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ABSTRACT 

In this work we deal with a network subject to random edge failures and study the problem of 
optimally determining the set of links to be reinforced so as to minimize the sum of 
investment and expected flow costs. The problem arises, for example, within the context of 
humanitarian logistics in disaster-prone areas where mitigating measures must be undertaken 
to increase network resiliency and guarantee the provision of help to the population. The 
problem is formulated as a mixed integer non-linear program and belongs to the class of 
stochastic programming problems with endogenous uncertainty – i.e., those in which the 
probability distribution of the random parameters is decision-dependent. The proposed 
approach includes a convexification technique for polynomials of binary variables, an 
efficient cut-generation algorithm and the incorporation of importance sampling concepts 
into the stochastic programming framework so as to allow the solution of large instances of 
the problem.  

KEYWORDS. Stochastic programming. Endogenous uncertainty. Network 
reinforcement.  
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1. Introduction 

The impact of natural or man-made disasters can be very significant both in terms 

of losses of human lives and damages to affected regions, as vastly documented during 

recent catastrophic events including earthquakes, hurricanes and floods. Besides the 

immediate death toll and destruction of infra-structure, the effects of these calamities 

usually last long after the initial strike. When an earthquake strikes a city, for example, 

utility services such as water, electricity and gas supply may have to be interrupted for 

weeks before necessary repairs are carried out. On top of that, several roads and bridges 

are usually affected, rendering the transportation network severely impaired. As pointed 

out by Tomasini and Van Wassenhove (2009), more casualties actually happen due to the 

isolation to which many residents are forcefully put to rather than by the event itself.  

In face of that, regions that are prone to the occurrence of natural disasters must 

take preventive measures in order to mitigate potential damages and, most importantly, 

devise emergency plans so that they are able to provide care for those affected by such 

events. It is thus imperative to assess the vulnerability of the existing transportation 

network and to take steps aimed at guaranteeing that it will be possible to either evacuate 

people to safe locations or to provide them with basic resources in post-disaster days. 

The objective of the network reinforcement problem in the context of 

humanitarian logistics is to determine the optimal set of investments on retrofitting the 

links of a transportation network so as to minimize the sum of (deterministic) investment 

costs and expected (probabilistic) costs incurred when transporting people and/or 

resources after a catastrophic event – investments in bridges and tunnels, for example, may 

increase their resilience so that an earthquake is less likely to render them unusable. Such 

investments usually involve very large sums of money and a limited budget must be 

optimally allocated. 

The remaining of this article is organized as follows: Section 2 provides the 

mathematical formulation of the problem along with the identification of the difficulties 

that prevent it from being solved exactly by existing approaches; Section 3 describes the 

approach to deal with the difficulties outlined in the preceding section and proposes an 

algorithm for obtaining a global optimal solution to the problem. Section 4 presents 

promising computational results and Section 5 concludes with final remarks and directions 

of future research.  

2. Background and problem description 

Though there has been an extensive amount of work dealing with network 

reinforcement problems in general, the literature on the problem within the humanitarian 

logistics context is very limited. Viswanath, Peeta and Salman (2004) – which subsequently 

resulted in Peeta et al. (2010) – were the first to state the problem, motivated by the risks of 

an earthquake hitting Istambul, Turkey. They limit the scope of their model to the case 

where one is interested in maintaining connectivity between origin (O) and destination (D) 

pairs and their approach relies on the enumeration of the O-D paths (which, for practical 

purposes and due to computational difficulties, is limited to listing a pre-defined number of 

paths by using a k-shortest path algorithm). Next, they propose an approximation of the 

objective function based on the first order terms of its Taylor series expansion. As they 

recognize in their article, the disadvantage of this approach is that by ignoring higher order 

terms they neglect the potential synergies of simultaneously investing in more than one 

link. 

Liu, Fan and Ordonez (2007) and Fan and Liu (2003) also study the stochastic 

network protection problem. In the former, the problem follows the same outline as that 

described above and they propose an extension of the L-Shaped method of Van Slyke and 

Wets by using generalized Benders decomposition. In the latter, the second-stage problem 

involves the determination of a Nash equilibrium by solving an MPEC (mathematical 
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program with equilibrium constraints) which results from the consideration that users may 

choose their best-perceived routes along the network. Their solution method relies on the 

application of the Progressive Hedging algorithm of Rockafellar and Wets. Both papers, 

however, make the explicit assumption that the decision to invest on the reinforcement of a 

link eliminates the probability that it might become unavailable after the disaster. They 

argue that it would be preferable and more realistic to maintain a probabilistic view on link 

failures but doing so would lead the problem to fall under the class of stochastic 

programming problems with decision-dependent uncertainties (also referred to as 

endogenous uncertainties) for which “mathematical analysis (…) is very sparse, and is only 

limited to convex problems of special structures” thus relying “heavily on heuristic methods 

to solve problems with realistic sizes due to computational difficulties”. 

