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ABSTRACT 

This research introduces the capacitated facility location problem with general 
operating and building costs (CFLPGOBC). The CFLPGOBC extends previous problems found 
in the literature by including general operating and building cost functions that allows modeling 
different behaviors (i.e. economies of scale, congestion, etc.). The CFLPGOBC was formulated 
as a mixed integer linear program (MILP) and solved using a commercial solver. The 
performance of the proposed formulation was evaluated with a set of randomly generated test 
instances. After one hour of computational time the solver converged to an optimality gap of 1% 
or less in 55% of the instances tested. The overall optimality gap was 3.57%, on average. 
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1. Introduction 
The Capacitated Facility Location Problem (CFLP) is one of the most widely studied 

problems in supply chain design. The problem consists of i) determining the quantity and 
location of a set of capacitated facilities which will produce/distribute a given product or service 
and ii) allocating the amount of product to ship from each facility to a set of customers with the 
goal of optimizing a given objective function, which is frequently a total relevant cost function. 
The classical CFLP assumes a fixed cost to open a facility and a unitary cost of shipping products 
from a given facility to a customer location. However, in many real-world applications the cost of 
opening a facility is a non-linear function of the size of the facility. Among others, one reason for 
this non-linear behavior is the fact that machine or plant capacities can only be increased by 
discrete amounts. Additionally, some of the models available in the literature do not consider the 
cost of operating a facility into the total relevant cost function. The absence of this cost implies 
the assumption that the cost of operating a facility is independent of the site where the facility is 
to be opened and its size, which is not a reasonable assumption in many cases. Furthermore and 
similar to the opening cost, the operating cost function may be non-linear with the size of the 
facility. This non-linear behavior may be caused, among other reasons, by economies or 
diseconomies of scale and congestion phenomena. To bridge this gap, this research introduces the 
so-called capacitated facility location problem with general operating and building costs 
(CFLPGOBC) which is inspired by the structure of the Colombian cement industry. A mixed 
integer linear program (MILP) is introduced to solve the CFLPGOBC. Extensive computational 
experiments were conducted in order to assess the performance of the proposed formulation when 
implemented in a commercial solver. This paper is organized as follows. Section 2 presents the 
literature review of the CFLP and other related problems. In section 3 the problem is formulated 
as a MILP. A summary of the computational experiments conducted to assess the performance of 
the proposed formulation is presented in section 4. Conclusions and future research are presented 
in section 5. 

 

2. Literature Review 
The Facility Location Problem (FLP) is a classical operations research problem that has 

been addressed by numerous researchers over the past few years (see (M. S. Daskin 2008), (C. S. 
ReVelle et al. 2008) and references therein). Two typical variants of the problem are clearly 
identified in the literature: The uncapacitated facility location problem (UFLP) and the 
capacitated facility location problem (CFLP). Both the UFLP and the CFLP consist of deciding 
where to open a set of facilities and how customers should be assigned to these facilities so that a 
total cost function is minimized. The difference between both is that in the UFLP the facilities do 
not have a constraint imposed on the maximum capacity while in the CFLP there is a capacity 
constraint on the maximum demand that can be assigned to each open facility. Both the UFLP 
and the CFLP are shown to be NP-hard (Cornuejols et al. 1990) and have been extensively 
studied. 

Several variants of the CFLP have been studied. In (Melo et al. 2009) the authors 
presented an exhaustive review of the problem, its extensions, solution methods and real-world 
applications. The most important extensions to this problem involve single or multiple time 
periods, deterministic or stochastic demand, single or multiple products, and single or multiple 
layers, among others. In (Current et al. 2002) the authors review several applications of facility 
location models that include banks, airports, bus stops, fast foods, plants and warehouses. In 
general the CFLP has been solved by both exact and approximate methods including branch-and-
bound (Akinc & Khumawala 1977), Lagrangian relaxation (Christofides & Beasley 1983), 
Benders decomposition (Geoffrion & Graves 1974), genetic algorithms (Kratica et al. 2001), tabu 
search (Sun 2012), artificial neural networks (Vaithyanathan et al. 1996), simulated annealing 
(Arostegui Jr. et al. 2006) and greedy randomized adaptive search procedures (Resende & 
Werneck 2006) among others. 

