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ABSTRACT	

We	present	 a	 problem	 on	 risk	 pooling	 and	 cost	 allocation	 in	 inventory	 of	 spare	
parts	 motivated	 in	 the	 oil	 and	 gas	 sector.	 Spare	 parts	 are	 held	 to	 facilitate	 operational	
conditions.	Multiple	inventory	plants	control	their	stock	per	separate.	In	practice,	however,	
they	supply	each	other	when	needed.	Risk	pooling	 is	a	source	of	savings	 in	 this	situation.	
Under	a	centralized	 inventory	solution,	 the	plants	should	agree	on	how	to	share	costs	 for	
taking	advantage	of	the	benefits	of	pooling.	We	report	computations	where	the	centralized	
inventory	achieves	significant	savings	over	the	decentralized	solution,	considering	ordering	
and	 holding	 costs	 subject	 to	 a	 service	 level	 constraint.	 We	 then	 test	 five	 cost	 allocation	
methods	 and	 analyse	 their	 outcomes,	 using	 game	 theory	 principles.	 We	 show	 examples	
where	a	method	results	 in	 stable	allocations	when	 the	plants	use	 the	same	 target	 service	
levels,	but	not	when	at	least	one	plant	use	a	different	target.	
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1.	Introduction	
Risk	pooling	has	been	 traditionally	used	as	a	 form	of	protecting	against	demand	

variability	 in	 inventory	management.	The	principle	 is	 that	 by	 aggregating	demand	across	
different	 locations,	 high	demand	 from	one	 customer	 is	 likely	 to	be	offset	 by	 low	demand	
from	another.	 This	 reduction	 in	 variability	 allows	 a	 decrease	 in	 safety	 stock	 and	 average	
inventory.	While	 risk	 pooling	may	 result	 in	 lower	 total	 inventory	 costs	 comparing	 to	 the	
case	 when	 the	 locations	 act	 per	 separate,	 it	 is	 not	 straightforward	 to	 answer	 how	 the	
participants	in	the	pool	should	share	costs	in	order	to	achieve	these	savings.	The	difficulty	
arises,	 for	example,	because	the	 locations	can	be	exposed	to	different	demand	behaviours	
and,	therefore,	some	of	them	may	in	practice	perceive	more	benefits	from	the	risk	pooling	
situation	than	others.		

The	 cost	 allocation	 problem	 in	 multi‐location	 inventory	 systems	 has	 received	
attention	during	quite	a	few	years	(e.g.	Gerchak	and	Gupta,	1991;	Robinson,	1993;	Hartman	
and	 Dror,	 1996,	 2000).	 However,	 in	 the	 specific	 context	 of	 spare	 parts	 inventories,	 the	
research	in	cost	allocation	is	more	sparse.	The	first	related	work	was	published	by	Wong	et	
al.	 (2007),	who	use	game	 theory	principles	 to	analyse	cost	allocation	rules	 in	spare	parts	
inventories.	Kilpi	et	al.	(2009)	discuss	cooperative	strategies	for	risk	pooling	of	spare	parts	
for	 aircrafts.	More	 recently,	 Kartsen	 et	 al.	 (2009,	 2011a,	 2011b)	 and	Karsten	 and	Basten	
(2012)	have	studied	a	series	of	related	problems.		

Spare	 parts	 are	 relevant	 to	 facilitate	 operational	 conditions	 in	 contexts	 where	
equipments	 are	 subject	 to	 maintenance	 and	 failure.	 The	 consumption	 of	 spare	 parts	 is	
triggered	 by	 events	 subject	 to	 variability	 and,	 therefore,	 holding	 inventory	 to	 fulfil	 the	
demand	requirements	may	be	crucial.	A	low	stock	of	spare	parts	could	imply	stockout	and,	
in	 consequence,	 production	 downtime	 until	 the	 part	 is	 repaired	 or	 replenished.	 On	 the	
other	hand,	a	high	stock	of	 spare	parts	could	 imply	an	 important	binding	cost.	There	 is	a	
huge	body	of	literature	dealing	with	spare	parts,	as	reviewed	by	Kennedy	et	al.	(2002).	An	
important	part	of	this	 literature	has	been	motivated	in	air	 force	and	aircraft	contexts	(e.g.	
Muckstadt,	 2005;	 Sherbrooke,	 2004).	 Applications	 in	 other	 contexts	 include	 the	 service	
support	of	 IBM	 in	 the	US	 (Cohen	et	 al.	1990),	 a	 chemical	plant	 in	Belgium	(Vereecke	and	
Verstraeten,	1994),	 a	white	goods	manufacturer	 in	 Italy	 (Kalchschmidt	et	 al.	2003)	 and	a	
distributor	of	castors	and	wheels	in	Greece	(Nenes	et	al.	2010).	Our	research	is	motivated	in	
the	 oil	 and	 gas	 sector,	 where	 we	 have	 found	 only	 one	 recent	 article	 on	 spare	 parts	
inventories,	published	by	Porras	 and	Dekker	 (2008).	Characterized	by	high	 service	 levels	
(because	of	safety	and	production	factors),	customized	equipment	specifications	with	long	
lead	 times,	and	 facility	networks	spread	onshore	and	offshore,	we	believe	 the	problem	of	
inventory	management	of	spare	parts	 in	 this	 industry	deserves	special	attention	 from	the	
research	community.	

Together	with	the	interest	on	inventories	of	spare	parts,	there	is	an	extensive	body	
of	literature	dealing	with	lateral	transshipment	and	risk	pooling,	as	reviewed	by	Paterson	et	
al.	(2011).		

