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ABSTRACT.

Hub-and-spoke network designs arise in logistics systems in which flows do exist among
distinct points and where economy of scale can be attained through concentration points
and through the shared used of high capacity links. The hub-and-spoke network design
problem, also known as the hub location problem, aims to find the concentration points in
a given network flow so that the sum of the distances of the linkages is minimized. In this
work, we compare the discrete solutions given by the branch-and-cut method applied to the
p-hub median model, with the continuous ones given by the hyperbolic smoothing technique
applied to a min-sum-min model. Computational experiments for particular instances of
the Brazilian air transportation system, with the number of hubs varying from 2 to 6, are
conducted with the support of the Voronoi diagrams.
Keywords: hub location problem, p-median, hyperbolic smoothing technique

RESUMO.

Projetos de rede do tipo hub-and-spoke surgem em sistemas loǵısticos em que existem fluxos
entre pontos distintos e onde economia de escala pode ser alcançada através da concentração
de pontos e do uso de ligações compartilhadas com alta capacidade. O problema de projeto
de rede hub-and-spoke, também conhecido como problema de localização de hubs, visa
encontrar pontos de concentração numa determinada rede de fluxos de modo que a soma das
distâncias das ligações seja minimizada. Neste trabalho, comparamos as soluções discretas
obtidas pelo método de branch-and-cut aplicadado ao modelo da p-hub mediana com as
soluções cont́ınuas obtidas pela técnica de suavização hiperbólica aplicada num modelo
min-sum-min. Experimentos computacionais para instâncias particulares do sistema de
transporte aéreo brasileiro, com o número de hubs variando de 2 a 6, são realizados com
aux́ılio dos diagramas de Voronoi.
Palavras-chaves: problema hub-and-spoke, modelo p-mediana, suavização
hiperbólica
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1 Introduction

Air freight has grown faster in the past few decades (Bowen, 2004). Particularly in
Brazil, about 155 million trips were processed in 2010, 21% more than in the previous year
(INFRAERO, 2010). This growth calls for a rationalization of the air transport system.
In this context, there are challenges to be faced in serving this growing demand. The
most important appears to be the poor airport infrastructure that prevails in Brazil, where
the busiest airports face huge problems of congestion and most do not have physical space
available for expansion. A useful strategy to improve the configuration of air transportation
systems is the hub-and-spoke network design.

According to Fulco (2006), the word hub can be described as a center of importance
or interest and the word spoke can be defined as a link or arc. Therefore, the hub-and-spoke
system can be interpreted as relevant centers connected to many nodes through links. This
strategy aims to optimize the number/distances of linkages in the network, diminishing the
overall costs. In this sense, the hub-and-spoke network design problem, also known as the
hub location problem, aims to find the centers that are linked to each other, which in turn
concentrate regional interconnected nodes that enable minimization of the flow costs.

As in Pizzolato et al. (2012), the formal study of hub locations was introduced by
O’Kelly (1987) who provides a quadratic programming model for the hub location problem,
and proposed two enumeration-based heuristics to solve it. The modeling design considered
as assumption that the number p of hubs is determined a priori, there is no limit on the
number of spokes assigned to a hub and each spoke is assigned to a single hub and all hubs
are interconnected.

Indeed, the hub location problem has attracted the attention of researchers from a
wide variety of science fields, such as Geography, Operations Research, Transportation (of
passengers and of cargo), Telecommunications, among others. An overview of the academic
research on hub location problems can be found in Alumur & Kara (2008), Hekmalfar &
Pishvace (2009) and Campbell et al. (2002), where it can be verified that many sophisticated
models have been proposed.

In this preliminary study, we deal with the hub-and-spoke design of the Brazilian
air transportation system, aiming to compare a discrete and a continuous solution method.
To this end, the bi-dimensional hub location problem is treated in a simplest way, that is:
the only considered parameters of the original problem are the geographical coordinates
(latitude and longitude) of the Brazilian airports. No costs are considered in this study.