Although not dealing with the same problem, there are some related works on the 

investment in links of a stochastic network, including Wollmer (1980), Wallace (1987) and 

Wollmer (1991). Additionally, there is also a significant body of work on the development 

of plans for disaster preparedness and response which adopt a different perspective from 

that of mathematical programming. Instead, these works usually take a somewhat heuristic 

view to determine critical links of a network based on a set of pre-defined criteria – e.g., 

Sohn et al. (2003), Basoz and Kiremidjian (1995) and Bana Costa, Oliveira and Vieira 

(2008).  

Mathematically, the problem is formulated by assuming we are given an 

undirected graph � = (�, �) with vertex set � and edge set �. Vertices represent locations 

where survivors and/or resources may be located, and edges represent the roads, bridges 

and tunnels which comprise the transportation network. For ease of presentation, a 

deterministic supply or demand ℎ	 is associated with each vertex 
. Edges have non-

negative transportation costs �� , capacity 
� and are assumed to be available after the 

occurrence of the disastrous event with probabilities ��� . As also stated in related works, it 

is assumed that each edge fails independently of the others – although this is not a 

necessary assumption for the methods proposed in this work. The survival probability of an 

edge may be increased to ���  if an amount �� is invested in it. We associate the availability 

status of an edge (i.e., whether the edge remains operational or not) to the value of a 

random variable �� , which is equal to 1 if the edge � is operational and 0 otherwise. A 

network configuration is given by the availability status of each network link. 

Assuming that we are able to enumerate all the possible scenarios S of network 

configuration, the problem may be formulated as follows: 

 

(�) �
� 
 

�����
�∈�

+��� ������� +��	 	�
	∈!�∈�

"
�∈#

 (2.1)  

$
%&��'	'): +� ≤ %  (2.2)  

 -��� +  � = ℎ� ∀$ ∈ / (2.3)  

 �� = 01p��� + 1p��� − p��� 3 ∙ ��3
�∈�

 ∀$ ∈ / (2.4)  

 ��� ≤ 
���� ∀$ ∈ /, ∀� ∈ � (2.5)  

 � ∈ 50,18|�|; 	�,  ∈ ℝ<  (2.6)  

 

where: 

 ��� realization of random variable �� in scenario $; 

p���  probability of the availability status of edge � in scenario $, given that no 

investment is made on it (i.e., =(�� = ���|�� = 0) or, alternatively, >�� ∙ ��� + (1 − >��) ∙ (1 − ���); 

p���  probability of the availability status of edge � in scenario $, given that a 
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reinforcement investment is made on it (i.e., =(�� = ���|�� = 1) or, 

alternatively, >�� ∙ ��� + (1 − >��) ∙ (1 − ���); �	  penalty cost for the non-fulfillment of demand of vertex 
; �� continuous variable equal to the probability of scenario $ ; �� binary variable which is equal to 1 if an investment is to be made on edge �, 

0 otherwise; �� vector of continuous flow variables of scenario $;  � vector of continuous slack variables for the demand and supply of each 

vertex in scenario $. 

 

The objective function (2.1) to be minimized provides the sum of deterministic 

costs incurred in the first stage due to decisions of reinforcement investments and expected 

second-stage costs of routing commodities through the network and demand curtailment. 

Expressions (2.2) and (2.3) represent, respectively, the sets of first-stage constraints (such 

as budget limitations, minimum investment in each region, etc.) and second-stage 

constraints (such as mass-balance equations on the realized network configuration of each 

scenario). Expression (2.4) defines variables �� as a function of investment decision 

variables �� and constraint (2.5) determines the upper bound of the flow in edge �, 

according to the realization of the random variable �� in scenario $. 