Although	 the	so	stated	relevance	of	 spare	parts	 inventories	and	risk	pooling,	 the	
literature	 lacks	 of	 evidence	 on	 how	 risk	 pooling	 in	 spare	 part	 inventories	 should	 be	
implemented	and	how	the	cost	should	be	shared	among	 the	different	players,	 in	order	 to	
take	advantage	of	the	benefits	of	pooling.	In	this	article,	we	describe	a	real‐world	situation	
where	 risk	 pooling	 may	 represent	 an	 important	 source	 of	 savings	 and	 we	 discuss	 the	
suitability	of	five	cost	allocation	methods.	We	report	numerical	examples	where	these	cost	
allocations	methods	can	provide	stable	allocations	in	situations	where	the	different	players	
use	 the	 same	 target	 service	 levels.	 The	 same	 methods	 in	 the	 same	 numerical	 examples,	
however,	may	fail	on	that	purpose	when	at	least	one	of	the	players	has	a	target	service	level	
different	than	the	other	players.	
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2.	Background	
	 Our	 motivation	 comes	 from	 a	 real‐world	 problem	 faced	 at	 an	 energy	 company	
producer	of	oil	and	gas.	Headquartered	in	Norway	and	with	presence	in	42	countries,	this	
company	 is	 one	 of	 the	 world's	 largest	 net	 sellers	 of	 crude	 oil	 and	 the	 second	 largest	
exporter	of	 gas	 to	Europe.	 It	 acts	as	operator	of	 several	offshore	platforms	with	different	
ownership	structure	and	it	holds	inventory	of	about	200,000	spare	part	items	in	a	number	
of	 locations	 spread	 in	 the	 Scandinavian	 region.	 Some	 of	 these	 parts	 are	 highly	 critical	 to	
assure	safety	and	production.	At	the	same	time,	the	store	of	spare	parts	means	an	important	
binding	 cost.	 The	 company	 has	 operational	 responsibility	 for	 seven	 warehouses	 located	
along	 the	 Norwegian	 coast,	 which	 serve	 offshore	 installations.	 Within	 this	 structure	 of	
warehouses,	 there	 are	 24	 inventory	 plants.	 The	majority	 of	 these	plants	 is	 owned	by	 the	
company	under	study,	but	 there	 is	also	a	set	of	other	companies	owning	a	share	of	 them.	
Each	 of	 the	 24	 plants	 holds	 its	 own	 inventory	 of	 spare	 parts	 and	 they	 are	managed	 per	
separate.	Each	of	 the	plants	determines	 its	own	 inventory	 control	parameters	 separately,	
and	is	linked	to	one	productive	location	(and	vice‐versa).	When	a	spare	part	is	required,	it	is	
provided	 from	 the	 corresponding	 plant.	 However,	 when	 a	 productive	 location	 requires	
certain	 spare	 part	 in	 such	 amount	 that	 it	 is	 not	 available	 at	 the	 corresponding	 plant,	 the	
requirement	can	be	fulfiled	(if	agreed)	from	other	plant	that	has	availability	on	stock.	This	is	
especially	realized	when	the	required	part	 is	highly	critical.	This	 type	of	 fulfilment	occurs	
based	on	an	 informal	agreement	between	 inventory	plants,	but	 it	 is	not	considered	when	
deciding	the	control	parameters.	 It	 is,	 therefore,	relevant	to	study	the	potential	of	savings	
that	a	risk	pooling	approach	would	generate	if	there	would	be	a	centralized	decision	on	the	
inventory	 control	 parameters	 instead	 of	 the	 separate	 planning	 that	 the	 plants	 carry	 out	
today.	
	 The	 importance	of	 lateral	resupply	and	pooling	 is	 illustrated	 in	Muckstadt	(2005),	
who	gives	examples	of	systems	in	which	pooling	exists	that	require	roughly	a	third	of	the	
safety	 stock	 required	 when	 operating	 a	 completely	 decentralized	 system.	 A	 recent	
application	 by	Kranenburg	 and	 van	Houtum	 (2009)	 reports	 that	 under	 full	 pooling	more	
than	50%	of	 the	no	pooling	cost	can	be	saved	 in	 in	 the	case	of	ASML,	a	Dutch	equipment	
manufacturer.	Before	 their	 implementation,	ASML	did	not	 take	 lateral	 transshipment	 into	
account	 in	 the	 planning	 phase,	 i.e.,	 the	 inventory	 in	 each	 local	 warehouse	 was	 planned	
separately.	 Nevertheless,	 in	 daily	 practice	 lateral	 transshipment	 was	 used,	 the	 same	
practice	as	realized	at	the	company	in	our	case.	A	similar	situation	is	presented	by	Kukreja	
and	Schmidt	(2005),	who	deal	with	a	large	utility	company	having	29	generating	plants.	The	
plants	do	not	consider	the	effect	of	being	supplied	from	each	other	when	deciding	their	own	
inventory	 control	 policies,	 but	 in	 practice	 they	 also	 collaborate.	 Experimentation	 by	 the	
authors	including	from	two	to	five	plants	show	that	pooling	lead	to	savings	between	31%	
and	 58.78%.	 Other	 works	 in	 lateral	 transshipments	 under	 emergency	 situations	 are	
reported	in	Archibald	(2007),	Wong	et	al.	(2006)	and	Alfredsson	and	Verrijdt	(1999).	
	 A	more	detailed	description	about	the	context	in	our	case	can	be	found	in	Guajardo	
et	al.	(2012).	Note	that,	while	risk	pooling	can	conduce	to	great	savings,	it	is	not	clear	how	
the	different	shareholders	at	the	plants	should	share	the	costs.	Exploring	this	problem	is	the	
main	purpose	of	 this	paper.	 In	 the	 following	 section,	we	will	 define	our	problem	settings	
and	a	procedure	to	find	the	optimal	policy.		
	
