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Abstract

Global optimization seeks a minimum or maximum of a multimodal function over a discrete
or continuous domain. In this paper, we propose a continuous GRASP heuristic for finding
approximate solutions for bound-constrained continuous global optimization problems subject
to nonlinear constraints. Experimental results illustrate its effectiveness on some functions from
CEC2006 benchmark (Liang et al. [2006]).
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1 Introduction

Continuousglobal minimization optimization seeks a solutiah € S C R" such thatf(x*) <

f(x), Vx € S whereSis some region oR" and the objective functioff is defined byf : S— R.

In this paper, we consider the domédras the intersection between a set of nonlinear constraints
and a hyper-rectangl®= {x = (x1,...,%,) € R": £ <x < u}, wherel/ € R" andu € R" such that

u > I, fori=1,...,n, in order to present the C-GRASP heuristic for solving bound-constrained
continuous global optimization problems subject to nonlinear constraints:

min f(x), Xx= (X1,X2,...,%n) (1)
subject to:
g(x)<0,i=1,...,q 2
hj(x) =0, j=0g+1,...,m (3)
[<x<uy, i=1,...,n 4)

Given that the constraints (2) can be written as equalities with the introduction gfdlaek
variablesxn1, . . ., Xn4q:

Gi(X1,..., %) +X%4+i =0, i=1,...,9, withx, >0, k=n+1,...,n+q, (5)

the original problem can be reduced to the following global optimization problem:

q m
minF(xl,...,xn+q):[f(xl,...,xn)—f*]2+Zl[gi(xl,...,xn)+xn+i]2+ > [hi(xa,... xa)]* (6)
i= j=q+1
subject to:
IiSXiSUi, i:la"'vn (7)
X >0, k=n+1,... n+q, (8)

wheref* is a known optimum value of problem (1-4), or the best known value in the literature. In
case we do not know what the global solution value is, if possible, we can consider an appropriate
lower bound ad*.

SinceF (Xi,...,X4q) > 0foralll <x <u,i=1,...,n,andx >0,k=n+1,...,n+q, itis
easy to see thad (Xq,...,Xn4q) = 0= f(X1,..., %) = %, Qi(X1,..., %) = %4, 1 =1,...,0; and
hj(X1,...,%) =0, j =qg+1,...,m. Hence, we have the followingt z* = (X1, ...,Xn4q)" feasible
> F(z') = 0= Z" is a global minimizer of problem (1-4).

This paper is organized as follows. C-GRASP heuristic for global optimization problem is
described in Section 2. In Section 3, experimental results illustrate the effectiveness of C-GRASP
for global optimization with nonlinear constraints. Concluding remarks are made in Section 4.

2 Continuous GRASP

Continuous GRASP is a method for finding good quality solutions to bound-constrained global
optimization problems. A pseudo-code for C-GRASP is shown in Figure 1. The procedure takes
as input the problem dimensian lower and upper bound vectofsandu, the objective function

f(-), as well as the parametelns, he, andpj,. As described in Hirsch et al. [2010], parameters

hs andhe define, respectively, the initial and final grid discretization densities, while paramgter
specifies the portion of the neighborhood of the current solution that is searched during the local
improvement phase.
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procedure C-GRASP(n, 4, u, f (+), hs, he, Pio)

1 f* < oo;

2 while stopping criteria not medo

3 X - UnifRand(/,u);

4 h <+ hg;

5 whileh > he do

6 Impreg < false;

7 Impry, < false;

8 [X, Impr¢] + ConstructGreedyRandomized(X, f(-),n,h, ¢,u, Imprc);
9 [X, Impry] ¢+ LocalImprovement (X, f(-),n,h,¢,u,pio, Impry);
10 if f(x) < f*then

11 X < X;

12 f* <« f(x);

13 end if

14 if Imprc = false and Impry, = false then

15 h«h/2;  /* make grid more dense */

16 end if

17 end while

18 end while

19 return(x®);

end C-GRASP;

Figure 1: Pseudo-code for C-GRASP.

Line 1 of the pseudo-code initializes the objective function vdltief the best solution found
to infinity. Since C-GRASP is a multi-start procedure, it is continued indefinitely, until one or more
stopping criteria are satisfied in line 2. These stopping criteria could be based, for example, on
the total number of function evaluations, the number of major iterations, or a target solution quality.
The current implementation of thebcgrpp library [Silva et al., 2012] can use one of two stopping
criteria: (1) stop when the number of outer iterations (loop from line 2 to line 18 in the pseudocode)
reaches a specified value; (2) stop when the optimality gap

£ if f(x*)=0
e-|f(x")] if f(x*)#0,

wherex is the current best solution found by the heuristic ahds a known global minimum
solution, or the best known solution in the literature. In case we do not know what the global
solution value is, if possible, we can consider an appropriate lower bouhickgs