First, we solve the hub location problem by formulating it as the p-hub median
model, using the same analogy made by Campbell (1996), where a demand point in a
p-median model is analogous to an origin-destination pair in the hub-and-spoke problem.
The resulting model is an integer linear programming problem whose instances are solved
by the branch-and-cut method.

Then, we consider the application of the hyperbolic smoothing technique, intro-
duced by Xavier (2001), to solve a min-sum-min continuous formulation that models the
hub location problem. In general terms, this technique solves a sequence of low dimen-
sional differentiable unconstrained continuous optimization subproblems whose solutions
gradually approach a solution of the original problem. This method has been applied to
solve other optimization problems such as the determination of spatial molecular struc-
ture (Souza et al., 2011) and the determination of radio telecommunication bases (Brito &
Xavier, 2006), for example.

We observe that the discrete method chooses as hub locations the points (nodes)
over the network, whereas the solutions of the continuous method can be points out of the
network (not nodes), but in between the given network points. So, in other to compare both
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methods in respect to the minimization of the spoke-distances, we apply a procedure to
approximate the point outside the network, given by the continuous method, to the nearest
point over the network that results in lower spoke-distances, whenever it is needed.

Computation experiments are conducted with a network of 41 airports of the Brazil-
ian air transportation system, extract from the network of 135 airports built by Figueiredo
et al. (2012). The solutions of both methods are compared, varying from 2 to 6 the number
of hubs, with the support of the Voronoi diagrams.

The paper is organized as follows. As the hub location problem has been already
introduced, in Section 2 we briefly describe the p-hub median model. Section 3 presents
the hyperbolic smoothing technique which is applied to solve a min-sum-min continuous
model. Section 4 presents the numerical experiments with both methods and with the
Voronoi diagram, while Section 5 outlines the conclusions.

2 The p-hub median approach

Likewise Campbell (1996), we formulate the hub location problem as the p-median
model, where a demand point is interpreted as an origin-destination pair of the hub-and-
spoke network, in such a way that the model is now called the p-hub median. So, in this
approach, the location problem seeks p-medians or p concentration points to locate hubs in
order to minimize the system impedance, that is, the sum of the spoke-distances.

In the following, we briefly describe the p-hub median model. Let S be the set of n
distinct points of a given network in the bi-dimensional space; i ∈ S a given point; j ∈ S a
potential hub median; p the number of hubs to be located; [dij ]n×n the symmetric distance
matrix, where dij is the distance from point i to potential hub j, with dii = 0, ∀i; [xij ]n×n

the allocation matrix, where xij = 1 if point i is connected to hub j and xij = 0 otherwise;
and xjj = 1 if j is a hub median, and xjj = 0, otherwise.

Assuming by hypothesis that any point can be chosen as hub, the p-hub median
model is formulated as follows:

minimize
∑
i∈S

∑
j∈S

dijxij (1)

subject to
∑
j∈S

xij = 1, i ∈ S (2)

∑
j∈S

xjj = p (3)

xij − xjj ≤ 0, i, j ∈ S (4)

xij ∈ {0, 1}, i, j ∈ S, (5)

where the objective function (1) indicates the minimization of the total distances between
the given points and the points selected to be hubs; the constraint set (2) indicates that
each point i is connected to only one hub j; the constraint (3) guarantees that there exist
exactly p located hubs; the constraints (4) state that a given point must be connected to
a hub, if it is not a hub itself, and finally the constraint set (5) imposes binary decision
variables.

Notice that instead of formulating the hub location problem the model (1)-(5) can
be used to formulate the clustering problem, where the p clustering points cover/concentrate
the remaining n− p points.
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3 The hyperbolic smoothing approach

Let S = {s1, . . . , sn} denote the set of n given distinct points in the bi-dimensional
space to be clustered into a given number p of unknown distinct points. Let xi, i = 1, . . . , p,
be the position of the p potential hubs. In this approach, the hub location problem is
formulated as a continuous min-sum-min model as follows:

mininize

n∑
j=1

zj

subject to zj = min
i=1,...,p

∥sj − xi∥2, j = 1, . . . , n,

(6)

where the objective function is the sum of each minimum distance between a given point
and a potential hub.

