Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

An Evolutionary Algorithm and a Variable Neighborhood
Descent Algorithm for the Single Vehicle Problem with
Deliveries and Selective Pickups

Bruno Petrato Bruck
Departamento de Informatica - Universidade Federal de Vigcosa
Av. P. H. Rolfs, s/n - DPI, Campus UFV - CEP 36570-000 Vicosa, MG - Brazil
bruno.p.bruck @gmail.com

André Gustavo dos Santos
Departamento de Informética - Universidade Federal de Vigosa
Av. P. H. Rolfs, s/n - DPI, Campus UFV - CEP 36570-000 Vicosa, MG - Brazil
andre @dpi.ufv.br

ABSTRACT

This paper presents two approaches for the Single Vehicle Routing Problem with Deliveries and
Selective Pickups (SVRPDSP), where a vehicle departs loaded from the depot and must visit every
delivery customer serving a certain demand, but may not visit all the pickup customers, only the
ones that are profitable, since for every pickup made, there is an associated revenue. The objective
is to find a minimal cost and feasible route, where the cost is defined as the total travel costs mi-
nus the total revenue earned with the pickups performed. Despite the many real applications, there
are not many researchs on this problem. We propose an improved Evolutionary (EA) Algorithm
whose crossover and mutation operators use data mining strategies to keep trac of good features of
the individuals of the population. This EA has an intensification phase, which uses a local search
procedure to improve the quality of the individuals and new solutions are introduced regularly to
avoid premature convergence. The second approach is a Variable Neighborhood Descent Algorithm
(VND) that uses constructive algorithms to generate good solutions to start from. The algorithms
were tested with a benchmark of 68 instances from the literature, and the results compared to other
papers. The results show that this version of the EA is better than the previous one and finds 7
optimal solutions and some new best values. The VND approach, although is less time costly is not
able to find the same or better results than the EA in most cases.

KEYWORDS. Vehicle Routing Problem, Evolutionary Algorithm, Variable Neighborhood De-
scent, Single Vehicle Problem with Deliveries and Selective Pickups, Combinatorial Optimization.

1811

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

1 Introduction

In the Single Vehicle Routing Problem with Deliveries and Selective Pickups (SVRPDSP)
there are a set of customers to be served and a depot. Each customer has a certain demand of goods
to be delivered and may have a demand of goods to be picked up. While the former is mandatory,
the latter is not, but if served generates a revenue. Therefore it is possible to perform only profitable
pickups. The vehicle departs from the depot loaded and shall perform a route visiting the customers,
serving all delivery demands, but not necessarily all the pickup demands. A route is feasible if it
begins and ends at the depot and all delivery demands have been served without exceeding the
vehicle capacity at any time. The travel cost of a route is the sum of the travel costs between
consecutive customers (or depot) visited in the route, and the net cost of a route is its travel cost
minus the total revenue of all the pickups served. The SVRPDSP problem consists in finding a
feasible route with minimal net cost.

The problem may be conveniently described using a complete directed graph G = {V, A},
where V' = {0,1,...,n} is a vertex set representing the depot (vertex 0) and the n customers, and
{A = (i,j) :i,j € V,i # j} is a set of arcs. Each customer ¢ has a delivery demand d; > 0, a
pickup demand p; > 0, and a revenue r; > 0. Each arc (7, j) € A has a travel cost ¢;;. The vehicle
has a capacity), with Q > >,y d;. The problem is NP-hard, since TSP is a special case (when
pi=0,VieV).

The SVRPDSP arises in several pratical contexts, such as in drink factories where there are
delivery demands of bottles to supermarkets and also demands of empty bottles to be picked up
and returned to the factory [1]. Logistic services companies are also a good example where such
problem can arise, since while there are delivery demands of packages, there is also a constant
demand for picking up products to be deliveried elsewhere, but first they have to go to the depot.
Furthermore, another pratical application for this problem is in eletronic and batery manufactories,
which are being responsible for picking up their broken and used products that otherwise would
go as normal trash and pollute. One can argue that at some point all the pickups would have to be
fulfilled, but not necessarily in the same route, as another vehicle can serve them in another route
latter, or even a third party service can be used to collect these pickups, what could prove to be less
costly for the company than send its own vehicle only to pick up the remainder goods.

Note that there is no assumption on the number of times a customer may be visited. The
delivery and pickup demands may be served simultaneously in a single visit, or separately, in two
different visits, in case there is not enough space to perform the pickup simultaneously. A second
visit may be profitable, in case the revenue is greater than the aditional travel cost. Note that, a
pickup demand cannot be partially collected, i.e., either it is fully collected or not collected at all.