3.	Problem	setting	and	optimal	base‐stock	policy	
	 We	consider	a	single‐item	problem	under	continuous	review	(S‐1,	S)	or	base‐stock	
policy.	 In	this	policy,	every	demand	event	originates	an	order	for	an	amount	such	that	the	
base‐stock	 level	S	 is	 reached.	For	 this	 reason,	 it	 is	 also	 called	a	one‐for‐one	replenishment	
policy.	The	(S‐1,	S)	policy	is	commonly	assumed	in	inventory	of	spare	part	problems,	where	
the	items	are	usually	expensive	and	slow‐moving	(Muckstadt,	2005;	Sherbrooke,	2004).	We	
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assume	fixed	lead	time	and	demand	per	unit	of	time	following	a		Poisson	distribution.	This	
distribution	is	also	commonly	assumed	in	spare	parts	inventory	modelling.	
	 There	 are	 traditionally	 three	 type	 of	 costs	 involved	 in	 inventory	 problems:	 order	
cost,	holding	cost	and	downtime	cost.	The	order	cost	is	a	fixed	cost	per	order,	the	holding	
cost	 is	 a	 variable	 cost	 of	 carrying	 inventory	 and	 the	 downtime	 cost	 is	 the	 cost	 incurred	
when	a	demand	order	is	not	satisfied	because	of	a	stockout.	Finding	the	optimal	inventory	
control	parameter	S	 could	be	pursued	by	minimizing	 the	whole	cost	 function	considering	
these	 three	 cost	 elements.	 However,	 in	 practice,	 the	 downtime	 cost	 is	 usually	 hard	 to	
estimate.	A	popular	strategy	is	to	minimize	carrying	plus	ordering	costs,	subject	to	a	service	
level	 constraint.	 The	 service	 level	 criterion	 is	 generally	 easier	 to	 state	 and	 interpret	 by	
practitioners.	A	number	of	 references	point	out	 this	 fact,	 such	as	Chen	and	Krass	 (2001),	
Bashyam	and	Fu	(1998)	and	Cohen	et	al.	(1989).		
	 As	service	level	measure,	we	utilize	the	fill	rate,	defined	as	the	expected	fraction	of	
demand	 satisfied	 directly	 from	 stock	 on	 hand,	 which	 is	 usually	 utilized	 in	 spare	 parts	
inventory	problems.	Hence,	we	utilize	a	target	service	level	β	as	lower	bound	that	must	be	
satisfied	by	the	fill	rate	achieved	for	the	control	parameter	S.	We	refer	the	reader	to	Silver	
et	 al.	 (1998)	 for	 more	 background	 on	 inventory	 costs	 and	 service	 levels,	 and	 for	 the	
following	definitions	and	formulae.		
	 Let	 A	 be	 the	 cost	 for	 an	 order	 and	 λ	 the	 average	 demand	 per	 unit	 of	 time.	 We	
compute	the	expected	order	cost	as	Corder	=	A/λ.	
	 Let	r	be	the	carrying	charge,	v	the	unit	value	of	the	item	and	Ī	the	average	inventory	
on	hand.	We	 compute	 the	 expected	holding	 cost	 as	Chold	=	 Īvr.	We	 calculate	 Ī	 as	 	κ	+	1/2,	
where	κ	is	the	safety	stock	calculated	as	the	reorder	point	S‐1	minus	the	expected	demand	
during	the	 lead	time	λL.	Let	XL	be	the	demand	during	the	 lead	time.	Since	the	demand	per	
unit	 of	 time	 follows	 a	 Poisson	 distribution	 with	 mean	 λ,	 then	 XL	 follows	 a	 Poisson	
distribution	with	mean	λL=	λL,	where	L	is	the	lead	time.	
	 The	total	expected	cost	per	item	is	C	=	Corder	+	Chold	=	A/λ	+	Īvr	=	A/λ	+	(S‐	λL	‐	½)vr.	
	 For	a	given	base‐stock	level	S,	the	fill	rate	βS	in	our	setting	can	be	calculated	as	the	

probability	of	stockout		1	‐	P(XL	≤	S‐1).	Thus,	ߚௌ ൌ 1 െ ∑ ሺఒ௅ሻೖ௘షഊಽ

௞!௞ஸௌିଵ .		
	 The	optimization	problem	consists	of	finding	the	control	parameter	S	that	solves	the	
problem	below.	
	

	 Min	C(S)	
	 	 	 	 s.t.	
	 	 	 	 	 	 ௌߚ ൒ 	ߚ
	
	 Since	 the	 cost	 increases	 in	S	 (in	 fact,	note	 that	C	 can	be	written	as	C(S)	=	K	+	Svr,	
where	K	does	not	depend	on	S),	the	problem	reduces	to	find	the	minimum	S	such	that	the	
service	level	constraint	βS	≥	β	 is	fulfiled.	A	simple	and	usual	approach	to	find	such	optimal	
base‐stock	 level	 S	 is	 to	 evaluate	 the	 fill	 rate	 βS	 	 starting	 from	 S	 =	 1	 and	 consecutively	
increasing	S	by	one,	until	the	target	β	is	fulfiled.	Hence,	if	the	service	level	achieved	by	S	=	1	
is	 less	 than	β,	 then	S	=	2	 is	 tried	and	 so	on,	until	 the	 lowest	S	 satisfying	 the	 constraint	 is	
found.	For	computational	purposes,	an	upper	bound	on	S	could	be	predefined,	so	that	the	
evaluation	 procedure	 is	 assured	 to	 finish.	 However,	 in	 practice	 the	 procedure	will	 finish	
quickly,	because	in	spare	part	problems	usually	a	low	value	of	S	will	be	optimal.		
	