So, in order to obtain a convex and differentiable version of the above model, we
proceed with the hyperbolic smoothing technique, proposed by Xavier (2001), which applies
a sequence of transformations to the above model. Let us first consider the relaxation of
the constraints in (6), getting:

minimize
n∑

j=1

zj

subject to zj − ∥sj − xi∥2 ≤ 0 j = 1, . . . , n, i = 1, . . . , p.

(7)

Now, in order to obtain the desired equivalence between (6) and (7), the function
ψ : R → R, defined as ψ(y) = max{0, y}, is introduced into the inequalities, obtaining the
new formulation:

q∑
i=1

ψ(zj − ∥sj − xi∥2) = 0, j = 1, . . . , n. (8)

With (8) instead of the constraint set in (7), we still have an undesirable formulation,
since the problem has no lower bound. To overcome this shortcoming, a given perturbation
parameter ε > 0 is introduced, resulting in the bounded but not differentiable optimization
problem:

minimize

n∑
j=1

zj

subject to

p∑
i=1

ψ(zj − ∥sj − xi∥2) ≥ ε, j = 1, . . . , n.

(9)

Now, given the parameter τ > 0, let us consider the hyperbolic function ϕ : R → R,
defined as ϕ(y, τ) =

(
y +

√
y2 + τ2

)
/2. Thus, the smoothness of model (9) is obtained

by replacing ψ(y) by ϕ, (y, τ), and also by replacing the norm function by the function

θ : Rn ×Rp ×R+ → R+, defined as θ(sj , xi, γ) =
√

(s1j − x1i )
2 + (s2j − x2i )

2 + γ2 for a given

parameter γ > 0, which completes the smoothness procedure, and generates the following
problem:

minimize

n∑
j=1

zj

subject to

p∑
i=1

ϕ(zj − θ(sj , xi, γ), τ) ≥ ε, j = 1, . . . , n.

(10)
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As the constraints of problem (10) are monotonically increasing functions in the
variable zj , j = 1, . . . , n, (Xavier, 2011), they will be active at the optimal solution, and
thus problem (10) is equivalent to the following problem:

minimize

n∑
j=1

zj

subject to hj(x, zj) =

p∑
i=1

ϕ(zj − θ(sj , xi, γ), τ) − ε = 0, j = 1, . . . , n.

(11)

Observe that model (11) has a separable structure, since each auxiliary variable zj
appears only in one equality constraint. Therefore, as the partial derivative of h(x, zj) with
respect to zj , j = 1, . . . , n, is not equal to zero, it is possible to apply the results of the
Implicit Function Theorem to compute each component zj , j = 1, . . . , n, as a function of the
hub variables xi, i = 1, . . . , p. In this way, problem (11) is rewritten as the unconstrained
optimization problem

minimize f(x) =

n∑
j=1

zj(x) (12)

where each zj(x) results from the computation of the single zero of each constraint in (11),
since in each sum term ϕ is strictly increasing with respect to variable zj . From the Implicit
Function Theorem, the functions zj(x) have derivatives with respect to the variables xi,
and so it is possible to compute the gradient of the objective function of problem (12) as

∇f(x) =
n∑

j=1

∇zj(x)

where

∇zj(x) = − ∇hj(x, zj) /

(
∂ hj(x, zj)

∂ zj

)
.

Summing up, the solution of the hub location problem can be obtained by using an
algorithm which solves an infinite sequence of continuous optimization subproblems (12),
where the positive parameters ε, τ , and γ are gradually reduced to zero, just as a smoothing
method. Notice that when the algorithm causes τ and γ to approach 0, the constraints of
the subproblems given in (10) tend to those of (9). Also, when the algorithm causes ε to
approach 0 simultaneously, the solution of problem (9) gradually approaches the solution
of the original hub location problem (6). Additionally, each unconstrained subproblem (12)
can be solved by any method based on first order derivative information.