Each time the stopping criteria of line 2 are not satisfied, another iteration takes place (lines 3—
17). During each iteration, the initial solutionis set, in line 3, to a random point distributed
uniformly over then-dimensional box defined b§andu. Parameteh, which controls the dis-
cretization density of the search space, is re-initializelstim line 4. The construction and local
improvement phases are then called sequentially in lines 8 and 9, respectively. The solution returned
from the local improvement procedure is compared against the current best solution in line 10. If
the returned solution has a better objective value than the current best solution, then in lines 11-12
the current best solution is updated with the returned solution. In line 14, if variabtes and
Impr; arefal se, then the grid density is increased by halvimgn line 15. The variabl&mprc
(resp. Impry) is f al se upon return from the construction (resp. local improvement) procedure if
and only if no improvement is made in the construction (resp. local improvement) procedure. The
grid density is increased at this stage because repeating the construction procedure with the same
grid density will not improve the solution. This allows C-GRASP to start with a coarse discretiza-
tion and adaptively increase the density as needed, thereby intensifying the search with a more
dense discretization when no improvement has been found. The best solution found, at the time the

GAP= [f(x) — f(x)[ < { (9)
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stopping criteria are satisfied, is returned.

The constructionprocedureis shown in Figure 2. It takes as input a solution veatdnitially,
the procedure allows all coordinates«db change (i.e. they are calledfixed. In turn, in line 10 of
the pseudo-code, HeUse isf al se, a discrete line search is performed in each unfixed coordinate
directioni of x with the othem — 1 coordinates ok held at their current values. Consider the line
search in directioe/, where vectog has zeros in all components exceptittie, where it has value
one. The objective function is evaluated at pointsk-h-€ for k=0,1,—1,2,—2,... such that
li <x+k-h<u. Letk* athe value ok that minimizesf (x+k-h-¢&) subject td; <x +k-h<u;. In
lines 10 and 11 of the pseudo-code, the vaue x; + k* - h, for thei-th coordinate, that minimizes
the objective function, together with the objective function vajyare saved. In line 1% denotes
x with thei-th coordinate set t@.

procedure ConstructGreedyRandomized(X, f(-),n,h,¢,u,Imprc)

1 UnFixed < {1,2,...,n};

2 O < UnifRand(0,1);

3 ReUse «+ false;

4 while UnFixed # 0 do

5 g +00;

6 g —oo;

7 fori=1,...,ndo

8 if i € UnFixed then

9 if ReUse = false then
10 Z + LineSearch(x,h,i,n, f(-),24,u);
11 g« f(%);

12 end if

13 if g> gi then g+ g;;

14 if g < gi then g« gi;

15 end if

16 end for

17 RCL « 0

18 Threshold < g-+0a-(g—Q);

19 fori=1,...,ndo

20 if i € UnFixed and gj < Threshold then
21 RCL < RCLU{i};

22 end if

23 end for

24 j ¢ RandomlySelectElement(RCL);
25 if Xj = zj then

26 ReUse < true;

27 else

28 Xj < Zj;

29 ReUse < false,;

30 Impre < true;

31 end if

32 UnFixed < UnFixed\{j}; /* Fix coordinate j. */
33 endwhile

34 return(x,Imprc);
end ConstructGreedyRandomized;

Figure 2: Pseudo-code for C-GRASP construction phase.

After looping through all unfixed coordinates (lines 7 to 16), in lines 17 to 23 a restricted
candidate list (RCL) is formed containing the unfixed coordinat@soseg; values are less than or
equal to g+ a - (g— g), whereg and gare, respectively, the maximum and minimgnvalues over
all unfixed coordinates of, anda € [0,1] is chosen uniformly at random in line 2. In line 24, a
coordinate is chosen at random from #@L, say coordinatg € RCL. Line 25 checks whethe;
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andz; areequal. If so, line 26 se®eUse to the valuetrue. Otherwise, in lines 28 to 3BeUse is
set tofalse, Imprg is Set totrue, andy; is set to equat;. Finally, in line 32, the coordinatg of

x is fixed, by removingj from the setUinFixed. The above procedure is continued until all of the
n coordinates ok have been fixed. At that stageand Imprc are returned from the construction
procedure.

From a given input poink € R", thelocal improvement procedurgenerates a neighborhood
and determines at which points in the neighborhood, if any, the objective function improves. If
an improving point is found, it is made the current point and the local search continues from the
new solution. Le € R" be the current solution arfdbe the current grid discretization parameter.
Define

S(X)={xeS|{<x<u,x=x+T1-h,1€Z"}

to be the set of points iBthat are integer steps (of sikg¢ away fromx. Let
Bn(X) = {x€ S| x=X+h- (X —X) /[ ~X], X € $(x)\ {x}}

be the projection of the points i&(x) \ {x} onto the hyper-sphere centeredkaif radiush. The
h-neighborhooaf the pointxis defined as the set of pointsBa(x).

A pseudo-code for the local improvement procedure is given in Figure 3. The procedure starts
from a solutiorx € SC R" found in the construction procedure. The current best local improvement
solutionx* is initialized tox in line 1 of the pseudo-code and the current best soldtiarf the local
improvement phase is initialized in line 2 &5<*). Based on the current value of the discretization
parameteh and the number of points iBr(x"), the number of grid points is computed in line 3.