4.	Cost	allocation	
	 We	 consider	 a	 game	 consisting	 of	 a	 set	 N	 of	 all	 players	 (inventory	 plants),	 who	
decide	whether	to	plan	their	 inventory	separately	or	to	plan	their	 inventory	in	a	coalition	
with	 other	 players	 based	 on	 a	 risk	 pooling	 strategy.	 If	 a	 player	 stays	 alone,	 it	will	 set	 its	
base‐stock	level	S	and	run	its	inventory	independent	from	the	other	players.	If	players	act	in	
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a	coalition,	 they	will	 set	a	base‐stock	 level	S	under	 the	same	objective	 function	and	run	a	
single	 inventory	 serving	 their	 whole	 demand.	 This	 last	 case	 corresponds	 to	 a	 pure	
cooperative	 strategy	 which	 in	 operational	 terms	 translates	 into	 a	 centralized	 inventory	
system.	For	a	coalition	ܯ ⊆ ܰ,	we	refer	by	CM	to	the	optimal	expected	cost	if	all	players	in	
coalition	M	 would	 implement	 risk	 pooling.	N	 is	 the	 grand	 coalition	 and	 CN	 is	 its	 optimal	
expected	cost,	as	if	there	would	be	a	centralized	inventory	plant	planning	the	inventory	to	
satisfy	demand	 from	all	 the	players.	For	a	given	cost	allocation	rule,	we	refer	by	uj	 to	 the	
cost	allocated	to	player	j.		
	
4.1	The	core	of	the	game	
	 A	cost	allocation	vector	u=(u1,	u2,	...,	un)	is	said	to	be	in	the	core	of	the	game	(Gillies,	
1959)	if	it	satisfies	constraints	(1)‐(3)	below.	
	

௝ݑ ൑ ݆∀															ሼ௝ሽܥ ∈ ܰ	 	 	 	 (1)	
	

∑ ௝௝∈ெݑ ൑ ܯ∀													ெܥ ⊂ ܰ	 	 	 (2)	
	

∑ ௝௝∈ேݑ ൌ 														ேܥ 	 	 															(3)	
	
	 Constraint	(1)	corresponds	to	the	 individually	rational	condition,	which	states	that	
the	cost	allocated	to	each	player	j	must	not	be	greater	than	its	stand‐alone	cost.	Constraint	
(2)	corresponds	to	a	stability	condition,	which	states	that	there	is	no	subset	of	players	such	
that	if	they	would	form	a	coalition	separate	from	the	rest	they	would	perceive	less	cost	than	
the	allocation	u.	Constraint	(3)	corresponds	to	the	efficiency	condition,	which	states	that	the	
sum	of	the	costs	allocated	to	all	the	players	equals	the	optimal	cost	of	the	grand	coalition,	
and	thus	it	takes	full	advantage	of	risk	pooling.	The	core	of	the	game	is	the	set	of	all	vectors	
u	satisfying	constraints	(1)‐(3).	In	other	words,	a	cost	allocation	vector	in	the	core	assures	
that	 the	 savings	 of	 risk	 pooling	 are	 achieved	 and	makes	 all	 players	 to	 stay	 in	 the	 grand	
coalition,	without	incentives	for	a	player	to	stay	alone	or	within	a	smaller	coalition.	
	
4.2	Allocation	methods	

We	will	use	the	five	cost	allocation	methods	described	below.	
 Cost	allocation	method	1:	Egalitarian	

This	method	simply	assigns	equal	cost	shares	to	all	the	players,	as	follows:	
	

௝ݑ ൌ
ேܥ
|ܰ|

																∀݆ ∈ ܰ	

	
 Cost	allocation	method	2:	Proportional	to	demand	(or	αDemand)	

For	a	player	j,	whose	demand	rate	is	λj,	this	method	assigns	a	cost	share	proportional	to	the	
weight	that	this	demand	rate	represents	over	the	total	demand	rate	of	the	pool.	
	

௝ݑ ൌ ቆ
௝ߣ

∑ ௜௜∈ேߣ
ቇ ∙ ݆∀												ேܥ ∈ ܰ	

	
 Cost	allocation	method	3:	Altruistic	

For	a	player	j,	whose	stand‐alone	cost	is	C{j},	this	method	assigns	a	cost	share	proportional	
to	the	cost	that	C{j}	represents	over	the	total	cost	of	the	players	if	they	all	would	act	alone.	
	

௝ݑ ൌ ቆ
ሼ௝ሽܥ

∑ ሼ௜ሽ௜∈ேܥ
ቇ ∙ ݆∀														ேܥ ∈ ܰ	
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 Cost	allocation	method	4:	Shapley	value	
Shapley	(1953)	introduced	an	allocation	based	on	the	marginal	costs	in	entering	coalitions.	
The	marginal	cost	of	player	j	entering	coalition	M	is	ܥெ െ 	allocation	cost	Shapley	The	ெ\ሼ௝ሽ.ܥ
method	 assigns	 player	 j	 the	 average	 of	 the	 marginal	 costs	 he	 implies	 when	 entering	 all	
coalitions	he	can	enter.	The	method	considers	all	sizes	of	a	coalition	equally	likely,	thus	the	
size	|M|	is	assigned	a	probability	1/|N|.	Consider	player	 j	and	the	|N|‐1	remaining	players.	

For	a	given	size	|M|,	there	are	ቀ|ே|ିଵ|ெ|ିଵቁ	ways	of	choosing	|M|‐1	players	in	coalition	M	from	the	

|N|‐1	 remaining	players.	Therefore,	 the	probability	 of	 a	 particular	 coalition	M	 is	
ଵ

|ே|ቀ|ಿ|షభ|ಾ|షభቁ
.	

Regrouping	terms	and	considering	all	possible	subsets	of	N,	this	method	allocates	the	costs	
as	follows:		
	

௝ݑ ൌ ෍ ቆ
ሺ|ܰ| െ !ሻ|ܯ| ሺ|ܯ| െ 1ሻ!

|ܰ|!
ቇ ∙ ൫ܥெ െ ெ\ሼ௝ሽ൯ܥ

ெ⊆ே:௝∈ெ

																∀݆ ∈ ܰ	

	
 Cost	allocation	method	5:	Equal	Profit	Method	(EPM)	

EPM	looks	for	a	stable	allocation	such	that	the	relative	savings	are	as	similar	as	possible	for	
all	participants.	Such	allocation	u	is	solution	of	the	following	linear	programming	model:		
	

min ݂	
s.t.	 	 	 	 	