4 Voronoi diagram technique

Proposed originally by Georgy Voronoi, in the middle of the nineteenth century,
the Voronoi diagram is a special type of metric space partition determined by Euclidian
distances from a set of specified seed points in the bi-dimensional space. This partition
with at least 2 seed points results in convex bi-dimensional polygons such that each polygon
contains exactly one of these seed points, as well as it contains interior points that are closer
to this seed point than any other seed point.

Resembling Boots and South (1997), the ordinary Voronoi diagram can be defined
as follows. Let {x1, x2, . . . , xp} be the set of p known distinct seed points in R2. Let x
denote an arbitrary point in R2. As the Euclidean distance between x and xj is given by

∥x− xj∥ =
√

(x1 − x1j )
2 + (x2 − x2j )

2,
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the region V (xj) = {x ∈ R2 : ∥x − xj∥ ≤ ∥x − xi∥, j ̸= i, i, j = 1, . . . , p} is called the
ordinary Voronoi polygon of the seed point xj . Indeed, V (xj) contains all the points that
are closer to the seed point xj than any other. Moreover, the set Γ(P ) = {V (x1), . . . , V (xp)}
is a partition of R2, called the ordinary Voronoi diagram of the set of seed points.

5 Computational Experiments

In this section, we compare the continuous and the discrete solution approaches that
address the hub location problem applied to the Brazilian air transportation system. We
then present the computational results obtained by the application of the branch-and-cut
algorithm to solve the p-hub median model (1)-(5) and by the application of the hyperbolic
smoothing technique to solve the min-sum-min model (6). From solver CPLEX 11.2 we get
the results of the branch-and-cut algorithm. The unconstrained minimization subproblems
that are generated by the hyperbolic smoothing technique were coded with Compact Visual
FORTRAN, version 6.1, and solved by the BFGS algorithm, a quasi-Newton method from
the Harwell Library, available at http://www.cse.scitech.ac.uk/nag/hsl/. The Voronoi di-
agram algorithm was coded with Visual C++, version 9.0, using Qt and CGAL tools. In
addition, the numerical experiments have been carried out on a PC Intel Celeron with 2.7
GHz CPU and 512MB RAM. The compiler was G++ under Windows operational system.

The test instances have been extracted from a hub location study involving 135 air-
ports in the Brazilian air transportation system, built by Figueiredo et al. (2012). Here, we
considered a total of 41 airports (nodes) in the air transportation network. The geographic
coordinates (latitude and longitude) of each airport was given, and the distances between
each pair of airports were computed.

The test instances considered the number of hubs varying from 2 to 6. As suggested
by Costa et al. (2008), the number of hubs in the Brazilian air transportation network
should be from 3 to 6, due to the adequate degree of clustering in the network.

Regarding the solutions obtained by the smoothing hyperbolic approach, which
might be outside the network, we applied a heuristic procedure, called Nearest Allocation
(NA), implemented in C++ language, to assign the outsider point to the nearest point over
the network with lower spoke distances. Figure 1-(a) shows an example of two solution
points given by the hyperbolic smoothing technique in cyan color and three points over the
network in red color. As we can see, there is an outsider point (a hub location) in the center
of the network. Thus, the NA heuristic procedure first allocates the hub location to the
nearest point over the network, as we can see in 1-(b). If the current spoke-distances are
greater than the spoke-distances associated to the assignment of the hub location to the
second nearest network point, then the NA procedure redefine the hub location, resulting
in a lower total spoke-distances, as we can see in 1-(c).

Table 1 shows the hub location problem solutions for p = 2, . . . , 6 hubs out of the
41 main Brazilian airports, which are candidates to locate hubs, for the plain hyperbolic
smoothing approach (HS) and for the hyperbolic smoothing approach combined with the
NA heuristic procedure (HSNA), and for the p-hub median approach.

