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ABSTRACT

We address the problem of routing a fleet of different vehicles from a central depot to 
customers with known demands and time windows. It is assumed that a vehicle has to return back 
to the central depot after visiting a customer, such that a transportation network has a star-case 
structure. The mathematical model is presented together with a numerical study.
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1. Introduction
In many organizations, the management of distribution activities constitutes a major 

decision-making problem. The efficient utilization and routing of the fleet of vehicles lies at the 
heart of almost all distribution-routing problems. In particular, a natural question facing a 
distribution manager is: How many and what size vehicles are needed in order to accommodate 
demand at minimal cost?  This question gives rise to the problem we formulate and address in 
this paper.

Variants of the vehicle routing problem generally share the following characteristics. A 
set of routes must be designed for the vehicles, originating from and terminating at a central 
depot. The routing costs associated with the vehicles form one component of total distribution 
costs. The other essential component consists of fleet acquisition and maintenance costs. 

We consider vehicle routing problem with multiple vehicle types as a problem of 
simultaneously determining the composition and routing of heterogeneous fleet of vehicles in 
order to service a prescribed set of customers (clients) with known delivery demands and time 
windows from a central depot or plant. It is assumed that each type of vehicle is available with 
infinite supply. The objective is to minimize the sum of the vehicle acquisition costs and routing 
costs. 

The literature on vehicle routing problem (VRP) is quite extensive, see e.g. Golden 
(2008), Pop (2012), Toth (2002) and the references therein. Frequently it is assumed that there 
exists a direct route (not passing through the central depot) between any pair of clients, such that 
a transportation network is represented by a complete graph. The routing problem in specialized 
and/or incomplete networks is paid much less attention (see, e.g., Basnet  (1999),  Beaulieu 
(2002),  Labbe  (1991),). The central assumption of our model is its star-case transportation 
network.  In a few words only direct routes from the central depot to the clients are allowed. The 
connection client-client either is not permitted, or is not used. There are at least three reasons to 
consider such a network:

a) The transportation network has a star-case configuration from the beginning. This 
situation occurs in some underground networks (mine, subway, etc.) where there are no physical 
routs between the clients and all connections have to pass through the center.

b) The transportation network is a complete graph, but only direct routes are allowed by 
the rules. This is the case, for example, in a gasoline supply by PEMEX (Mexican State Petrol 
Company), where the demand of a gasoline station has to be an integer multiple of a vehicle 
(pipe) capacity and by security reasons the pipe has to return back to the center immediately after 
visiting a gasoline station. 

c) The transportation network is a complete graph, but client’s demand is significantly 
greater than the capacity of the vehicle. In this case, even if there are physical connections client-
client, they are (almost) not used. Since to satisfy the (large) client’s demand, the vehicle has to 
return back to the center to reload. The later is typical for the high-level routing where the 
demand points are large distribution centers, but not the final customers.

Thus, in contrast to the classical vehicle routing problem, a client has to be visited 
multiple times (maybe by the same vehicle) to satisfy its demand. We also assume that a split 
delivery is allowed. Soft time windows are considered allowing the vehicle to start service at the 
client before or after its time window, respectively. As a result, the vehicle incurs additional 
costs. A corresponding mixed-integer programming model is formulated and results of a 
numerical study are discussed.

2. Model Formulation
The following parameters are used to characterize the  model:

K = number of vehicles,
I = number of clients; index 0 denotes the depot,
J k= maximal number of trips (depot-client-depot) for vehicle k ,
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d i= demand of client i ,
cik= cost of the round-trip travel from the depot to client i for vehicle k ,

=kq capacity for vehicle k ,
=ikt time for one way travel from the depot to client i for vehicle k ,
=kf fixed (acquisition) cost for vehicle k ,
=iE earliest time allowed for beginning delivery at client i ,
=iL latest time allowed for beginning delivery at client i ,
=ike cost (per time unit) for violating the earliest time for delivery,
=ikl  cost (per time unit) for violating the latest time for delivery.