݂	 ൒
௜ݑ
ሼ௜ሽܥ

െ
௝ݑ
ሼ௝ሽܥ

												∀݅, ݆ ∈ ܰ	

	

෍ ௝ݑ
௝∈ெ

൑ ܯ∀													ெܥ ⊂ ܰ	

	

෍ݑ௝
௝∈ே

ൌ 										ேܥ

	
௝ݑ ൒ 0		∀݆ ∈ ܰ; ݂ ∈ Թ.	

	
	 The	egalitarian	method	is	referred	by	Tijs	and	Driessen	(1986)	as	the	simplest	cost	
allocation	method.	The	αDemand	and	the	Shapley	methods	correspond	to	what	Wong	et	al.	
(2007)	 refer	 to	 as	cost	allocation	policies	3	 and	4,	 respectively.	The	 altruistic	method	has	
been	used	by	Audy	et	al.	(2012)	in	a	forestry	problem.	The	EPM,	recently	proposed	by	Frisk	
et	al.	 (2010),	has	been	used	 in	collaborative	 forest	 transportation	and	always	results	 in	a	
stable	allocation,	if	the	core	is	not	empty.	In	addition	to	these	methods,	of	course,	a	number	
of	other	methods	have	been	proposed	in	the	literature	(see,	for	instance,	Tijs	and	Driessen	
(1986)	who	present	a	survey	of	cost	allocation	methods	and	game	theory,	and	propose	their	
own	method	too).	Wong	et	al.	(2007)	used	four	methods	in	computational	experiments,	but	
in	 their	 problem	 they	 consider	 a	 downtime	 cost,	 while	 we	 explicitly	 use	 a	 service	 level	
constraint	 instead.	 Other	 difference	 in	 our	 setting	 is	 that	 we	 do	 not	 consider	 lateral	
transshipment	costs	 that	 they	do.	 In	our	oil	and	gas	context,	all	 the	plants	we	are	dealing	
with	lie	relatively	close	to	each	other.	Moreover,	some	of	the	inventory	plants	are	physically	
located	 within	 the	 same	 warehouse.	 Also,	 the	 most	 extreme	 emergency	 cases	 are	 those	
when	 a	main	 part	 in	 a	 platform	off‐shore	 need	 to	 be	 replaced	 and	 its	 corresponding	 on‐
shore	plant	does	not	have	the	part	on	stock.	If	the	part	is	available	from	other	plant,	the	part	
does	not	need	to	be	sent	from	one	to	another	on‐shore	plant	before	being	sent	off‐shore,	but	
it	is	just	sent	straight	from	the	on‐shore	pant	supplying	it	to	the	off‐shore	location.		
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5.	Numerical	examples	
	 Next,	we	 illustrate	 the	allocations	generated	by	 the	 five	methods	using	 real‐world	
data	of	three	items	in	three	plants.	The	data	has	been	taken	from	the	company	in	the	oil	and	
gas	 industry	that	we	introduced	in	the	background	section.	We	use	the	historical	demand	
data	 to	 estimate	 the	demand	distribution	parameters	 in	 each	plant.	When	 computing	 the	
parameters	 for	 a	 coalition	 of	 plants,	 we	 aggregate	 the	 historical	 demand	 data	 of	 the	
corresponding	plants.	
	
5.1.	Equal	target	service	levels	
	 We	first	compute	results	for	the	case	when,	 for	a	same	item,	the	three	plants	have	
the	 same	 target	 service	 levels.	 The	 targets	 are	 βitem1=0.97,	 βitem2=0.95,	 βitem3=0.99.	 Other	
parameter	 values	 are	 shown	 in	 Table	 1.	 For	 confidentiality	 reasons,	 in	 the	 following	
analysis	we	do	not	reveal	details	on	the	cost	data	and	when	showed	in	the	results,	currency	
units	and	conversion	factors	have	been	omitted.	
	

Table	1:	Data	on	lead	times	and	average	demand	for	each	item	at	each	plant.	
Plant	 Item	1	 Item	2	 Item	3	

Lead	time	 6.67	 1.17	 0.80	

λ	Plant	P1	 0.0448	 0.0448	 0.0597	

λ	Plant	P2	 0.0149	 0.0448	 0.0149	

λ	Plant	P3	 0.0299	 0.0149	 0.0597	
	
	 For	all	the	instances	solved	in	this	article,	the	optimal	base‐stock	levels	were	quickly	
computed,	in	less	than	a	second.	The	results	observed	for	S	are	usually	in	the	range	from	1	
to	3.	A	summary	of	results	on	safety	stocks,	average	inventory	on	hand	and	total	expected	
costs	in	the	case	of	equal	target	service	levels	for	all	the	plants	is	shown	in	Table	2.	It	can	be	
observed	that	risk	pooling	implies	decreases	of	more	than	50%	in	safety	stocks	and	average	
inventory	on	hand	for	all	items,	when	comparing	to	the	sum	of	the	results	when	the	plants	
control	their	inventory	per	separate.	The	cost	reduction	is	51%,	38%	and	45%	for	items	1,	2	
and	3,	respectively.		 	
	
