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Abstract

The Fermat-Weber Location Problem, also known as the continuous p-
median problem, is considered here. A particular case of Fermat-Weber
problem corresponds to the minimum sum-of-distances clustering problem.
The mathematical modeling of this problem leads to a min − sum −min
formulation which, in addition to its intrinsic bi-level nature, is strongly
nondifferentiable. In order to overcome these difficulties, the so called Hy-
perbolic Smoothing methodology, which follows a smoothing strategy using
a special C∞ differentiable class function, is adopted. The final solution is
obtained by solving a sequence of low dimension differentiable unconstrained
optimization subproblems which gradually approach the original problem.
For the purpose of illustrating both the reliability and the efficiency of the
method, a set of computational experiments was performed, making use of
traditional test problems described in the literature.

Keywords: Fermat-Weber Problem, Min-Sum-Distances Clus-
tering Problem, Nondifferentiable Programming
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1 Introduction

The Fermat-Weber problem, or the location-allocation problem, has dif-
ferent names, as discussed by Wesolowski (1993). It is both a nondifferen-
tiable and a nonconvex mathematical problem, with a large number of local
minimizers, as presented by Rubinov (2006). So, it is a global optimization
problem.

The core focus of this paper is the smoothing of the
min−sum−min problem engendered by the modeling of the Fermat-Weber
problem. The process whereby this is achieved is an extension of a smoothing
scheme, called Hyperbolic Smoothing, applied in Santos (1997) for nondif-
ferentiable problems in general, used in Chaves (1997) for the min −max
problem and, more recently, adopted in Xavier and Oliveira (2004) for the
covering of plane domains by circles. This technique was developed through
an adaptation of the hyperbolic penalty method originally introduced by
Xavier (1982).

By smoothing we mean the substitution of an intrinsically nondifferen-
tiable two-level problem by a C∞ differentiable single-level alternative.
This is achieved through the solution of a sequence of differentiable sub-
problems which gradually approaches the original problem. In the present
application, each subproblem, by using the Implicit Function Theorem, can
be transformed into a low dimension unconstrained one. Due to the fact
that the function has an infinite number of derivatives, it can be comfortably
solved by using the most powerful and efficient algorithms, such as conjugate
gradient, quasi-Newton or Newton methods.

Although this paper considers the particular Fermat-Weber problem, it
must be emphasized that the proposed methodology, Hyperbolic Smoothing,
can be used in exactly the same way for solving different min−sum−min
problems, e.g. clustering problems. The min − sum location problems
originated in the 17th century, when Fermat posed the question of, given
three points in a plane, find a median point in the plane such that the sum of
the distances from each of the points to the median point is minimized. Alfred
Weber, a century ago, presented the same problem for a general number of
points, also adding weights on each point to consider customer demand. The
Weber problem locates facilities (medians) at continuous locations in the
Euclidian plane, as presented by Koopmans and Beckmann (1957).
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The remainder of this work is organized in the following way. A step-
by-step definition of the Fermat-Weber problem, followed by the original
hyperbolic smoothing approach and the derived algorithm are presented in
the next section. Computational results are presented in section 3. Brief
conclusions are drawn in section 4.

2 The Fermat-Weber Problem Formulation

Let S = {s1, . . . , sm} denote a set of m cities or locations in an
Euclidean planar space R2, with a corresponding set of demands W =
{w1, . . . , wm}, to be attended by q, a given number of facilities. To for-
mulate the Fermat-Weber problem as a min − sum − min problem, we
proceed as follows. Let xi, i = 1, . . . , q be the locations of facilities or cen-
troids, xi ∈ R2. The set of these centroid coordinates will be represented
by X ∈ R2q. Given a point sj ∈ S, we initially calculate the Euclidian
distance from sj to the nearest centroid:

zj = min
i=1,...,q

‖sj − xi‖2. (1)

The Fermat-Weber problem consists in the location of q facilities in
order to minimize the total transportation cost:

minimize
m∑
j=1

wj zj (2)

subject to zj = min
i=1,...,q

‖sj − xi‖2, j = 1, . . . ,m.