Figure 1 shows a small example with 3 customers and the optimal solution for two different
vehicle capacities. Note that in the second case not all pickup demands are collected. The travel
costin 1(b) is 18 and the total revenue 4, then the net cost of the solution is 18 - 4 = 14. The solution
in 1(c) has a net cost of 19 - 3 = 16.

The remainder of this paper is organized as follows: section 2 extend the classification of the
SVRPDSP and review the literature presenting previous research on this problem and their results;
The proposed Evolutionary Algorithm (EA) and Variable Neighborhood Descent (VND) methods,
along with some heuristic procedures are presented and described in section 3. Furthermore, sec-
tion 4 describes the parameter calibration of the algorithms and analyses the experimental results,
including new best solutions not previously found in the literature. Finally, section 5 present some
conclusions regarding the results and propose some further research.

1812

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

/=10+19 1=0+34 1=20+6 1=10+6

(a) Example with 3 customers (b) Optimal solution for Q = 34 (c) Optimal solution for @ = 28

Figure 1: A small example and its optimal solutions for different vehicle capacities. Demand and
pickup served are strikethrough, as well as revenue not collected

2 Related Literature

The first mention of the problem was made by [2], citing it as an extension of the One-to-Many-
to-One Single Vehicle Pickup and Delivery Problem that had received limited attention, despite its
many practical applications and its similarity with other vehicle routing problems. To our knowl-
edge there are only three papers and a master’s thesis exploring it. They propose integer linear
programming formulations able to solve small instances to optimality, and heuristics based on Tabu
Search, General Variable Neighborhood Search and a Evolutionary Algorithm (EA) to solve other
sets of instances. The present paper extends the approach of the EA and also proposes a Variable
Neighborhood Descent (VND) to compare with the literature results.

In [3], Siiral and Bookbinder, present a classification for this problem using the notation
a/ B/, where « is the number of vehicles (1 for single and M for multiple), 3 denotes the pickup
service options (must or free if the pickup is ,respectively, mandatory or optional) and ~y is the
precedence order for visiting two customers (prec if all deliveries must precede the pickups, or any
if they can be visited in any order). Therefore, by this notation the SVRPDSP can be described
as the 1/ free/any problem. Their work is the first approach of the problem, where a mixed inte-
ger linear programming formulation is proposed along with some improvements on the constraints
to strength the formulation, such as constraint disaggregation, coefficient improvement, cover and
logical inequalities, and lifted subtour elimination constraints. They modified 24 instances from the
literature, with sizes of 10, 20 and 30 customers, to test their formulation. These instances were
adapted for the SVRPDSP by setting some of the delivery demands as pickups in 3 different ways
(20% of the customers reset as pickups, then 30% and 40%), generating a total of 72 instances,
which were tested with some combinations of the formulation and the improvements resulting in
about 75% of the instances optimally solved in a reasonable computational time for the best com-
bination.

[4] proposed another MILP formulation and a Tabu Search metaheuristic (TS) to compare
their efficiency with some classical constructive heuristics. They gathered 17 instances from the
Capacitaded Vehicle Routing Problem from the VRPLIB [5]. As these instances only have delivery
demands they had to generate the pickup demands and profit values. The pickup demands were
generated based on the values of the delivery demands and the profit values generated based on
a formula that results in values proportionals to the average cost of an instance, multiplied by
a factor w. They considered 4 values for the parameter w, therefore resulting in a total of 68
instances. Computational tests with classical heuristics yielded gap values ranging from very small
to high values, so to overcome this scaling problem they split the gap measure into two other
measures, called cgap and pgap. The former is based on the routing cost and it is defined as
cgap = 100(¢ — ¢)/c where ¢ is the routing cost of the solution and ¢ the routing cost lower bound.

1813

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

The latter is based only in the revenue generated by the pickup demands served and it is defined
as pgap = 100(p — p)/p, where p is the profit upper bound and p the profit value of the solution.
The TS metaheuristic was then, tested with the same instances, yieling better gap values than some
classical heuristics with the average value for cgap = 4.03 and pgap = 0.36, against cgap = 10.57
and pgap = 2.01 from the heuristics.

A hybrid metaheuristic was proposed by [6]. At first it solves the Travelling Salesman Prob-
lem (TSP) and the Knapsack problem for the instance and then uses their solutions to create an
initial solution for a General Variable Neighborhood Search algorithm (GVNS). The lower bound
is calculated in the same way as proposed by [4], using the values of the optimal solutions of the
TSP and Knapsack formulations. The autors were able to significantly improve the solutions found
by [4], including 3 optimal solutions as its values are equal to their respective lower bound.

