Month B 1904 4833 33 6770
Month C 2587 4496 209 7292

Instance Inventory Backorder Overtime Overall Cost
Month A 1788 22 156 1966
Month B 1658 19 4 1681
Month C 1347 18 21 1385

Traditional planning method
Table 2.Comparison of the performance for each component of Z($) 

Proposed Integer Lineal model
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The obtained lot sizes consider less than 1700 kg. Indeed, this lot size permits to 

produce many products frequently keeping healthy stocks levels, and avoiding stock-outs.  
 
It is important to note that the final inventory of each product at the end of each month 

is close to the value of the safety stock. Since the frequency of production for each reference is 
related to its lot size and the evolution of inventory, it is no necessary to define a reorder point as 
a general rule.  

 
Efficiency analysis 

We have added some new variables and constraints which have no impact on the 
outcome, but that estimate other performance measures. The variables at represent the scheduled 
time and variables st represent the total time spent during setups. 
 

st=���HT
kjm

yjkm (15) 

at=����A
ikjm

wijkm (16) 

Efficiency = 1- 
at
st

 (17) 

Table 4 presents the results obtained by the efficiency of the ILP model for the three 
months. Indeed, Table 4 shows scheduled time, setup time, and efficiency.  
 

 
 

The results of the proposed ILP model are slightly better than those proposed by the 
traditional planning method. In the traditional planning method bigger lots are chosen, so the 
efficiency is increased. Nevertheless, matching the demands of many products for a given month 
the production program must be changed decreasing the efficiency of the system. 

 
 

Instance Average STD Q1 Q2 Q3
Month A 1311 982 630 996 1714
Month B 1091 776 600 768 1222
Month C 1178 792 600 810 1500

Table3. Lot size (kg)

Instance
Scheduled 
time(hr)

Setup     
time(hr)

Efficiency 
(%)

Month A 980 84 91
Month B 1000 82 91
Month C 960 92 90

Instance
Scheduled 
time(hr)

Setup     
time(hr)

Efficiency 
(%)

Month A 976 68.5 93
Month B 904 70.3 92
Month C 1016 77.3 92

Proposed Integer Lineal Model

Table 4.Comparison of efficiency performance
Traditional planning method
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4. Conclusions 
 
In a multi-product environment, the size of each batch affects the level of inventory for 

a given product, and the references which use the same resources (persons and machines). In the 
particular real-world case, a common is to schedule small batches (values range from a minimum 
batch operation and 1800 kilograms). The different SKU’s can be provided in a more effective 
way such as: It is possible to avoid an excessive inventory of some items and to avoid the risk of 
stockout for others items. 

With the exception of products whose total requirements were low and could be 
covered by a minimum lot, all the rest were supplied by the production various amounts of 
similar size to each other, and programmed equally throughout the month. 

The proposed objective function considers holding costs, backorder costs, and overtime 
cost. This approximation allows establishing requirements without additional costs. The 
minimum lot size and the simultaneity of the requirements for different products are the main 
conditions to stock a certain amount of inventory. 

The total computing time of the proposed ILP model is considerably high because the 
number of variables and constraints. Moreover, since the Multi-product LSP is a monthly 
planning problem, the model is not solved frequently. Therefore, the computing time remains in 
an acceptable range for a tactical problem like Multi-product LSP. Additionally, results may be 
obtained with a 10% gap respect to the optimal solution, within a short computing time. These 
results allow using the result of the proposed model as an approximation method for production 
planning. The use of formal tools allows obtaining better results to understand complex systems. 
Nevertheless, the next step will be to test the performance of the model with similar problems on 
benchmark instances by considering a generalization of its principal characteristics. 
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