In order to obtain a completely differentiable formulation we perform a
series of transformations. First let us perform a relaxation of the equality
constraints:

minimize

m∑
j=1

wj zj (3)

subject to zj − ‖sj − xi‖2 ≤ 0, j = 1, . . . ,m, i = 1, . . . , q.
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Since zj variables are not bounded from below, in the intrinsic mini-
mization procedure, zj → 0+ , j = 1, . . . ,m. In order to obtain the desired
equivalence, we must, therefore, modify problem (3). We do so by first let-
ting ϕ(y) denote max{0, y} and then observing that, from the set of
inequalities in (3), it follows that

q∑
i=1

ϕ(zj − ‖sj − xi‖2 ) = 0, j = 1, . . . ,m. (4)

Using (4) in place of the set of inequality constraints in (3), we would
obtain an equivalent problem maintaining the undesirable property that
zj, j = 1, . . . ,m ; which still has no lower bound. Considering, however,
that the objective function of problem (3) will force each zj, j = 1, . . . ,m,
downward, we can think of bounding the latter variables from below by in-
cluding a perturbation ε in (4). So, the following modified problem is
obtained:

minimize
m∑
j=1

wj zj (5)

subject to

q∑
i=1

ϕ(zj − ‖sj − xi‖2 ) ≥ ε , j = 1, . . . ,m

for ε > 0. Since the feasible set of problem (2) is the limit of that of (5) when
ε→ 0+, we can then consider solving (2) by solving a sequence of problems
like (5) for a sequence of decreasing values for ε that approaches zero.

Analyzing problem (5), the definition of function ϕ endows it with an
extremely rigid nondifferentiable structure, which makes its computational
solution very hard. In view of this, the numerical method we adopt for
solving problem (1), takes a smoothing approach. From this perspective, let

us define the function: φ(y, τ) =
(
y +

√
y2 + τ 2

)
/2, for y ∈ R and
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τ > 0. By using function φ in the place of function ϕ, the problem

minimize

m∑
j=1

wj zj (6)

subject to

q∑
i=1

φ(zj − ‖sj − xi‖2, τ) ≥ ε, j = 1, . . . ,m.

is produced.

Now, the Euclidean distance ‖sj − xi‖2 is the single nondifferentible
component on problem (6). So, to obtain a completely differentiable problem,
it is still necessary to smooth it. For this purpose, let us define the function

θ( sj , xi , γ ) =
√∑n

l=1 (slj − xli)2 + γ2 for γ > 0. By using function θ

in place of the distance ‖sj − xi‖2, the following completely differentiable
problem is now obtained:

minimize
m∑
j=1

wj zj (7)

subject to

q∑
i=1

φ(zj − θ(sj, xi, γ), τ) ≥ ε, j = 1, . . . ,m.

So, the properties of functions φ and θ allow us to seek a solution to
problem (5) by solving a sequence of subproblems like problem (7), produced
by the decreasing of the parameters γ → 0, τ → 0, and ε→ 0.

First, the objective function minimization process of problem (7) will
work for reducing the values zj ≥ 0, j = 1, . . . ,m, to the utmost. On the
other hand, given any set of centroids xi, i = 1, . . . , q, each constraint is a
monotonically increasing function in zj. So, these constraints will certainly
be active and problem (7) will finally be equivalent to the following problem:

minimize
m∑
j=1

wj zj (8)

subject to hj(zj, x) =

q∑
i=1

φ(zj − θ(sj, xi, γ), τ) − ε = 0, j = 1, . . . ,m.
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The dimension of the variable domain space of problem (8) is (2q+m).
As, in general, the value of the parameter m, i.e., the cardinality of the set
S of observations sj, is large, problem (8) has a large number of variables.
However, it has a separable structure, because each variable zj appears only
in one equality constraint. Therefore, as the partial derivative of h(zj, x)
with respect to zj, j = 1, . . . ,m is not equal to zero, it is possible to use the
Implicit Function Theorem to calculate each component zj, j = 1, . . . ,m
as a function of the centroid variables xi, i = 1, . . . , q. In this way, the
unconstrained problem

minimize f(x) =
m∑
j=1

wj zj(x) (9)

is obtained, where each zj(x) results from the calculation of the single zero
of each equation below, since each term φ above strictly increases together
with variable zj.

hj(zj, x) =

q∑
i=1

φ(zj − θ(sj, xi, γ), τ) − ε = 0, j = 1, . . . ,m. (10)

Again, due to the Implicit Function Theorem, the functions zj(x) have
all derivatives with respect to the variables xi, i = 1, . . . , q, and therefore it
is possible to calculate the gradient of the objective function of problem (9),

∇ f(x) =
m∑
j=1

wj∇zj(x) (11)

where

∇zj(x) = − ∇hj(zj, x) /
∂ hj(zj, x)

∂ zj
. (12)

In this way, it is easy to solve problem (9) by making use of any method
based on first order derivative information. Finally, it must be emphasized
that problem (9) is defined on a (2q)−dimensional space, so it is a small
problem, since the number of facilities, q, is, in general, very small for real
applications.
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The solution of the original location problem can be obtained by using an
algorithm which solves an infinite sequence of optimization problems, where
the parameters ε, τ and γ are gradually reduced to zero, just as in other
smoothing methods.