Recently a new hybrid approach was proposed by [7], combining an Evolutionary Algorithm
with a data mining strategy in order to track good patterns (sequence of customers) in solutions
found along the execution, using such information to guide the crossover and mutation operators.
This data mining strategy works with sequences of customers, called patterns. It also uses a Variable
Neighborhood Search algorithm (VNS) in the intensification phase, in order to improve the quality
of some individuals in the population. The results found are competitive with the ones in [6] and
new optimal solutions were found. One of the contributions of the present work is an extention
of this algorithm by: proposing a new evaluation criteria for the patterns considering in addition
to the frequency, the average cost of the solutions where a given pattern appears; the addition of a
repair procedure for unfeasible solutions and an improvement procedure; and another local search
procedure replacing the VNS in the previous approach. All these new features are described in
details in section 3.

3 Proposed Heuristics

Before going through the details of the Evolutionary Algorithm and VND, it is necessary to
explain a few heuristic procedures used by these methods, such as the constructive algorithms, a
repair procedure for unfeasible solutions and an optimization procedure, to increase the quality of
given solutions based on the features of the problem.

3.1 Constructive algorithms

Four constructive algorithms were implemented, where the first two usually generate good
quality solutions and the remaining two generate medium and poor quality solutions. The only case
in this work where poor quality solutions are needed is in the EA metaheuristic, where there must
be diversity among the individuals of the population.

3.1.1 tspBased

In this method, at first, the Traveling Salesman Problem (TSP) is solved for the instance,
considering only the delivery customers, using the software IBM ILOG CPLEX 12.2. Then the
optimal route is used as base for inserting the pickup customers in the best possible positions,
generating a solution for the SVRPDSP. It differs from the method presented in [6] by the addition
of a Restricted Candidate List (RCL) with size rclSize. This list works by keeping at each iteration
the best candidates to insert into the current route and randomily selecting one to insert. This ensures
that different solutions can be generated by this algorithm when rclSize > 1.

1814

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

3.1.2 tspKnapsackBased

The only difference from the previous method is that it only inserts into the route of the TSP
solution the pickup customers that belong to the optimal solution of the Knapsack Problem consid-
ering only the pickup customers. As the fspBased it usually yields good quality solutions.

3.1.3 nearestNeighbor

At first the solution contains only the depot, and one by one the customers are inserted into the
route. The nearest customers are inserted first. It differs from the classical nearest neighborhood
heuristic by considering a RCL with size equal to 0.1n, where n is the number of customers of a
given instance. Through tests it was observed that this algorithm yields best results the greedier it is
and the value 0.1n has proven to balance well the quality and the generation of different solutions.
Is is important to emphasise that the importance of this algorithm in this work is only generating
medium and poor quality solutions, so further tests with the RCL size were not done.

3.1.4 cheapestInsertion

The solution has, initially, only the depot, and at each iteration a new customer is inserted
in the route on a good position considering the criteria cost-benefit. It has the same RCL as in
nearestNeighbor with size of 0.1n.

3.2 Repair heuristic

Since it is common to generate unfeasible solutions during local search procedures there must
be a procedure to repair solutions. The proposed method works in two phases. In the first, all
the delivery customers not served are inserted in the best possible position of the current route,
according to cost value, ensuring that the constraint of serving all delivery demands is satisfied.
For the second phase, if the solution is still unfeasible, the route is analized to find where there are
pickups overweighing the vehicle, removing them from the route and thus ensuring feasibility.

As one can notice, pickup customers are, frequently, removed from the route in the process,
but the fact that the position they were was making the solution unfeasible does not mean there is
not a valid and profitable position for them in the current route. Therefore, after repairing a solution,
this condition is verified and the solution may be improved.

As the repair procedure is applied to every unfeasible solution generated it will not be men-
tioned from now on. Consider its use implicit in all solutions.

3.3 Improvement heuristic

If a pickup demand is served at the position ¢ in a given feasible route, it means that at any
position greater than ¢ this demand can be fulfilled without making the route unfeasible, since if
there was enough space to perform the pickup before, there will be, for certain, space for it at
any time after, considering that the delivery load will always decrease. Therefore if a customers’
pickup demand is performed before its delivery demand, this solution is not the optimal, since both
demands can be fulfilled simultaneously with cost zero. This procedure takes advantage of this
property to improve the cost of a given solution and it is called right after the repair procedure.

3.4 Variable Neighborhood Descent

This approach simply combines the initial generation of a solution using the constructives
tspBased and tspKnapsackBased detailed in section 3.1 with a classical Variable Neighborhood

1815

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

Descent Algorithm([8]), which uses as neighborhood structures: 2-opt, swap, 2-Or-Opt, 3-Or-Opt,
4-Or-Opt.