For the fixed number of hubs p = 4, Table 2 shows the results of the plain hyperbolic
smoothing (HS), the hyperbolic smoothing combined with the NA procedure (HSNA) and
the p-hub median approaches. We notice that the airports set to be hubs are equal for the
HSNA approach and for the p-hub median approach.

In Figure 2, the Voronoi diagram refers to the seeds of the 4-hub median approach
(in magenta color). In the diagram, the resulting points found by the plain hyperbolic
smoothing technique are showed in cyan color, and the spokes are showed in blue color. As
we can see, there are only two points with cyan color, because the other two coincided with
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(a) (b) (c)

Figure 1: Nearest allocation procedure: (a) initial solution, (b) nearest assignment, and
(c) nearest assignment with lower spoke-distances.

Table 1: Results of the hyperbolic smoothing and the p-hub median for p = 2, . . . , 6

number of hubs
Optimal value

HS HSNA p-hub median

2 300.13 302.413 300.413

3 220.605 223.94 223.94

4 184.992 185.897 185.897

5 158.028 159.592 159.252

6 139.437 140.663 140.663

Table 2: Results for the 4-hubs network design

Approach Optimal value Hubs

HS 184.992 not airports
HSNA 185.897 IMP, MAO, MCZ, VCP
p-hub median 185.897 IMP, MAO, MCZ, VCP
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Figure 2: Brazilian map for 4 hubs as seeds of the Voronoi diagram

Table 3: Results for the 6-hubs network design

Approach Optimal Value Hubs Differences

HS 139.437 not airports VCP not linked to JOI
HSNA 140.663 IMP, MAO, JOI, MCZ,

GYN, GIG
VCP linked to JOI

p-median 140.663 IMP, MAO, JOI, MCZ,
GYN, GIG

VCP linked to JOI

the medians found, MAO and VCP airports.
For the fixed number of hubs p = 6, Table 3 shows the results for the plain hyperbolic

smoothing (HS), the hyperbolic smoothing combined with the NA procedure (HSNA) and
the p-hub median approaches. We notice that the airports set to be the hubs are equal for
the HSNA approach and for the p-hub median approach. Here, there is an example of the
benefit of applying the NA procedure. From HS, the VCP airport is linked to a hub point
that is not an airport. With the application of the NA procedure, VCP is linked first to
GIG hub, but the lower total distances are attained when VCP is linked to JOI hub.

In Figure 3, the Voronoi diagram refers to the seeds of the 6-hub medians approach
(in magenta color). In the diagram, the resulting points found by the plain hyperbolic
smoothing technique are showed with cyan color, and the spokes are showed in blue color.
As we can see, there are only four points with cyan color, because the other two coincided
with the medians found, GYN and MAO airports.
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Figure 3: Brazilian map for 6 hubs as seeds of the Voronoi diagram

6 Conclusions

Here, we compared the results of two distinct solutions methods with the support
of the Voronoi diagram to design the Brazilian air transportation system by introducing
hubs.

Considering instance tests with 41 Brazilian airports and fixed number of hubs
varying from 2 to 6, the solutions of the discrete p-hub median approach and the continuous
hyperbolic smoothing approach combined with the proposed discretization heuristic were
compared in terms of the total spoke-distances. The Voronoi diagram helped to identify
the scope of the hubs found by these approaches.

From the computational results, we verified that, with the proposed discretization
heuristic, the locations of the hubs are the same considering the number of hubs equal to 4
and 6.

We notice that when the existing airports’ infrastructure should be considered, it is
more adequate to use a discrete method to determine the locations of the hubs that minimize
the total flow costs. On the other hand, when the infrastructure should be developed, it
is more adequate to use a continuous method, because from the obtained computational
results the optimal total distances would be smaller.

In future work, we plan to consider costs related to the hub locations.
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