Some researchers have worked on the CFLP with different cost structures (s-shape, 
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staircase, convex, concave and general). These problems have been solved with different methods 
(Lagrangian relaxation, column generation, Benders decomposition and metaheuristics). Table 1 
presents a comparison of the solution approaches and cost functions considered in the most 
important references addressing the CFLP. 

 
Table 1. Classification of some important references based on the cost function 

References Function Method † 
(Ozsen et al. 2009), (Schütz et al. 2008), (Broek et al. 2006) S shape LR 
(Holmberg & Ling 1997) Staircase LR 
(Wu et al. 2006) General LR 
(Desrochers et al. 1995) Convex CG 
(Cohen & Moon 1991) Concave BD 
(Dupont 2008), (Dasci & Verter 2001) Concave BB 
(Harkness & C. ReVelle 2003) Convex BB 
(Romeijn et al. 2010), (Lin et al. 2006), (Hajiaghayi et al. 2003) Concave MH 

† LR: Lagrangian Relaxation, CG: Column Generation, BD: Benders Decomposition, BB: Branch & Bound, MH: Metaheuristic 
 
To the best of our knowledge the only two papers that address problems similar to the 

CFLPGOBC are (Wu et al. 2006) and (Dupont 2008). (Wu et al. 2006) formulated a CFLP with a 
general setup cost. In this work the authors considered a fixed cost to open a facility, a shipping 
unitary cost, and a general setup cost which depends on the site, the type of facility and the 
capacity of the facility. They assumed that in a given site several facilities can be installed, each 
for a different product. The most important differences between the problem addressed in (Wu et 
al. 2006) and the CFLPGOBC is that in the cement industry as in many other industries, in one 
single facility several different products can be produced, therefore the building cost of a facility 
depends only on the capacity of the facility and the site (i.e. land cost), and usually it is 
independent from the exact mix of products that the facility can produce. On the other hand, the 
operating cost depends on the site (i.e. cost of the resources) and on the amount of each product 
allocated to the facility to produce. For that reason, in our case it is more convenient to separate 
the operating and building costs in two independent terms within the total cost function. In 
(Dupont 2008) the author introduces a similar problem based on real-world applications where 
the building, operating, and shipping costs are concave functions that depend on the quantity of 
the product and the site. In the MILP he proposed these costs are expressed in a global cost 
function for each site. The CFLPGOBC extends the problem proposed in (Dupont 2008) by 
including more general cost functions, capacitated facilities and multiple products. 

 

3. Mathematical Model 
To model the CFLPGOBC as a mixed integer linear program (MILP) we use the 

following notation: Let N={1, ..., n} be the set of candidate locations at which a facility can be 
built, the quantity ui represents an upper bound on the capacity (i.e. size) of the facility that can 
be built at location i ∈ N. The set Q={1, ..., U} states the feasible production quantities and L={1, 
..., U} the set of feasible sizes for the facilities, where 𝑈 = 𝑚𝑎𝑥𝑖∈𝑁{𝑢𝑖}. 

Let M={1, ..., m} be the set of customers and P={1 ,..., p} the set of products. Each 
customer j ∈ M requires djk units of product of type k ∈ P (i.e. demand), and cijk is the cost of 
transporting one unit of product k ∈ P from location i ∈ N to customer j ∈ M. The cost of building 
a facility of capacity l ∈ L at candidate location i ∈ N is given by fil . Whereas gikq represents the 
cost of producing the quantity q ∈ Q of product k ∈ P in a facility located at i ∈ N. To model the 
different decisions addressed in the CFLPGOBC we use three sets of decision variables: 

xijk: The fraction of demand of product k supplied to customer j from facility i. 
yil: Binary variable that indicates the size of facility i. yil takes the value of 1 if l is the 

size of facility i and 0 otherwise. 
zikq: Binary variable that indicates the quantity of item k produced at facility i. zikq takes 

the value of 1 if q is the quantity produced of item k at facility i and 0 otherwise. 
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Using the above notation the CFLPGOBC can be formulated as follows: 
 