3.5 Evolutionary Algorithm

Basically this Evolutionary Algorithm is an improved version of the one presented in [7] and
has five distinct phases, which are the initialization, crossover, mutation, intensification and diver-
sification (Algorithm 1).

In the Initialization phase, the first population is generated by randomly selecting a construc-
tive algorithm among the four types available, described in detais in section 3.1. In case the choosen
algorithm is either tspBased or tspKnapsackBased, the rclSize must be set. If it is the first time this
type of constructive is called, the rclSize is set as 1 (greed solution), otherwise it is set as 2. As
equal elements are not allowed at any time in the population the constructives are called until the
population has been fully generated with mutually different elements. As one can notice, it may be
necessary many calls to the constructive algorithms to assure this constraint. This can decrease its
performance and then, should be avoided. In order to do so, if a new element is not sucessfully in-
serted into the population within 3 iterations, the value of rclSize is set as 3 increasing the chances
of generating a different element, in case tspbased or tspKnapsackBased is called.

The second phase is the Crossover procedure, in which elements of the population are com-
bined to generate new solutions so as to improve the quality of the individuals and promote, at some
degree, diversification.

In order to produce better quality individuals the crossover procedure needs a criteria to
evaluate the features of a given individual and decide which ones are the best. Therefore, before
continuing explaining the crossover procedure we must go through the detais of how our EA keeps
track of good attibutes .

Basically we use a Data Mining strategy, in which every new individual has its route analized
to extract patterns (sequence of customers) within a given range [minPatternSize, maxPattern
Size]. As in [7], each pattern found is stored in a structure called patternsList along with the
frequency it has appeared in the solutions already analized. In addition to these informations, we
propose to keep record of the average cost of the route in which a pattern was found so as to im-
prove the robustness of the evaluation criteria that decides how good a pattern is. Therefore, we now
have two types of data to evaluate a pattern and since cost value is usually much higher than the fre-
quency value, this data must be normalized. Lets call nF'requency the normalized frequency value,
nAvgCost the normalized average cost and qualityInder = (1 — nAvgCost) + nFrequency,
which will be the value used to evaluate the patterns, since it considers both measures. The closer
to 2 the better.

Having understood how the patternsList works, we can now detail the crossover procedure.
At first two elements of the population are randomly selected and the patterns of both parents
extracted along with their respective qualityIndex value. Let us refer to the parents as P1 and P2.
Two patterns of P2 are chosen, giving more probability for the ones with higher qualityIndex
values, and they are forced to appear in the best possible position of P2’s route generating two
new individuals. The same is done to the parent P2 and so for each recombination 4 children are
generated. This process is performed popSize/2 times in each iteration.

After having completely generated the child population it is time to combine it with the
parent population to decide which individuals will be held for the next iteration. As in [7], the new
population is half composed of the best elements of both populations. A quarter is selected through
tournaments, where the best of two elements (one from each population) wins and is inserted in
the new population. The other quarter is composed of randomly selected individuals. This 3 stage
process guarantee the diversity, which is a very important factor for the success of this kind of
algorithm.

1816

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

In the mutation phase, all patterns are extracted from the patternsList along with the
qualityIndex values. Then, one pattern is selected to be forced into a randomly selected indi-
vidual, giving more chances the higher the value of qualityIndez. In case the new individual is
better than its former, it replaces the latter. It is important to emphasize here that the function which
forces the patterns to appear in a given individual never generates unfeasible solutions, since it uses
the repair procedure, described in section 3.2.

In the intensification procedure an individual is ramdomly selected and its route shaken
intensity times, using one of five different structures to shake a route, also ramdomly selected,
which are 2-Opt, swap, 1-Or-Opt, 2-Or-Opt and 3-Or-Opt. Since these are classical structures we
are not going into the details of them. Initially intensity = 1 and at each 5 iterations without im-
provement on the best solution, its value is increased by one. When the best solution is updated the
value is reset to 1. A local search (Algorithm 2) procedure is then, applied to the shaken individual.
This procedure randomly select a neighborhood structure and completely explores it, returning the
local minima. It uses the same structures used by the shake method.

Finally the diversification phase is simply replacing half of the population (the worst individ-
uals) by new ones, generated by the constructive algorithms at each 10 iterations.