Simplified HSFW Algorithm

Initialization Step: Choose initial values: x0, γ1 , τ 1 , ε1.

Choose values 0 < ρ1 < 1, 0 < ρ2 < 1, 0 < ρ3 < 1; let k = 1.

Main Step: Repeat until a stopping rule is attained

Solve problem (9) with γ = γk, τ = τ k and ε = εk, starting at the
initial point xk−1 and let xk be the solution obtained.

Let γk+1 = ρ1 γ
k , τ k+1 = ρ2 τ

k , εk+1 = ρ3 ε
k , k := k + 1.

Notice that when the algorithm causes τ and γ to approach 0,
the constraints of the subproblems, as given in (7), tend to those of (5). In
addition, the algorithm causes ε to approach 0, so, in a simultaneous
movement, solving problem (5) gradually approaches the original location
problem (2).

3 Computational Results

The computational results presented below were obtained from a pre-
liminary implementation of the HSFW algorithm. Numerical experiments
have been carried out on a PC Intel Celeron with 2.7GHz CPU and 512MB
RAM; programs were coded using Compac Visual FORTRAN, Version 6.1.
The unconstrained minimization tasks were carried out by means of a Quasi-
Newton algorithm employing the BFGS updating formula from the Harwell
Library, available in: (http://www.cse.scitech.ac.uk/nag/hsl/).

In order to show the performance of the proposed algorithm, results ob-
tained by solving five standard test problems from the literature are pre-
sented:

1 - The 287 customer ambulances problem from Bongartz et al. (1994);
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q foptimal fHSFWBest
EBest Occur. EMean TimeMean

2 14427,59 14427,60 0,00 88 0.05 0.12
3 12095,44 12095,50 0,00 100 0.00 0.17
4 10661,48 10661,60 0,00 27 3.39 0.20
5 9715,63 9733,54 0,18 48 3.42 0.25
6 8787,56 8787,70 0,00 7 5.09 0.32
7 8160,32 8160,44 0,00 6 4.40 0.39
8 7564,29 7564,41 0,00 1 5.32 0.46
9 7088,13 7088,26 0,00 11 4.31 0.54
10 6705,04 6705,16 0,00 2 2.66 0.63
11 6351,59 6361,53 0,16 10 2.02 0.79
12 6033,05 6041,18 0,13 1 1.31 0.96
13 5725,19 5744,88 0,34 4 1.44 1.07
14 5469,65 5481,66 0,22 3 1.21 1.18
15 5224,70 5230,96 0,12 2 1.36 1.32
16 4981,96 4989,91 0,16 4 1.55 1.51
17 4755,19 4761,50 0,13 2 2.03 1.83
18 4547,37 4554,41 0,15 2 2.05 2.02
19 4342,06 4361,22 0,44 2 2.33 2.19
20 4148,84 4155,76 0,17 2 2.47 2.36
25 3348,71 3350,69 0,06 1 3.00 3.60
30 2716,91 2720,66 0,14 1 4.51 5.55
35 2238,18 2246,82 0,39 1 4.77 7.94
40 1900,84 1914,50 0,72 1 3.80 9.94
45 1630,31 1654,84 1,50 1 3.38 13.70
50 1402,58 1448,67 3,29 1 4.45 19.04

Table 1: Results for the bon287 Instance

2 - P654, U1060, D15112 and Pla85900, which uses points in the plane
from the TSPLIB collection of challenge problems of Reinelt (1991), where
the demands assume unitary values, wj = 1 , j = 1, . . . ,m.

The last four data sets are available in the site:
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

Tables 1–3 contain: the number of facilities q; the optimal solution value
foptimal, or the putative global solution value fputative, i.e., the best known
solution for the instance, taken in Plastino et al. (2012) or in Brimberg et al.
(2000); the best objective function value produced by the HSFW algorithm
fHSFWBest

by using one hundred random starting points; the perceptual
deviation value of the best HSFW value related to the optimal or putative
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q fputative fHSFWBest
EBest Occur. EMean TimeMean