Problem (2.1) – (2.6) is a mixed-integer nonlinear program for which solution 

methods are usually not guaranteed to find a global optimal solution. In particular, there 

are three main difficulties associated with its formulation that prevent existing algorithms 

to obtain global optimal solutions. These obstacles are briefly described below: 

 

‒ Non-linearity due to product of first and second stage variables. In standard 

stochastic programming problems the probability of a scenario is known and it thus 

usually becomes a coefficient of the objective function. In the case of the class of 

problems being studied in this work, the expression for the expected value of 

second stage costs – ∑ ��(∑ ����� +∑ �	 	�	∈!�∈� )�∈#  – involves the product of first 

stage variables �� – since, as described earlier, first stage decisions affect the 

probability of occurrence of each possible outcome – and second stage variables ��� 

and  	�.  

‒ Non-linearity due to the expression for the scenarios’ probabilities. A second 

source of non-linearity arises from the expression that defines variables �� 

themselves, which represent the probabity of occurrence of each possible network 

configuration after taking into account first stage investment decisions. In this case, 

the expression involves non-linear terms of order up to |�| due to products of 

binary variables ��: �� = ∏ 1p��� + 1p��� − p��� 3 ∙ ��3�∈� . These non-linear terms arise 

from the product of the probability of occurrence of the outcome of each random 

variable that composes a scenario. 

‒ Scenario generation. The vast majority of stochastic programming models deal 

with random variables whose probability distribution is independent of the 

decision variables. This a priori knowledge of the joint probability distribution 

allows one to obtain scenarios for the realization of the random variables and their 

respective probabilities of occurrence – either by sampling from it in a Monte Carlo 

fashion or by constructing them based on a given criteria (e.g., moment matching 

such as in Kaut and Wallace 0 or minimization of distances between probability 

measures – Romisch 0 or Hochreiter and Pflug 0) – which may then be used to 

numerically compute the expectation of second stage costs. Since the probability 

distribution of the random variables is not known beforehand in this particular 

problem (i.e., it can only be computed after first stage decisions are determined), 

one cannot rely on existing scenario generation methods. 
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3. Proposed methodology 

In this Section, a reformulation scheme which overcomes the difficulties 

associated with the existence of non-linear terms in the problem formulation will be 

presented, along with a way to circumvent the impossibility of applying usual scenario 

generation methods. 

3.1 Reformulation scheme and cut generation algorithm 

The product between variables pB and yDB in the objective function may be 

removed by observing that the feasible regions of the second-stage problems – sets of 

constraints (2.3) and (2.5) – are decoupled from first-stage variables. The second-stage 

problem of each scenario may then be solved independently of the others: 
 

∀s ∈ S, gB = Min 
 

������ +��	 	�
	∈!�∈�

 (3.1)  

subject	'): -��� +  � = ℎ�  (3.2)  

 ��� ≤ 
���� ∀� ∈ � (3.3)  

 �,  ∈ ℝ<  (3.4)  

 

As shown above, we denote by gB the value of the optimal solution of problem 

(3.1) – (3.4) for a given scenario s, which then allows us to re-write problem (2.1) – (2.6) as 

follows: 
 

(�Q) Min 
 

�����
�∈�

+���R�
�∈#

 (3.5)  

subject	'): +� ≤ %  (3.6)  

 �� = 0(p��� + (p��� − p��� ) ∙ ��)
�∈�

 ∀$ ∈ / (3.7)  

 � ∈ 50,18|�|  (3.8)  

 

In the following, without loss of generality, we assume that gB ≥ 0, ∀s ∈ S. A 

remaining difficulty in solving problem (3.5) – (3.8) lies on the product of binary variables xD in the definition of variables pB – each equation defined in the set of constraints (3.7) is a 

polynomial of order |E|. The particular structure of the polynomials defined in the set of 

constraints (3.7) – specifically, the fact that they may be written as the product of linear 

terms in the form a ∙ x + b, where a > 0 and a + b > 0 – allows for the application of the 

proposed convexification technique described below. By relying on the fact that a = b ∙ c → a = exp(ln b + ln c)	, each equation in (3.7) may be re-written as: 
 

p� = exp�� ln(p��� + (p��� − p��� ) ∙ ��)
�∈�

" (3.9)  

 

Since x is a vector of binary variables, the expression within the summation 

operator may also be re-written in such a way that variables xD are not part of the 

logarithmic expression. This is accomplished by observing that the argument of each 

logarithm is pDBZ  if xD is equal to 0 and pDB[  otherwise, leading to: 
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p� = exp��5ln(p��� ) + \ln(p��� ) − ln(p��� )] ∙ ��8
�∈�

" (3.10)  

 