Algorithm 1 Evolutionary Algorithm pseudocode
1: procedure EVOLUTIONATY (popSize, numlit)

2: /Mnitialization

3: itsWithoutImpr < 0

4 intensity < 1 // When a new best solution is found it is reset to 1

5: pop < 0 // population

6: bestSol < any with cost = oo /I best solution

7: for i « 1 to popSize do

8: rclSize < random from {1, 2, 3,4}

9: constructive < random constructive heuristic
10 Generate individual using constructive and rclSize
11: pop <— pop U individual
12: Update bestSol if necessary
13: end for
14: Compute patternsList list
15:

16: //EA main loop

17: for i «+ 1tonumlitdo

18: /ICrossover

19: childPop < ()

20: for j < 1to popSize/2 do

21: parents < random 2 individuals from pop
22: //Do this for each of the 2 parents

23: Select maxSons patterns from one parent
24: child < force patterns into the other parent
25: if child is feasible then

26: childPop < childPop U child

27: Update patternsList list using child
28: Update bestSol if necessary

29: end if

30: end for

1817

Congreso Latino-lberoamericano
de Investigacién Operativa

September 24-28, 2012

Rio de Janeiro, Brazil

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:

newPop < best popSize/2 from childPop U pop
Add popSize/4 from tournament(pop,child Pop)
Add popSize/4 random from child Pop U pop

//Mutation

for j < 1to popSize/2 do
individual < random from pop
newMut <+ mutate individual
Update patternsList list using newMut
Update bestSol if necessary

end for

/Mntensificate

for j < 1 to popSize/5 do
ind < random individual from pop
for i < 0 to intensity do

Shake ¢nd

end for
ind < LocalSearch to ind
Update patternsList list using ind
Update bestSol if necessary

end for
/[Diversification
if i mod 10 =0 then /I Every 10 iterations

for j < popSize — 1 to popSize/2 do
newlInd < random by constructive
Update patternsList list using newlInd
end for
end if

if itsWithoutImpr = 5 then
itsWithoutImpr < 0
intensity + +

end if

end for

67: end procedure

// Replace the worst

Algorithm 2 Local Search pseudocode

1: procedure LOCALSEARCH(individual)

2:
3:
4.

5: end procedure

netghborhood < randomly select from {2-opt, swap, 2-Or-Opt, 3-Or-Opt, 4-Or-Opt }
newind < local optima of neighborhood using individual
return newind

1818

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

4 Computational results

In order to test the proposed approaches we have used the 68 instances proposed by [4] and
used by [6] and [7]. These are derived from a set of instance of the Capacitaded Vehicle Routing
Problem of the VRPLIB [5].

The results were obtained on Intel(R) Core(TM) 17 3.07GHz machine with 6Gb RAM, run-
ning the operating system Ubuntu 12.04. All codes were made in C++, and the MILP formulations
to obtain the lower bounds were solved using IBM ILOG CPLEX 12.2 under the academic license.

The lower bound is calculated as proposed in [4]: TSP solution for delivery customers minus
Knapsack solution for pickup customers. To achieve this lower bound the vehicle must visit the
customers in an optimal TSP order doing delivery and pickup simultaneously (for those customers
in a Knapsack optimal solution). This is a valid lower bound since there is no way to attend the
delivery customers with a lower travel cost, and there is no way to get more revenue from the pickup
customers. For some instances there is no feasible solution reaching this lower bound, because of
the vehicle capacity. If it is not possible to do a simultaneous pickup, the vehicle must return to the
customer a second time (increasing the travel cost) or do a pickup in another customer instead of
the best ones (decreasing the total revenue).

To measure the quality of the solutions generated by the constructive algorithms tspBased
and tspKnapsackBased, they were tested with three values for the the RCL (1, 2 and 3) and each
configuration run five times, except the ones with RC'L = 1, where the algorithm was run only
once, since it is deterministic. A total of 52 out of the 68 instances were used for these tests (16 to
51 customers). The results, presented in Figure 2, show that these algorithms frequently generate
very good solutions, including optimal for some instances, which is an odd feature for a construtive
algorithm, but could be due to using information regarding the optimal solutions of the TSP and
Knapsack problems, that are also used to determine a lower bound. To simplify the analysis, the
figure only shows the tspBased with RC'L = 1 and tspKnapsackbased with RCL = 1, 2, since the
other configurations proved to be worse in an ANOVA (Analysis of Variance) using the software
Minitab 16.