2 815313.0 815313.0 0.00 100 0.00 0.07
3 551063.0 551063.0 0.00 64 0.07 0.13
4 288191.0 288191.0 0.00 81 14.12 0.20
5 209069.0 209069.0 0.00 71 12.40 0.27
6 180488.0 180488.0 0.00 29 5.73 0.39
7 163704.0 163704.0 0.00 13 5.64 0.55
8 147051.0 147051.0 0.00 11 4.83 0.73
9 130936.0 130936.0 0.00 11 5.91 0.89
10 115339.0 115339.0 0.00 20 7.61 1.13
11 100133.0 100133.0 0.00 14 13.87 1.37
12 94152.05 94152.1 0.00 12 11.03 1.58
13 89454.76 89454.8 0.00 6 8.82 1.96
14 84807.69 84807.7 0.00 3 7.56 2.26
15 80177.04 80198.0 0.03 9 7.41 2.65
20 63389.02 63640.9 0.40 3 9.04 5.97

Table 2: Results for the P654 Instance

global value EBest; the number of occurrences of the best solution Occur.;
the perceptual deviation value EMean of the 100 solutions related to the
best HSFW value and the mean CPU time given in seconds TimeMean.
Tables 4–5 do not contain any value associated to the putative global or best
solution value because it was impossible to find any previous solution for
these instances.

First, the results presented in Tables 1-5 show a consistent performance of
the HSFW Algorithm, since columns EMean present small values. Columns
Occur. present expressive values, particularly for small number of facilities
when the number of local minima points is smaller, indicates again a a con-
sistent performance of the algorithm. Columns TimeMean illustrate the
efficiency of the proposed algorithm. The comparison with results obtained
by other algorithms, presented in first three tables, by column EBest, show
the robustness of the proposed methodology. It was impossible to find any
previous record of solutions for the last two instances.
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q fputative fHSFWBest
EBest Occur. EMean TimeMean

5 1851880 1852610 0.04 98 0.01 1.35
10 1249565 1250450 0.07 44 0.21 3.01
15 980132 980617 0.05 9 1.11 6.23
20 828802 829249 0.05 1 1.55 11.39
25 722061 721850 -0.03 4 2.09 18.12
30 638263 638686 0.07 1 2.60 26.89
35 577527 579280 0.30 1 2.89 37.58
40 529866 531706 0.35 1 2.91 52.40
45 489650 492658 0.61 1 2.57 78.72
50 453164 458641 1.21 1 2.47 83.41
55 422770 428909 1.45 1 2.68 104.34
60 397784 405151 1.85 1 2.57 124.67
65 376760 381491 1.26 1 2.60 150.06
70 357385 361719 1.21 1 2.97 176.02
75 340242 346522 1.85 1 2.74 208.66
80 326053 333114 2.17 1 2.61 250.60
85 313738 318698 1.58 1 3.07 279.82
90 302837 310766 2.62 1 2.43 324.98
95 292875 297720 1.65 1 3.16 386.20
100 283113 287294 1.48 1 2.70 423.36

Table 3: Results for the U1060 Instance

4 Conclusions

In this paper, a new method for the solution of the Fermat-Weber prob-
lem is proposed. Computational experimental results presented in this paper
were obtained by using a particular and simple set of criteria for all spec-
ifications. However, the HSFW algorithm is a general framework that can
support different implementations.

The most relevant computational task associated with the HSFW algo-
rithm consists on the determination of the zeros of m equations (10), one
equation for each observation point, for the calculation of each objective func-
tion value of problem (9). However, since these calculations are completely
independent, they can be easily parallelized.

Finally, it must be noticed that the Fermat-Weber problem is a global op-
timization problem with several local minima, so that the proposed algorithm
can only produce local minima.
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q fHSFWBest
Occur. EMean TimeMean

2 0.688513D8 100 0.00 2.02
3 0.549316D8 100 0.00 4.23
4 0.459830D8 73 1.51 6.12
5 0.401359D8 96 0.31 8.79
6 0.366573D8 64 0.80 11.72
7 0.339779D8 70 0.75 15.83
8 0.317781D8 74 0.73 20.79
9 0.300421D8 32 0.69 24.83
10 0.285082D8 48 0.82 31.40

Table 4: Results for the D15112 Instance

q fHSFWBest
Occur. EMean TimeMean

2 0.746571D10 100 0.00 19.81
3 0.542509D10 100 0.00 37.80
4 0.435943D10 99 0.00 57.66
5 0.375564D10 99 0.00 86.54
6 0.333836D10 99 0.00 124.19
7 0.305697D10 99 0.00 166.04
8 0.286268D10 99 0.00 227.56
9 0.270703D10 98 0.00 274.68
10 0.258860D10 97 0.00 367.22

Table 5: Results for the Pla85900 Instance
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