A continuous variable may then be defined as the logarithm of the probability of 

each scenario, thus being an affine function of variables xD (this auxiliary variable is 

introduced for ease of presentation but it is not strictly necessary): 

 

�̂ = ln1p� 3 = �5ln(p��� ) + \ln(p��� ) − ln(p��� )] ∙ ��8
�∈�

 (3.11)  

 

Having the value of the natural logarithm of the probability of a scenario given by 

expression (3.11), the actual value of its probability (i.e., the value of pB) may be obtained 

by a piecewise linear approximation of the exponential function. Since we are dealing with 

minimization problem and the exponential function is convex, this approximation may be 

represented by a set of linear constraints which can be incorporated into the problem: 
 

(�_) �
� 
 

�����
�∈�

+�R��̂�
�∈#

 (3.12)  

subject	'): +� ≤ %  (3.13)  

 �̂ = �5ln(p��� ) + \ln(p��� ) − ln(p��� )] ∙ ��8
�∈�

 ∀$ ∈ / (3.14)  

 �̂� ≥ ab +	cb ∙ �̂ ∀$ ∈ /, ∀d ∈ e (3.15)  

 �̂ ∈ ℝ<, ^ ∈ ℝ   (3.16)  

 � ∈ 50,18|�|  (3.17)  

 

where: 
 e set of linear constraints that approximate the exponential function 

ab , cb coefficients of the k-th segment used to approximate the exponential 

function 

�̂ continuous variable equal to the natural logarithm of the probability of 

scenario $ �̂� continuous variable equal to the approximation of the probability of 

scenario $ 

 

Given an approximation to the exponential function (i.e., given a set of cuts in the 
form y ≥ exp(wg) + exp(wg) ∙ (w − wg) that provide a piecewise linear approximation to 

the exponential function) and assuming it is computationally feasible to enumerate and 

solve the second stage problems for all possible network configurations, one should be able 

to solve problem (3.19) – (3.24) using commercially available solvers. However, the 

number of cuts necessary for a reasonable approximation of the exponential function may 

grow to be very large, leading to computational difficulties. The observation that only a 

small fraction of these cuts will be active at the optimal solution of the problem – only |S| 
cuts represented in the set of constraints (3.15) will be actually binding – naturally points 

towards the design of an algorithm that dynamically generates the cuts to construct the 
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piecewise linear approximation to the exponential function. The following algorithm 

(ALG1) may be used in order to obtain a solution to the problem for which the gap of the 

global optimum solution is less or equal to h 1: 
 

1 Initialize the set of cuts e = ∅, the lower bound jk = −
�l, upper bound mk = +
�l 

and define the maximum percentage error h 

2 While |(mk − jk) mk|⁄ > h 

3 Solve problem =o with the currently defined set of cuts e 

4 Set jk = p(=o) 
5 Set mk = ∑ ����∗�∈� + ∑ R� ∙ exp( �̂∗)�∈#  

6 For each scenario $ ∈ /  

7 Add the cut ab = exp( �̂∗) ∙ (1 − �̂∗) and cb = exp( �̂∗) to the cut set e 

8 End For 

9 End While 

 

The algorithm works by gradually constructing a better approximation of the 

second stage cost function through the addition of cuts around the optimal values of 

variables wB∗ found at each iteration.  

3.2 Scenario generation 

While the number of possible network realizations is computationally tractable, 

the algorithm presented in the previous Section may be used in order to obtain a solution 

which is within a tolerance level ε from the global optimum of the original problem. 

However, if one wants to be able to solve large-scale problems, it becomes imperative to 

have an estimate of the expected value of the second stage cost function which is not based 

on the complete enumeration of all possible network configurations.  

As previously mentioned, the decision-dependent nature of the uncertainties 

involved in the problem makes it impossible to utilize traditional scenario generation 

methods such as Monte Carlo sampling, moment matching or minimization of distances 

between probability measures. We propose to overcome this obstacle by merging the 

concepts from importance sampling into a stochastic programming framework, as 

discussed next. 

In statistics, importance sampling is a technique used to estimate the properties of 

a certain distribution while only having samples drawn from a different one. In the context 

of simulation studies, importance sampling is usually employed as a variance reduction 

technique used in conjunction with the Monte Carlo method.  