Constructive test
300 T T T T

TSPT ——
TSPkKnapsack! —s—
TSPkKnapsack? —s—

GAP

60

Instance

Figure 2: Best GAP values for the constructives in 5 runs

1819

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

To calibrate the parameters, the algorithm was run in a subset of 16 instances with all combi-
nations of popSize = {10, 20,30} and numIt = {10, 20, 30}. To know which combination yields
the best results we have done an ANOVA (Analysis of Variance) on the average gap values using
the software Minitab 16. The result can be seen in Figure 3, where one can notice that there is no
combination that is statistically proven to be the best or better than other one with 95% of confi-
dence. Therefore we decide to choose a combination that balance the variation, the best average
gap value and the run time. Although the combination PS_30_IT_30 has the best gap value it
needs more time and has almost the same variation as the combination PS_20_IT_ 20, which was
chosen to be the configuration for the EA.

Interval Plot of Evolutionary Alg. (Best)
95% C1 for the Mean

E 3
2 1
o
0 y
5 A S F s
&7 &7 &7 &7 &7 &7 &7 a7 &7
K ANRCO A AT L A VS YA Y
e @ P P el @ @l P @l

Figure 3: ANOVA for the parameter calibration

Table 1 compares the algorithms of the present work to the ones of the literature grouped
by instance type. The measure used is the average gap to the theoretical lower bound, the same
used in [4]. All approaches clearly outmatch the Tabu Search algorithm proposed by [4]. The
VND algorithm does not outmatch neither the EA nor the GVNS, but is competitive. The results
of the new EA are better than those of the previous one, therefore proving the effectiveness of the
modifications proposed. Furthermore, comparing to the GVNS, the results of our EA approach are
better for instances of type half, and close for the other types, although this is not clear for instance
of type p_two. This is due to the very high gap value of 262.53% for instance 076_B_p_two, which
greatly increses the average gap. If we exclude this instance, the values for the best and average
gaps of the EA decreases to 7.57% and 8.81%, respectively, and GNVS to 6.20% and 8.58%. A
similar situation occours for the VND.

Table 1: Comparison of the Algorithms with the literature considering the gap (%)

Algorithm half one p_two two
best avg best avg best avg best avg
TS [4] 28.12 - 5.38 - 86.78 - 2.19 -
EA [7] 4.26 6.83 1.83 2.12 19.26 25 0.66 0.8
EA 2.38 4.15 1.32 1.68 22.56 25.11 0.47 0.75
VND 4.14 4.15 2.07 2.15 28.72 28.72 0.75 0.78
GVNS [6] 3.44 6.35 1.04 1.28 9.65 13.25 0.39 0.47

Table 2 details the results of the methods proposed here and the best algorithm of the literature
(GNVS) for all 68 instances. The EA and the VND metaheuristics were run ten times each with
four hours of time limit. The first column lists the name of the instances. The next six columns
show, respectively, the value of best solution found and the average value of the ten runs, for each
one of the methods. The last column shows the theoretical lower bound. Solutions obtained by one
algorithm that are better or equal to the ones obtained by the others are highlighted in bold face.
Solutions marked with **’ are certainly optimals, since they reach the lower bound.

Note that in Table 2, regarding the best solutions found, no algorithm outmatches the others,

1820

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

as there is at least one instance where one outperforms the others. Nevertheless, one can notice that
the new EA found the same or better results than the GVNS for more than a half of the instances,
including 17 new solutions. Although the VND was not as efficient as the EA, it has found about 1/3
of solutions equal or better than the GVNS. Concerning optimal solutions, EA clearly outperforms
the others, as it was the one that found more optimal solutions: 7 in total, including all optimal
found by the others. It is important to notice that the EA found the optimal solution in average, i.e.
in all 10 runs, for 3 instances, the VND for 5 instances and the GVNS for none.

5 Conclusion

In the present paper two approaches were tested and compared against the results of the literature
using 68 benchmark instances. The EA algorithm proved to be better than the VND in most of the
cases, although for some instances, the VND outmatched all algorithms in the literature, including
the EA.

Regarding the comparison between the EA and the GVNS, the results were balanced, but
EA found more optimal solutions, and also more better solutions in average. The only 3 optimal
solutions found by GVNS were also found by EA.

Acknowledgments

This project was supported by Capes - Coordenacdo de Aperfeicoamento de Pessoal de Nivel Su-
perior, and partially supported by Gapso and Sydle.