𝑀𝑖𝑛 ��𝑓𝑖𝑙 ∙
𝑙∈𝐿𝑖∈𝑁

𝑦𝑖𝑙 + ���𝑔𝑖𝑘𝑞 ∙ 𝑧𝑖𝑘𝑞
𝑞∈𝑄𝑘∈𝑃𝑖∈𝑁

+ ���𝑐𝑖𝑗𝑘 ∙ 𝑥𝑖𝑗𝑘
𝑘∈𝑃𝑗∈𝑀𝑖∈𝑁

 (1) 

 
Subject to: 
 

�𝑥𝑖𝑗𝑘
𝑖∈𝑁

= 1 ∀𝑗 ∈ 𝑀,∀𝑘 ∈ 𝑃 (2) 

�𝑑𝑗𝑘 ∙ 𝑥𝑖𝑗𝑘
𝑗∈𝑀

≤ �𝑞 ∙ 𝑧𝑖𝑘𝑞
𝑞∈𝑄

 ∀𝑖 ∈ 𝑁,∀𝑘 ∈ 𝑃 (3) 

��𝑞 ∙ 𝑧𝑖𝑘𝑞
𝑞∈𝑄𝑘∈𝑃

≤�𝑙 ∙ 𝑦𝑖𝑙
𝑙∈𝐿

 ∀𝑖 ∈ 𝑁 (4) 

�𝑙 ∙ 𝑦𝑖𝑙
𝑙∈𝐿

≤ 𝑢𝑖 ∀𝑖 ∈ 𝑁 (5) 

�𝑦𝑖𝑙
𝑙∈𝐿

≤ 1 ∀𝑖 ∈ 𝑁 (6) 

�𝑧𝑖𝑘𝑞
𝑞∈𝑄

≤ 1 ∀𝑖 ∈ 𝑁,∀𝑘 ∈ 𝑃 (7) 

𝑥𝑖𝑗𝑘 ≥ 0 ∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝑀,∀𝑘 ∈ 𝑃 (8) 

𝑦𝑖𝑙 ∈ {0,1} ∀𝑖 ∈ 𝑁,∀𝑙 ∈ 𝐿 (9) 

𝑧𝑖𝑘𝑞 ∈ {0,1} ∀𝑖 ∈ 𝑁,∀𝑘 ∈ 𝑃,∀𝑞 ∈ 𝑄 (10) 

 
The objective function (1) is to minimize the total cost function: transportation, 

operating and building costs. Constraint set (2) ensures that the demand of each customer is 
satisfied; constraint set (3) states that the demand supplied by facility i of product k cannot 
exceed the quantity of product k produced by the facility. Constraint set (4) ensures that the 
quantity produced in each facility does not exceed the size of the facility. Constraint set (5) 
ensures that the size of each facility does not exceed the maximum capacity of the site; constraint 
set (6) establishes that each facility can only take one value of size; constraint set (7) establishes 
that for each facility, only one level of production is selected for each product. Constraint sets (8), 
(9) and (10) define the domain of the decision variables. 

Using the above formulation, it can be seen that the CFLPGOBC is NP-hard since it 
generalizes the CFLP (when k= 1, l = 1, and gikq = 0 ∀ i ∈ N), which is an NP-hard problem 
(Cornuejols et al. 1990). 

 

4. Computational Experiments 
A set of computational experiments were executed to evaluate the performance of the 

mathematical model. The CFLPGOBC was implemented in Matlab 7.12 and Gurobi 4.5.1 was 
used to solve the MILP. The connection between Gurobi and Matlab was made using the Gurobi 
Mex interface (Yin 2012). The optimality tolerance for Gurobi was set at 10−6 and the solver was 
allowed to run for a maximum of 3600 seconds. The experiments were run on a 3.07 GHz Intel 

1631



September 24-28, 2012
Rio de Janeiro, Brazil

Core i7 with 16 GB of memory running Window 7 at 64 bits. 
The test instances were randomly generated based on information from the Colombian 

cement industry. The sizes and localizations of the candidate locations were taken from the actual 
plants and possible calyx mines. The sizes and locations of the customers were taken from the 
configuration of the cement supply chain, where normally the customers are distributions centers 
and depots, which are located in main cities. The values of maximal capacities are inspired by the 
capacity of the actual plants (the values are measured in 104 tons). The set of products was based 
on the cement market. The demand and the cost magnitudes were generated having into account 
the data of a cement company. Table 2 summarizes the parameters used in the generation of the 
test instances. Three instances were generated for each possible combination of the parameters, 
for a total of 288 test instances. 