As detailed in Rubinstein (1981) the method relies on a simple observation to 

compute the expected value of a random variable X~Fv(x) based on samples from another 

distribution Fo(x): 
 

wxy5�8 = z �lv(�)��{
= z � lv(�)lo(�) lo(�)��{

= wx| }� lv(�)lo(�)~ (3.18)  

 

For a given set of samples x�	(i = 1,… , N) drawn according to a probability density 

function fo(X), the importance sampling estimator of the mean of distribution fv(X) is then 

defined as: 
 

                                                           
1 p(=o) denotes the value of the optimal solution of problem =o and �∗ indicates the value of variable 

� at the optimal solution 
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�̂��# = 1���	 ∙ lv(�	)lo(�	)
!

	�v
 (3.19)  

 

Following expression (3.19), each sample is weighted differently based on the 

likelihood ratio, i.e. the ratio between the probability of occurrence of that sample under 

the distribution of interest and the one from which the samples were drawn. This estimator 

is proved to be consistent – it converges to μ� with probability 1 as the sample size grows to 

infinity – and unbiased – its expected value is μ�, whatever the sample size. 

Although the final (post-investment) probability distribution of the availability of 

the edges is not known a priori, the initial distribution (i.e., the one which does not consider 

any reinforcement investments) may be used to generate scenarios of network 

configuration, for which the probability of occurrence may be easily calculated. 

Additionally, since the convexification technique previously discussed makes it possible to 

compute the probability of occurrence of any scenario given the first-stage investment 

decisions (or, at least, an approximation to its value), we may join these pieces of 

information in order to compute the importance sampling estimator of the expected value 

of the second stage cost function. Problem (3.12) – (3.17) is thus reformulated in a way 

which does not require the full enumeration of all possible network configurations but 

relies on a smaller subset of randomly generated scenarios, as shown below: 
 

(��) Min 
 

�����
�∈�

+ 1
|/|�R� � �̂����!���∈#

 (3.20)  

$
%&��'	'): +� ≤ %  (3.21)  

 �̂ =�5ln(p��� ) + \ln(p��� ) − ln(p��� )] ∙ ��8
�∈�

 ∀$ ∈ / (3.22)  

 �̂� ≥ ab +	cb ∙ �̂ ∀$ ∈ /, ∀d ∈ e (3.23)  

 �̂ ∈ ℝ<, ^ ∈ ℝ   (3.24)  

 � ∈ 50,18|�|  (3.25)  

 

where: 
 

���!� probability of sampled scenario $, calculated based on the initial probability 
distribution of the availability of each edge, i.e. ���!� = ∏ �����∈�  

 

Based on a set of scenarios of network realizations, sampled according to the 

initial probability distribution of the edges’ availabilities, a solution to problem (3.20) – 

(3.25) may be found using the algorithm described above, appropriately modified to solve 

problem P�.  

4. Computational results 

Computational tests were perfomed to analyze the performance of the proposed 

reformulation scheme and algorithm. All tests were conducted on a Pentium 4 3.00 GHz 

computer with 2 GB of RAM. Models and algorithms were implemented using the modeling 

language MOSEL and solved by XPRESS 19.00.04. 

The first results are those obtained for the set of instances described in Viswanath 

et al.(2004). These are all small-size problems which served as a “proof of correctness” for 

the proposed methodology. Since no other work in the literature deals with the problem in 
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its original form (Fan, Liu (2010) and Liu, Fan, Ordonez (2006) dismiss the probabilistic 

nature of the problem by assuming that investment on an edge completely eliminates the 

probability of that edge failing afterwards), several other instances were created in order to 

assess the performance of the methodology in solving medium and large-size instances.  
All the instances solved in Viswanath et al. (2004) refer to a graph which contains 4 

vertices and 5 edges, as depicted in Figure 1. All 28 instances were solved to optimality in 

less than 1.0 second and average solution time was 0.313 second. Additionally, a total of 30 

medium-sized randomly-generated instances (consisting of networks with up to 12 edges) 

were solved in under 1000 seconds by the proposed algorithm with full scenario 

enumeration and gap tolerance level set to no more than 1%.  