References

[1] J. Privé, J. Renaud, F. Boctor and G. Laporte. "Solving a vehicle-routing problem arising in
soft-drink distribution" J. of the Operational Research Society. vol 57, pp. 1045-1052, 2006

[2] G. Laporte, I. Gribkovskaia. "One-to-Many-to-One Single Vehicle Pickup and Delivery Prob-
lems", The Vehicle Routing Problems: Latest Advances and New Challenges, Golden, Ragha-
van, Wasil (editors), Springer, 2008

[3] H. Siiral and J.H. Bookbinder. "The single-vehicle routing problem with unrestricted back-
hauls", Networks vol 41, pp. 127-136, 2003

[4] L. Gribkovskaia, G. Laporte and A. Shyshou. "The single vehicle routing problem with deliver-
ies and selective pickups", Computers & Operations Research vol 35, pp. 2908-2924, 2008

[5] D. Vigo. "VRPLIB: A Vehicle Routing Problem LIBrary". [Online]. Avaiable:
http://www.or.deis.unibo.it/research_pages/ORinstances/VRP LIB/VRPLIB.html

[6] 1. M. Coelho. "Contribuicdes para o problema de roteamento de veiculos de rota tinica com
entrega obrigatérias e coletas seletivas", Master thesis, Programa de P6s-Graduagao em Com-
putacdo, Universidade Federal Fluminense, 2011

[7] B. P. Bruck, A. G. Santos and J. E. C. Arroyo. "Hybrid metaheuristic for the single vehicle
routing problem with deliveries and selective pickups". Proceedings of the 2012 IEEE Congress
on Evolutionary Computation, pp. 910-917. IEEE Press, Brisbane, Australia, 2012

[8] P. Hansen and C, N. Mladenovi¢. "Variable neighborhood search: Principles and applications”,
European Journal of Operational Research vol 130, pp. 449-467, 2001