 
Table 2. Parameters for the generation of the test instances 

Parameters Notation Values 
Building cost - Staircase 
Operating cost - Concave, Convex, S-shape 
Facilities n 10, 20 
Customers m 100, 150 
Products p 4, 8 
Maximum capacity U 100, 200 
Demand to capacity ratio g 0.25, 0.75 

 
Since one of the main properties of the CFLPGOBC is the possibility to model any 

function to represent the operating and building costs, for the generation of the instances three 
different options were considered for the operating cost: a concave function, a convex function, 
and an s-shaped function. These options represent respectively: economies of scale, diseconomies 
of scale and economies of scale at the beginning and diseconomies at the end due to congestion. 
The building cost function used for all the instances was a staircase function, with the property 
that when the size of the facilities increases the difference between two consecutive fixed cost 
decreases. This structure represents economies of scale (Figure 1). 

 

 
Figure 1. Functions used in the set of instances (concave, convex, s-shape and staircase respectively) 

 
For each instance, the upper (UB) and lower bound (LB) obtained by the solver after 

one hour of computational time were used to compute the optimality gap as in Equation 11. Table 
3 summarizes the average gap, number of instances solved to optimality and average run time for 
each shape of the operating cost function. 

 

 %𝐺𝑎𝑝 =
𝑈𝐵 − 𝐿𝐵
𝑈𝐵

× 100% (11) 
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Table 3. Average gap by operating cost function 

Operating cost 
function 

%Gap Number of instances 
solved to optimality 

Average run 
time (s) Average Maximum 

Concave 1.17 10.44 30/96 2728.43 
Convex 0.53 4.71 19/96 3044.82 
S-shape 9.00 69.51 14/96 3121.54 
Overall 3.57 69.51 63/288 2964.93 

 
After one hour of computational time, the average optimality gap was 3.57%, and 55% 

of the instances were solved with a gap of less than 1%. Table 4 shows gap frequencies for all the 
instances categorized by the operating cost function. This table shows that for the concave 
operating cost function 98% of the instances were solved with a gap of less than 10%. In the case 
of the convex operating cost function 100% of the instances were solved with a gap of less than 
5%, and for the s-shape function 67% of the instances achieved a gap of less than 10%. In the 0-1 
interval there are significant differences between the number of instances solved to optimality 
with concave and convex functions as compared to those instances with an s-shape function: only 
17% of the instances with as s-shape function were solved with a gap in the 0-1 interval. 

 
Table 4. Analysis of frequencies for the %Gap 

%Gap Interval Concave Convex S-shape 
Freq (%) Cum (%) Freq (%) Cum (%) Freq (%) Cum (%) 

0-1 63 63 86 86 17 17 
1-5 34 97 14 100 21 38 

5-10 1 98 0 100 29 67 
10-20 2 100 0 100 26 93 
20-30 0 100 0 100 3 96 
30-40 0 100 0 100 2 98 
40-50 0 100 0 100 0 98 
50-60 0 100 0 100 1 99 
60-70 0 100 0 100 1 100 

 
In order to analyze the impact of the characteristics of the problem (i.e. number of 

candidate facilities, number of customers, maximum capacity and demand to capacity ratio) we 
analyzed the behavior of the optimality gap for each factor and operating cost function. Table 5 
presents the average results obtained for each characteristic for the different operating cost 
functions, while charts from Figure 2 to Figure 6 summarize the results of these analyses. Note 
that in the generation of the instances the building cost function was fixed to have a staircase 
structure. 