The decision variables are as follows:

xijk : = 1, if client i is visited by vehicle k at its trip j ; = 0 otherwise,
ky : = 1, if vehicle k is used at least for one client 0≠i ; = 0 otherwise,

0≥jks  - the time to begin trip j  by vehicle k ,
0≥+

ijkw  - time violation for the latest delivery at trip j ,
0≥−

ijkw  -  time violation for the earliest delivery at trip j .

Note that we use index j as an internal discrete time counter for the vehicle k , such 
that at any trip j vehicle k either visits a client, or stays at the depot (visits client 0).

The model is mathematically stated as:

min ∑
k

f k y k+ ∑
i , j , k

( cik xijk+ eik wijk
+ + l ik wijk

− )
(1)

s.t. 
x0 jk +∑

i≠0
xijk=1

 for all 
j

,
k

, (2)
∑
j , k

qk xijk ≥d i
for all i≠0 , (3)

J k−∑
j∈J k

x 0 jk≤ yk J k

 for all 
k

, (4)
1, 2j k jk ik ijk

i
s s t x+ ≥ + ∑  for all j , k , (5)

( )ijk i ijk jk i ijkw E x s t x− ≥ − +  for all 0≠i , j , k , (6)
( ) (1 )ijk jk i ijk i ijkw s t x L M x+ ≥ + − − −  for all 0≠i , j , k , (7)

{ } 0.0,1 ≥∈ −
jkijk

+
ijkkijk s,w,w,y,x (8)

The objective function (1) minimizes the total fixed cost, travel cost, and the cost for 
deviation from time windows. Constraints (2) ensure that at any trip a vehicle visits exactly one 
client or stays at the depot (visiting client 0). Constraints (3) state that the demand of every client 
is satisfied. Constraints (4) jointly with minimizing the objective ensure that vehicle is not in use 
if it stays at the depot for all trips. Constraints (5) state that the trip starts only after the vehicle 
returns back to the depot completing the previous trip. constraints (6) jointly with minimizing the 

objective ensure that if at a given trip the client is not visited ( xijk=0 ),then there is no cost for 
violating the earliest delivery time ( 0ijkw− = ). Otherwise, the violation time is calculated in a 
standard way. Similarly, constraints (7) state the same for violating the latest delivery time. Here 

2305



September 24-28, 2012
Rio de Janeiro, Brazil

M is a large positive constant  ( M≥s jk−L i ). Note that by (6) and (7) 0ijkw− >  only for
s jk+ t i< E i , while 0ijkw+ > only for s jk+ t i> Li . Hence for E i≤Li  we always have 
wijk

+ wijk
− =0 .  A solution to (1) –  (8) indicates the vehicles used (variables yk ), provides 

allocation of clients to vehicle together with the order of visits (variables xijk ), and the vehicle 

schedule (variables s jk ).

3. Computational Experiment
Linear mixed integer model (1)-(8) was tested on graphical terminals Sun Ray 

connected with server SunFireV440 having 4 processors UltraSPARC IIIi –1.28GHz. The 
commercial solver ILOG CPLEX 12.0 was used together with modeling language 
AMPL20021031. Real problems data were kindly provided by SINTEC (http://www.sintec.org).

A set of 10 randomly generated  problems with 30 clients was considered for =iE  

08:00am and Li= 05:00pm for all clients. The costs for violating the earliest and the latest 
delivery time were equal for all clients, and only three types of vehicles were considered. 
Parameters varying within the test problems were demands, travel costs, and travel times. For 
3600 seconds CPU time all problems were solved within 40-60% of optimality (gap in branch-
and-bound technique). Leaving more time (up to 6 hours) did not improve the gap significantly.  
A more detailed description of computational results one can find in Litvinchev (2012).

The case study was considered representing the distribution of goods in Valle de 
Mexico area. The distribution network has 13 clients, 1 production plant sending products to the 

clients, hard time windows ( E i=  08:00am and =iL 05:00pm, the costs for violation the time 

window ,ik ike l were set to 
510 ), with 50 (30 single-size and 20 double-size) vehicles available. 