1821

(3, CLAIO

Table 2: Results of the EA and VND algorithms

Congreso Latino-lberoamericano
de Investigacién Operativa

Septemher 24-28, 2012
Rio de Janeiro, Brazil

instance EA VND GVNS Lower Bound
best average best average best average
016_B_half 36.60* 36.60* 36.60* 36.60* 39.86 40.61 36.60
016_B_one -150.73 -148.95 -145.44 -145.44 -150.73 -150.73 -155.41
016_B_p_two 133.80 140.41 142.03 142.03 132.28 133.43 130.99
016_B_two -536.06 -532.80 -530.84 -530.84 -536.13 -536.13 -540.81
021_B_half -20.16* -20.16* -20.16* -20.16* -18.78 -13.96 -20.16
021_B_one -307.80 -304.54 -300.00 -300.00 -307.80 -307.21 -316.09
021_B_p_two 137.59 144.59 147.03 147.03 137.59 141.17 132.21
021_B_two -901.28 -895.39 -893.48 -893.48 -901.28 -900.69 -909.57
022_B_half -62.40 -57.41 -56.86 -56.86 -62.63 -58.59 -64.97
022_B_one -421.04 -421.04 -421.04 -421.04 -421.04 -421.04 -429.15
022_B_p_two 124.25 124.29 124.33 124.33 123.59 124.86 116.01
022_B_two -1,149.38 -1,149.37 -1,149.38 -1,149.38 -1,149.38 -1,149.38 -1157.49
023_B_half -80.01 -79.83 -61.67 -61.67 -80.95 -80.76 -94.06
023_B_one -697.41 -688.26 -640.23 -640.23 -698.35 -698.26 -711.46
023_B_p_two 269.08 273.72 291.07 291.07 269.86 273.23 260.88
023_B_two -1,932.16 -1,926.52 -1,874.98 -1,874.98 -1,933.10 -1,932.91 -1946.21
026_B_half -92.41 -92.41 -92.41 -92.41 -87.87 -85.53 -92.47
026_B_one -497.17 -495.91 -495.87 -495.87 -497.17 -497.17 -504.40
026_B_p_two 146.11 146.14 146.34 146.34 146.90 147.18 139.67
026_B_two -1,334.26 -1,333.48 -1,332.96 -1,332.96 -1,334.26 -1,334.26 -1341.49
030_B_half -378.64 -378.64 -378.64 -378.64 -378.64 -370.69 -382.80
030_B_one -1,152.07 -1,152.07 -1,152.07 -1,152.07 -1,152.07 -1,146.64 -1156.23
030_B_p_two 82.29 82.29 85.49 85.49 82.29 85.69 81.33
030_B_two -2,699.00 -2,699.00 -2,699.00 -2,699.00 -2,699.00 -2,697.26 -2703.16
031_B_half -89.15 -88.39 -85.66 -85.51 -87.06 -84.90 -91.79
031_B_one -511.07 -510.65 -507.82 -507.69 -511.07 -508.04 -514.05
031_B_p_two 123.15 124.35 131.07 131.07 123.15 123.39 115.52
031_B_two -1,355.59 -1,354.83 -1,352.34 -1,352.21 -1,354.49 -1,352.73 -1358.57
033_B_half -150.73 -146.47 -150.73 -150.73 -150.73 -146.01 -157.09
033_B_one -765.79 -765.10 -753.55 -753.55 -765.79 -761.80 -778.21
033_B_p_two 194.61 195.60 198.42 198.42 199.17 202.08 188.44
033_B_two -2,007.28 -2,005.94 -1,995.74 -1,995.74 -2,007.98 -2,003.99 -2020.40
036_B_half -128.26 -128.26 -128.26 -128.26 -127.06 -124.65 -128.53
036_B_one -624.41 -624.41 -624.41 -624.41 -616.12 -610.63 -624.67
036_B_p_two 132.60 132.93 133.56 133.56 130.42 136.41 121.94
036_B_two -1,616.64 -1,616.64 -1,616.64 -1,616.64 -1,608.35 -1,604.65 -1616.90
041_B_half -185.75 -185.75 -181.85 -181.85 -183.86 -179.36 -186.35
041_B_one -758.06 -756.29 -757.26 -749.98 -760.52 -758.60 -767.97
041_B_p_two 111.69 112.89 131.86 131.86 109.48 115.16 100.89
041_B_two -1,922.71 -1,921.02 -1,920.60 -1,913.59 -1,923.86 -1,921.50 -1931.31
045_B_half -491.15* -491.15* -491.15* -491.15* -491.15* -490.52 -491.15
045_B_one -1,648.51* -1,647.63 -1,648.51* -1,648.51* -1,648.51* -1,647.88 -1648.51
045_B_p_two 198.04* 198.57 201.22 201.22 199.82 201.85 198.04
045_B_two -3,963.32* -3,962.41 -3,963.32* -3,963.32* -3,963.32* -3,962.69 -3963.32
048_B_half -36,786.80 -36,786.80 -37,205.50 -37,205.50 -37,200.62 -37,200.62 -37753.00
048_B_one -107,059.00* -106,796.00 -106,423.00 -106,423.00 -107,058.78 -106,682.88 -107059.00
048_B_p_two -3,830.83 -3,829.53 -4,140.10 -4,140.10 -4,244.69 -4,122.47 -4797.03
048_B_two -247,865.00 -247,762.00 -247,663.00 -247,663.00 -247,946.25 -247,871.39 -248298.00
051_B_half -310.84 -308.87 -305.94 -305.94 -310.24 -307.35 -320.61
051_B_one -1,088.26 -1,085.42 -1,077.35 -1,077.19 -1,086.52 -1,085.09 -1098.86
051_B_p_two 123.60 125.41 131.14 131.14 126.70 127.99 116.58
051_B_two -2,644.71 -2,641.86 -2,633.79 -2,633.63 -2,645.35 -2,640.95 -2655.30
072_B_half -408.09 -406.36 -406.87 -406.87 -406.57 -404.96 -409.78
072_B_one -984.20 -978.86 -1,024.33 -1,020.47 -1,024.04 -1,023.07 -1027.24
072_B_p_two -33.43 -32.31 -30.16 -30.16 -36.03 -35.85 -39.24
072_B_two -2,247.83 -2,197.82 -2,259.30 -2,255.44 -2,259.01 -2,259.01 -2262.21
076_B_half -574.04 -472.20 -576.66 -576.62 -579.25 -576.19 -579.52
076_B_one -1,731.91 -1,713.61 -1,752.71 -1,752.35 -1,758.92 -1,753.27 -1759.19
076_B_p_two 51.95 55.30 57.55 57.55 23.62 26.95 14.33
076_B_two -4,102.38 -4,076.64 -4,112.02 -4,111.66 -4,118.23 -4,113.12 -4118.50
101_B_half -909.32 -909.32 -910.73 -910.73 -906.79 -900.82 -922.71
101_B_one -2,538.99 -2,538.99 -2,538.99 -2,538.99 -2,541.35 -2,536.94 -2552.38
101_B_p_two -49.55 -49.55 -49.55 -49.55 -53.89 -47.44 -66.59
101_B_two -5,798.30 -5,798.30 -5,798.30 -5,798.30 -5,800.66 -5,793.33 -5811.69
111_B_half -1,322.56 -1,322.56 -1,380.63 -1,380.63 -1,384.06 -1,380.26 -1386.67
111_B_one -3,309.57 -3,309.57 -3,314.79 -3,314.79 -3,315.78 -3,312.67 -3320.83
111_B_p_two -249.66 -249.66 -249.73 -249.73 -252.84 -251.35 -257.18
111_B_two -7,124.81 -7,124.81 -7,182.88 -7,182.88 -7,186.31 -7,181.60 -7188.92

1822