Table	2:	Safety	stock	(κ),	average	inventory	on	hand	(Ī	)	and	total	cost	(C)	results	for	three	items	in	three	equal	
service	level	plants	(the	first	three	rows	show	stand‐alone	costs,	the	fourth	row	their	sum	and	the	last	row	the	

cost	when	pooled	in	the	grand	coalition	N).	
Item	1	 Item	2	 Item	3	

Plant	 κ	 Ī	 C	 Κ	 Ī	 C	 Κ	 Ī	 C	

P1	 1.70	 2.20	 1,113	 0.95	 1.45	 562	 0.95	 1.45	 4,824	

P2	 0.90	 1.40	 646	 0.95	 1.45	 562	 0.99	 1.49	 4,619	

P3	 0.80	 1.30	 673	 ‐0.02	 0.48	 187	 0.95	 1.45	 4,824	

P1+P2+P3	 3.40	 4.90	 2,432	 1.88	 3.38	 1,310	 1.94	 2.94	 9,443	

N	 1.40	 1.90	 1,196	 0.88	 1.38	 810	 0.89	 1.39	 5,167	
	
	 Table	3	presents	the	cost	allocation	results	obtained	by	the	five	different	methods.	
For	items	1	and	3,	the	five	methods	conduced	to	cost	allocations	in	the	core.	This	is	easily	
verifiable	when	using	the	cost	allocations	values	from	Table	3	 in	constraints	(1)	‐	(3).	For	
item	2,	all	 the	methods	conduced	to	cost	allocations	 in	the	core,	except	 for	the	egalitarian	
one.	The	cost	allocated	to	plant	3	by	this	method	is	270	(highlighted	cell	in	Table	3),	which	
is	greater	than	the	cost	187	of	this	plant	for	item	2	when	it	was	planned	per	separate,	thus	
constraint	(1)	is	violated	and	the	resulting	allocation	does	not	belong	to	the	core.		
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Table	3:	Cost	allocations	by	the	five	methods	for	three	items	in	three	plants,	same	target	service	levels.	

	
	
Note	that	the	upper	bounds	for	constraints	(1)	correspond	to	the	CT	values	in	the	first	three	
rows	of	Table	2,	while	the	right‐hand	side	of	equation	(3)	corresponds	to	the	optimal	cost	of	
the	grand	coalition	given	in	the	last	row	of	Table	2.	The	upper	bounds	for	constraints	(2),	
namely	the	optimal	cost	for	two‐players	coalitions	are	given	in	Table	4.	
	

Table	4:	Optimal	costs	for	coalitions	of	two	players,	same	target	service	levels.	
Coalition	 Item	1	 Item	2	 Item	3	

{P1,	P2}	 1,141	 748	 4,893	

{P1,	P3}	 1,168	 624	 5,098	

{P2,	P3}	 1,113	 624	 4,893	
	
5.2.	Different	target	service	levels	
	 Now	we	consider	the	case	when	the	three	plants	have	different	target	service	levels		
for	 a	 same	 item.	 This	 may	 happen,	 for	 instance,	 because	 the	 same	 items	 are	 utilized	 in	
different	 contexts	 in	 the	 different	 plants,	 or	 because	 the	 service	 levels	 at	 different	 plants	
have	 been	 set	 regarding	 different	 evaluation	 basis.	Moreover,	 Porras	 and	 Dekker	 (2008)	
and	Guajardo	et	al.	(2012)	have	reported	oil	related	problems	where	the	same	item	can	be	
utilized	with	different	service	levels	even	at	a	single	inventory	location.	
	 We	define	plant	P1	as	a	high	safe	plant,	in	the	sense	that	it	requires	relatively	high	
target	service	levels,	while	plant	P2	is	medium	safe	and	plant	P3	low	safe.	
	 For	plant	P1,	the	targets	are	βP1item1=0.97,	β	P1item2=0.95,	β	P1item3=0.99.	
	 For	plant	P2,	the	targets	are	β	P2item1=0.87,	β	P2item2=0.85,	β	P2item3=0.89.	
	 For	plant	P3,	the	targets	are	βP3item1=0.77,	β	P3item2=0.75,	β	P3item3=0.79.	
	 When	 plants	 act	 in	 coalition,	 the	 target	 service	 level	 that	 we	 consider	 is	 the	
maximum	of	 the	 target	 values	of	 the	 plants	 involved	 in	 the	 coalition.	Rounding‐up	 target	
service	 levels	 in	this	way	 is	a	common	practice	(although	not	necessarily	optimal,	see	e.g.	
threshold	 rationing	 policies	 by	 Dekker	 et	 al.	 1998	 and	 Deshpande	 et	 al.	 2003;	 and	 a	
computational	 study	by	Guajardo	 and	Rönnqvist	 2012).	 In	 our	 context,	 it	 is	 arguable	 if	 a	
player	would	be	willing	 to	 join	a	coalition	under	a	 target	service	 level	 lower	than	 its	own	
target;	 on	 the	 other	 hand,	 a	 player	with	 a	 lower	 target	would	 still	 satisfy	 its	 own	 target	
when	joining	a	coalition	with	a	higher	target	value.	
	

Table	5:	Safety	stock	(κ),	average	inventory	on	hand	(Ī	)	and	total	cost	(C)	results	for	three	items	in	three	
different	service	level	plants	(the	first	three	rows	show	stand‐alone	costs,	the	fourth	row	their	sum	and	the	last	

row	the	cost	when	pooled	in	the	grand	coalition	N).	
Item	1	 Item	2	 Item	3	

Plant	 κ	 Ī	 C	 Κ	 Ī	 C	 Κ	 Ī	 C	

P1	 1.70	 2.20	 1,113	 0.95	 1.45	 562	 0.95	 1.45	 4,824	

P2	 ‐0.10	 0.40	 234	 ‐0.05	 0.45	 311	 ‐0.05	 0.45	 1,791	

P3	 ‐0.20	 0.30	 261	 ‐0.02	 0.48	 187	 ‐0.01	 0.49	 1,585	

P1+P2+P3	 1.40	 2.90	 1,608	 0.88	 2.38	 1,060	 0.89	 2.39	 8,200	

N	 1.40	 1.90	 1,196	 0.88	 1.38	 810	 0.89	 1.39	 5,167	
	

Plant Egalit. αD Altruistic Shapley EPM Egalit. αD Altruistic Shapley EPM Egalit. αD Altruistic SAM EPM