The results of modeling provide us a schedule for routing an optimal selection of vehicles to 
satisfy the demand and to meet the hard time windows.

Vehicle Destination Star time Travel 
Time

Next 
Time 

available
Vehicle Destination Star 

time
Travel 
Time

Next 
Time 

available

1 Reyes 3.37 9.26 12.63 15 Reyes 3.37 9.26 12.63
Vallejo 12.63 7.26 19.89 Tlalpan 12.63 8.26 20.89

2 Coacalco 2.875 10.25 13.125  16 Tlalnepantla 4.37 7.26 11.63

3 Huixquilucan 3.87 8.26 12.13 Mixcoac 11.63 9.26 20.89
Reyes 12.13 9.26 21.39 17 Iztapa 3.96 8.08 12.04

4 Huixquilucan 3.87 8.26 12.13 Chalco 12.04 9.26 21.3
Chalco 12.13 9.26 21.39 18 Texcoco 2.37 11.26 13.63

5 Chalco 3.87 9.26 13.13 Cuatitlan 13.63 3.26 16.89
6 Chalco 3.37 9.26 12.63 19 Texcoco 2.37 11.26 13.63
7 Coacal 2.875 10.25 13.125 20 Mixcoac 3.37 9.26 12.63

8 Reyes 3.37 9.26 12.63 Huixquilucan 12.63 8.26 20.89
La Viga 12.63 7.26 19.89 21 Huixquilucan 3.87 8.26 12.13

9 Chalco 3.37 9.26 12.63 Zaragoza 12.13 9.26 21.39
10 Chalco 3.37 9.26 12.63 22 Tlalnepantla 4.37 7.26 11.63
11 Reyes 3.37 9.26 12.63 Coacalco 11.63 10.25 21.88
12 Coacal 2.875 10.25 13.125 23 Coacalco 2.87 10.25 13.12
13 Coacal 2.875 10.25 13.125 24 Texcoco 2.37 11.26 13.63
14 Coacal 2.875 10.25 13.125 25 Texcoco 2.37 11.26 13.63

The table above is a sample of the schedule obtained by optimization of the model. For 
example, vehicle 1 goes to Reyes at 3.37 hours, returns back to the depot at 12.63 hours, and then 
is available to go to Vallejo. In this schedule the first 14 vehicles are single-size while the next 11 
are double capacity vehicles. Thus we use 25 of 50 vehicles available and obtain savings in total 
transportation cost without loosing the level of service.

The solution presented in the Table was obtained by CPLEX 12.2 after running 3600 
seconds CPU time and with gap 68% reported. To improve the estimation of the gap, Lagrangian 
dual bound (Guignard (2003))  was calculated relaxing constraints (3). The corresponding dual 
problem was solved by the subgradient technique. If after 5 consecutive iterations of the sub-
gradient technique the dual bound was not improved, the half of the step size scaling parameter  
was used. The process stops if the step size scaling parameter is less than 0.0001, or if the max-
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imum number (300) of iterations is reached. Relaxing constraints (3) a gap 32% was obtained for 
the same feasible solution after 429 seconds CPU time.  

4. Conclusions
The principal difference of the model (1)-(8) from classical vehicle routing 

formulations (see, e.g., Toth (2002)) is in the assumption that the transportation network has a 
star-case topology where only direct routes from the central depot to the clients are allowed. 
Another difference from the classical case is that each client can be visited multiple times (maybe 
by the same vehicle) to satisfy its demand. Our computational experience shows that for mid-
sized problems a good suboptimal solution can be found in a reasonable time by commercial 
software. Meanwhile, for larger problems, and especially, for sensitivity analysis we need faster 
techniques taking into account specifics of the problem. Note, that in the problem of distribution 
of goods the number of clients is relatively small, but the time windows are thin and hard. On the 
contrary, the gasoline company problem has a great number of clients, and large and smooth time 
windows. We believe that developing fast and/or approximate methods using the specifics of real 
problems is an interesting area for future research.
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