 
Table 5. Average results obtained for each characteristic for the different operating cost functions 

Problem characteristic Symbol Levels Average %Gap 
Concave Convex S-shape Average 

Number of facilities m 10 0.58 0.32 5.70 2.20 
20 1.75 0.73 12.30 4.93 

Number of customers n 100 0.87 0.43 6.59 2.63 
150 1.45 0.62 11.41 4.49 

Number of products p 4 0.37 0.10 4.80 1.76 
8 1.96 0.94 13.20 5.37 

Maximum capacity U 100 1.17 0.79 6.75 2.90 
200 1.16 0.26 11.25 4.22 

Demand to capacity ratio g 0.25 0.68 0.35 7.40 2.81 
0.75 1.64 0.70 10.60 4.31 
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m=10 m=20
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convex 0.322 0.733
s-shape 5.706 12.304
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Figure 2. Average optimality gap (%Gap) by number of candidate facilities 

 
As it can be seen in Figure 2, there is a significant increase of the gaps when the 

number of candidate facilities grows from 10 to 20. Figure 3 presents the behavior when the 
number of customers changes, once again when the number of customers increases, the 
optimality gaps increase as well and for the s-shape operating cost function, the impact seems 
higher. Figure 4 shows that the number of products has an important impact in the behavior of the 
optimality gaps. If the problem instances have more products; the gaps increase. On the other 
hand, in Figure 5 it does not seem that when the maximum capacity increases the gaps increase. 
Finally, Figure 6 shows that the optimality gaps are less sensible to the change in the demand to 
capacity ratio. 
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s-shape 6.598 11.412
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Figure 3. Average optimality gap (%Gap) by number of customers 
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Figure 4. Average optimality gap (%Gap) by number of products 

 

U=100 U=200
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Figure 5. Average optimality gap (%Gap) by maximum capacity 

 

g=0.25 g=0.75
concave 0.687 1.648
convex 0.353 0.702
s-shape 7.405 10.605
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Figure 6. Average optimality gap (%Gap) by demand to capacity ratio 

 
As a summary, the results of this section show that the instances with operating cost 
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function that follow an s-shape structure have higher optimality gaps. On the other hand instances 
with convex and concave functions can be solved with consistently smaller optimality gaps. 

 

5. Conclusions 
This research introduces the capacitated facility location problem with general building 

and operating costs (CFLPGOBC), a new extension to the capacitated facility location problem 
with multiple products. The CFLPGOBC has been formulated as a mixed integer linear 
programming problem that enables the modeling of several building and operating cost functions 
to represent different behaviors that can be found in practical applications. Even though it was 
inspired by the structure of the Colombian cement industry which presents economies of scale 
with a convex operating cost function, the CFLPGOBC allows to model diseconomies of scale 
(i.e. concave operating cost functions) and other even more complex structures like s-shape and 
staircase functions. 

In addition to the classical decisions considered in facility location problems: the 
opening of the facilities and the allocation of the customers to the open facilities; the 
CFLPGOBC also includes two other important decisions that appear in multiproduct 
environments with (dis)economies of scale: the size of the open facilities (i.e. their total 
capacities) and the allocation of the total capacity of each facility to each product (i.e. the 
quantity of each item produced by each facility). In this way the CFLPGOBC allows practitioners 
to answer two important questions that arise in the design of multi-product supply chain i) is it 
better to have many small facilities or few big facilities? and ii) is it better to have specialized 
facilities by product or to have non-specialized multiproduct facilities? 

A computational experiment over a test bed of 288 randomly generated instances 
resembling the structure of the Colombian cement industry was performed in order to test the 
proposed MILP formulation on a commercial solver. On average, the optimality gap was 3.57%, 
and 55% of the test instances achieved a gap of less than 1% after one hour of computational 
time. The computational results revealed that the type of operating cost function has an important 
impact on the performance of the model. While concave and convex cost functions achieved an 
average gap of 1.17% and 0.53%, respectively, the test instances with an s-shaped operating cost 
presented an average gap of 9%. In some of these cases the gaps were significantly high. Future 
extensions to this research include the evaluation of approximation and decomposition algorithms 
that allow for improving the convergence of these particularly difficult instances. 
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