We observed that the total time required to solve the instances increased very 

rapidly with respect to the number of edges in the network – just as an illustration of this 

fact, the average time needed to solve the instances with 11 edges was 40.2 seconds, while 

the average time consumed by the algorithm in solving the instances with 12 edges was 

368.1 seconds. A critical example is provided by an instance of the problem with 10 vertices 

and 15 edges (and, consequently, 32,768 possible scenarios of network configuration) 

which was solved by full scenario enumeration. Figure 2 presents the performance of the 

algorithm – data points represent the upper and lower bounds obtained at each iteration: 
 

 
Figure 1 – Graph corresponding to the instances solved in Viswanath et al. (2004) 

 
 

 
Figure 2 – Algorithm perfomance on an 15-edge instance with full scenario enumeration 
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In the case of the 15-edge instance, it took a total of 25 hours for the algorithm to 

narrow the gap down to 2.57%, which clearly leads to the conclusion that full scenario 

enumeration is currently not a viable option when one tries to solve large scale problems 

and a sample-based version of it becomes a necessity. Another 18 larger-sized instances, 

with the number of edges ranging from 15 to 40, were randomly generated and solved by 

the proposed approach – Table 1 reports obtained results2 . 

The instances with 15 edges (v10e15_1, v10e15_2 and v10e15_3) all refer to the 

same graph of the example for which the convergence of the algorithm was shown in Figure 

2. Each one of them was solved using a different set of 500 scenarios (out of the 32,768 

possible network configurations), sampled according to the initial probability distribution 

of the edges’ availabilities. It is interesting to observe that even though the number of 

scenarios used in these instances is significantly smaller than the total number of possible 

scenarios, the solutions found for these problems in under 60 seconds have an objective 

function value which is close to that found after 25 hours in the case of full scenario 

enumeration. 
 

Table 1 – Results for the large-size instances 
 

Id # Scen # TotScen UB LB % Gap # Iter MainTime 

v10e15_1 500 3.28E+4 44.57 44.40 0.37% 6 41.0 

v10e15_2 500 3.28E+4 44.84 44.84 0.00% 6 27.5 

v10e15_3 500 3.28E+4 47.04 46.92 0.25% 6 27.5 

v10e20_1 500 1.05E+6 81.83 81.72 0.13% 8 1,169.7 

v10e20_2 500 1.05E+6 81.47 80.76 0.87% 9 2,725.2 

v10e20_3 500 1.05E+6 81.69 81.33 0.45% 10 1,713.1 

v10e20_4 500 1.05E+6 78.47 78.16 0.39% 10 3,164.3 

v10e20_5 500 1.05E+6 77.33 77.33 0.00% 10 4,028.0 

v12e25_A 300 3.36E+7 75.53 74.96 0.75% 8 2,528.2 

v12e25_B 300 3.36E+7 52.44 52.10 0.65% 12 3,133.6 

v12e25_C 300 3.36E+7 70.32 70.19 0.18% 11 1,882.2 

v12e25_D 300 3.36E+7 43.10 42.93 0.41% 8 810.2 

v13e30_1 200 1.07E+9 32.44 32.32 0.36% 9 516.4 

v13e30_2 200 1.07E+9 38.86 38.68 0.47% 11 6,332.0 

v13e30_3 200 1.07E+9 32.41 32.41 0.01% 7 1,086.4 

v13e30_4 200 1.07E+9 33.17 32.90 0.84% 9 1,095.7 

v13e30_5 200 1.07E+9 34.46 34.17 0.84% 9 3,457.3 

v16e40_1 200 1.10E+12 19.56 19.47 0.48% 7 4367.5 
 

5. Conclusions 

This works aims at contributing to the solution of the network reinforcement 

problem within the area of humanitarian logistics, which is formulated as a MINLP and 

characterized as a stochastic programming problem with endogenous uncertainties. The 

proposed re-formulation scheme overcomes the nonlinearities that arise in the original 

                                                           
2 #TotScen indicates the total number of network configuration scenarios, #Scen indicates the 

number of scenarios actually used when solving the problem, UB reports the value of the best 

solution found while LB indicates the value of the solution to the last approximated problem, % Gap 

presents the percentage gap between the upper and lower bounds; # Iter indicates the number of 

iterations of the algorithm needed to reach the final solution, and MainTime report the total time for 

the convergence of the algorithm. 
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formulation presented in the literature and the incorporation of the importance sampling 

concepts allows us to solve large otherwise-untractable instances of the problem by using 

sample scenarios even though the final probability distribution of the random variables is 

not known a priori. The proposed approach was able to solve the instances available in the 

literature in very short time. Additionally, larger instances of the problem were created in 

order to assess the performance of the developed algorithms solutions within 1% of the 

global optimal have been found in reasonable time.  

Regarding improvements on the specific problem discussed in this work, there are 

some issues that can be dealt with more efficiently such as the solution of very similar 

problems in each iteration of the algorithm or the adoption of a branch-and-cut framework. 
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