P1 399 598 547 564 547 270 347 347 353 347 1,722 2,296 1,747 1,791 1,747

P2 399 199 317 302 317 270 347 347 353 347 1,722 574 1,673 1,585 1,673

P3 399 399 331 330 331 270 116 116 104 116 1,722 2,296 1,747 1,791 1,747

Total 1,196 1,196 1,196 1,196 1,196 810 810 810 810 810 5,167 5,167 5,167 5,167 5,167

Item	1 Item	2 Item	3
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	 As	it	was	in	the	case	of	equal	service	level	plants,	Table	5	reveals	that	risk	pooling	
implies	 important	 savings	 in	 total	 costs.	Although	 in	 this	 case	 safety	 stocks	 are	 the	 same	
comparing	to	when	the	plants	act	per	separate,	the	reduction	of	average	inventory	on	hand	
translates	into	cost	reductions	of	26%,	24%	and	37%	for	items	1,	2	and	3,	respectively.	
	 Table	6	presents	the	cost	allocation	results	obtained	by	the	five	different	methods.		
In	contrast	to	the	case	when	all	plants	used	the	same	service	level,	now	for	all	items	most	of	
the	cost	allocation	derived	from	the	methods	do	not	belong	to	the	core.	We	have	highlighted	
all	the	cases	where	constraint	(1)	is	violated.	
	
Table	6:	Cost	allocations	by	the	five	methods	for	three	items	in	three	plants,	different	target	service	levels.	

	
	
	 The	 only	 methods	 that	 produce	 allocations	 in	 the	 core	 for	 all	 the	 items	 are	 the	
Shapley	value	method	and	the	EPM.		
	 The	egalitarian	method	for	all	 items	 leaves	either	plants	P2	or	P3	or	both	of	 them	
with	a	more	expensive	allocation	than	if	each	of	them	would	act	alone	without	any	pooling	
strategy	and,	therefore,	the	resulting	allocation	violates	the	individually	rational	condition	
(1)	thus	it	does	not	belong	to	the	core.		
	 For	the	same	reason,	the	cost	allocation	produced	by	the	αDemand	method	does	not	
belong	to	the	core.	
	 The	altruistic	method	conduces	to	a	cost	allocation	that	satisfies	constraints	(1)	for	
all	items.	However,	only	for	item	1	constraints	(2)	and	(3)	also	hold	and,	therefore,	for	this	
item	the	resulting	allocation	belongs	to	the	core.	For	items	2	and	3,	the	stability	constraint	
(2)	 for	 coalition	 {P2,	 P3}	 is	 violated.	We	present	 the	 upper	 bounds	 for	 constraints	 (2)	 in	
Table	7.	It	can	be	verified	that	for	item	2	the	altruistic	method	produces	u2+u3	=	381,	which	
is	greater	than	the	cost	373	of	coalition	{P2,	P3}	for	this	item.	It	means	that	under	this	cost	
allocation,	 plants	 P2	 and	 P3	would	 have	 incentives	 to	 apply	 risk	 pooling	 between	 them,	
excluding	plant	P1	and,	therefore,	the	cost	allocation	u	is	not	in	the	core.	The	same	situation	
is	observed	for	item	3,	where	the	altruistic	method	produces	u2+u3	=	2,127,	which	is	greater	
than	the	cost	1,859	of	coalition	{P2,	P3}	for	this	item.	
	

Table	7:	Optimal	costs	for	coalitions	of	two	players,	different	target	service	levels.	
Coalition	 Item	1	 Item	2	 Item	3	

{P1,	P2}	 1,141	 748	 4,893	

{P1,	P3}	 1,168	 624	 5,098	

{P2,	P3}	 701	 373	 1,859	
	
	 In	addition,	we	have	built	other	 instances	with	different	 target	service	 levels	such	
that	 the	 Shapley	 method,	 as	 well	 as	 the	 proportional	 methods,	 produce	 non‐stable	
allocations.	Table	8	shows	the	results	of	the	cost	allocations	derived	from	the	Shapley	value	
method	for	an	instance	with	target	service	levels	set	as	follows:		
	 For	plant	P1,	the	targets	are	βP1item1	=	0.99,	βP1item2	=	0.9999,	βP1item3	=	0.9999.	
	 For	plant	P2,	the	targets	are	β	P2item1	=	0.89,	β	P2item2	=	0.90,	β	P2item3	=	0.59.	
	 For	plant	P3,	the	targets	are	β	P3item1	=	0.79,	β	P3item2	=	0.90,	β	P3item3	=	0.59.	
	 Note	that	this	service	level	setting	considers	very	high	targets	for	plant	P1	and	lower	
targets	for	plants	P2	and	P3.		

Plant Egalit. αD Altruistic Shapley EPM Egalit. αD Altruistic Shapley EPM Egalit. αD Altruistic SAM EPM

P1 399 598 828 838 828 270 347 429 478 436 1,722 2,296 3,039 3,813 3,307

P2 399 199 174 165 174 270 347 238 228 233 1,722 574 999 574 986

P3 399 399 194 193 194 270 116 143 104 140 1,722 2,296 1,128 780 873

Total 1,196 1,196 1,196 1,196 1,196 810 810 810 810 810 5,167 5,167 5,167 5,167 5,167

Item	1 Item	2 Item	3
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Table	8:	Verification	of	constraints	(1)‐(3)	for	cost	allocations	generated	by	Shapley	value	method	in	additional	
instances	with	different	target	service	levels.	
Item	1	 Item	2	 Item	3	

u1	 1,044	 ≤	 1,113	 854	 > 812	 8,363	 >	 7,857	

u2	 165	 ≤	 234	 353	 > 311	 574	 ≤	 1,585	

u3	 399	 >	 261	 104	 ≤ 187	 2,296	 >	 1,791	

u1+u2	 1,209	 >	 1,141	 1,207	 ≤ 1,248	 8,937	 >	 7,926	

u1+u3	 1,443	 ≤	 1,580	 957	 > 874	 10,659	 ≤	 11,165	

u2+u3	 564	 ≤	 701	 457	 > 373	 2,870	 >	 1,859	
u1+u2+u3	 1,608	 =	 1,608	 1,310	 = 1,310	 11,233	 =	 11,233	

	
In	Table	8,	we	have	highlighted	all	 constrains	of	 type	 (1)	and	 (2)	violated	by	 the	Shapley	
value	allocation.	Note	that	for	items	2	and	3,	we	set	equal	target	service	levels	for	plants	P2	
and	 P3.	 Still	 in	 these	 cases,	 where	 only	 plant	 P1	 used	 different	 targets,	 the	 resulting	
allocations	are	not	stable.	Moreover,	by	running	the	linear	programming	associated	to	the	
EPM	we	obtain	infeasibility,	thus	we	are	able	to	verify	that	the	core	in	these	three	instances	
is	empty.	
	
6.	Concluding	remarks	
	 Motivated	from	a	case	in	the	oil	and	gas	sector,	we	have	presented	a	problem	where	
risk	 pooling	 has	 potential	 of	 significant	 savings.	 Our	 work	 highlights	 the	 importance	 of	
finding	 cost	 allocations	 which	 would	 allow	 the	 implementation	 of	 risk	 pooling	 in	
inventories	 of	 spare	 parts.	 Although	 risk	 pooling	 is	 a	 traditional	 approach	 in	 inventory	
management,	in	the	specific	context	of	spare	parts	the	problem	about	how	to	allocate	costs	
between	the	different	players	in	the	pool	has	received	little	attention	from	the	literature.		
	 We	have	performed	a	 series	of	 computations,	using	 five	 cost	 allocations	methods.	
We	showed	examples	where	a	same	cost	allocation	method	could	 lead	 to	solutions	 in	 the	
core	when	the	players	have	the	same	target	service	 levels,	while	under	a	round‐up	policy	
and	 the	 same	 setting	 but	 at	 least	 one	 player	with	 different	 target	 service	 level	 the	 same	
method	 leads	 to	 an	 allocation	which	 does	 not	 belong	 to	 the	 core	 or,	moreover,	 the	 core	
becomes	empty.	Wong	et	al.	(2007)	also	presented	illustrative	examples	of	cost	allocations	
in	 spare	 part	 inventories	 and	 analysed	 them	 using	 game	 theory	 principles,	 but	 a	 main	
difference	of	our	setting	is	that	we	consider	a	target	service	level	explicitly	when	finding	the	
optimal	 base‐stock	 levels	 instead	 of	 a	 downtime	 cost.	 As	well	 as	 in	 their	work	 though,	 it	
remains	as	pending	work	finding	structural	results	in	order	to	characterize	the	allocations	
and	 the	 core	 of	 the	 game.	 This	 is	 not	 a	 straightforward	 task,	 however,	 because	 of	 the	
untractability	of	 the	 	expressions	 involved	 in	 the	computation.	Specifically	when	trying	to	
find	 the	 optimal	 base‐stock	 level	 S	 subject	 to	 a	 service	 level	 constraint,	 an	 iterative	
procedure	as	the	one	used	in	our	article	is	the	common	approach,	which	does	not	facilitate	
closed	 forms	 to	 characterize	 S	 in	 terms	 of	 the	 parameters	 of	 the	 problem.	 Structural	
properties	 for	 cost	 allocation	 in	 spare	 parts	 problems	 have	 been	 found	 by	 Karsten	 et	 al.	
(2009,	2011a,	2011b)	and	Karsten	and	Basten	(2012),	using	penalty	costs	 for	backorders	
instead	of	service	level	constraints.	In	practice,	a	service	level	constraints	instead	of	penalty	
costs	 is	 generally	 easier	 to	 state	 and	 interpret	 by	 practitioners	 (Chen	 and	 Krass,	 2001;	
Bashyam	and	Fu,	1998;	Cohen	et	al.	1989).		

As	 an	 extension	 to	 our	 article,	 we	 are	 designing	 a	 new	 allocation	 method	 which	
deals	 with	 diferent	 target	 service	 levels.	 It	 is	 based	 on	 computing	 a	 referential	 cost	
allocation	 for	 each	 player	 derived	 from	 the	 scenario	 where	 its	 target	 is	 the	 maximum	
allowed	 for	 all	 players.	 Then,	 in	 the	 actual	 scenario,	where	 the	 targets	 of	 all	 players	 are	
allowed,	 we	 use	 a	 linear	 programming	model	 which	minimizes	 the	 maximum	 difference	
between	 the	 actual	 allocation	 and	 the	 referential	 cost.	 We	 are	 also	 studying	 the	 cost	
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allocation	 problem	 in	 threshold	 rationing	 policies	 (Dekker	 et	 al.	 1998,	 Deshpande	 et	 al.	
2003)	as	an	alternative	to	the	round‐up	policy.	
	 In	future	research,	it	would	be	interesting	to	test	more	cost	allocation	methods	and	
to	approache	the	problem	with	other	demand	distributions	or	other	control	policies,	such	
as	 the	(s,	S)	policy.	Finally,	 incorporating	other	practical	 issues,	 such	as	where	 to	actually	
locate	 the	 parts	 when	 implementing	 a	 centralized	 solution	 for	 players	 originally	
decentralized	or	the	implications	of	costs	in	a	network	with	lateral	transshipments	instead	
of	a	centralized	solution	complement	the	agenda	for	future	work.	At	the	time	of	writing,	we	
are	collaborating	with	the	company	presented	in	this	article	in	order	to	extend	our	analysis	
in	these	and	other	issues	by	incorporating	a	large	set	of	plants	and	items.	
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