In line 4, the number of pointBointsToExamine that can be evaluated is computed by using
parametempo, the portion of the neighborhood to be examined. However, different from what

is described in Hirsch et al. [2010], in lines 5 to 7 we impose the restriction that the maximum
number of points that can be evaluated in any neighborhood be limited to the value of the parameter
MaxPointsToExamine.

procedure LocalImprovement(X, f(-),n,h,¢,u,pjo, Impry,MaxPointsToExamine)

1 X X;

2 f*  f(x);

3 NumGridPoints < [, [(u —4)/h];

4 PointsToExamine < [Pjo - NumGridPoints];

5 if PointsToExamine > MaxPointsToExamine then
6 PointsToExamine <— MaxPointsToExamine;
7 end if

8 NumPointsExamined < O;

9 while NumPointsExamined < PointsToExamine do
10 NumPointsExamined < NumPointsExamined + 1;
11 X < RandomlySelectElement(Bp(X"));

12 if ¢{<x<uand f(x) < f* then

13 X« X;

14 f* «— f(x);

15 Impry, < true;

16 NumPointsExamined < O;

17 end if

18 end while

19  return(x*, Impry);
end LocalImprovement;

Figure 3: Pseudo-code for C-GRASP local improvement phase.

Starting at the point™, in the loop in lines 9-18 the algorithm randomly seléetsntsToExamine
points inBy(x*), one at a time. In line 12, if the current poiselected fronBp(X") is feasible and
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is better tharx*, thenx* is set tox, f* is set tof (x), Impry, is set totrue, NumPointsExamined

is reset to zero, and the process restarts withs the starting solutiorLmpr;, is used to determine
whether the local improvement procedure improved the best solution. Local improvement is termi-
nated if anh-local minimunsolutionx* is found. At that pointx* andImpr; are returned from the

local improvement procedure.

3 Experimental results

All experiments were done using the Python/C library for C-GRASP introduced by Silva et al.
[2012] on a quad core Intel Core i7 processor (1.60 GHz) with Turbo Boost up to (2.80 GHz) and
16 Gb of memory, running Ubuntu 10.04 LTS. The algorithm used for random-number generation
is an implementation of the Mersenne Twister algorithm introduced by Matsumoto and Nishimura
[1998]. For the experiments to follow, we made use of the test probd@mf~loudas and Pardalos,
1990], g02 [Koziel and Michalewicz, 1999]g03 [Michalewicz et al., 1996]g04 [Himmelblau,

1972] andg05 [Hock and Schittkowski, 1981], whose properties are described in Table 1, followed
by their corresponding mathematical models.

Table 1: For the five problems (gog05) from CEC2006 benchmark [Liang et al., 2008]is the
number of decision variablep;= |F|/|S], the estimated ratio between the feasible region and the
search space; LI, NI, LE and NE are the number of linear inequality, nonlinear inequality, linear
equality and nonlinear equality constraints, respectively;aride no. of active constraintsat

Prob. | n type f(x") p LI NI LE NE a

g0l 13 quadratic -15.0000000000 0.0111 9 O 0 0 6
g02 20 nonlinear -0.8036191042 99.9971 0 2 0 0 1

g03 10 polynomial -1.0005001000 0.0000 0 O 0 11

g04 5 quadratic -30665.5386717834 52.1230 0 6 0 0 2
g05 5 cubic 5126.4967140071 0.0000 2 O 0 3 3

g01

4 4B
min 5x Z\Xi_S*ZXi D
i= i= i:ZS
subject to:
01(X) = 2% X1+ 2% X2+ X10+X11— 10< 0
02(X) = 2% X1+ 2% X3+ X10+ X12—10<0
03(X) = 2xXo+ 2% X3+ X311+ X12—10<0
04(X) = —8xXx1 +X10< 0
O5(X) = —8* X2 +x11 <0

O6(X) = —8xX3+X12<0

97(X) = —2%X4+ X5 +%10< 0
g8(X) = —2% X —X7+x11 <0
Oo(X) = —2%Xg—Xg+X12 <0
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0<x < 100 = 10,11,12)
0<x33<1

g02
min — Sy cost(x) — 2 L1 cog (%)
\/ S ix?
subjectto:
n
01(x) =0.75—[1x <0
I
n
RX)=Y x—75xn<0
2
0<x<10,i=1,...,n
g03
n n
min — (v/n) [ %
I
subjectto:
n
h(x)=S$x-1=0
2
O0<x<1li=1,...,n
g04
min 53578547%+ 0.8356891xxs + 37.293239% — 40792141
subject to:

01(X) = 85.334407+ 0.0056858x%x5 + 0.0006262xx4 — 0.0022053%x5 — 92 < 0

Go(X) = —85.334407— 0.0056858xx5 — 0.0006262xx4 + 0.0022053%x5 < 0
g3(X) = 8051249+ 0.0071317x%x5 + 0.0029955xx, + 0.0021813% — 110< 0
ga(X) = —8051249— 0.0071317xx5 — 0.0029955xx, — 0.0021813%+ 90< 0
05(X) = 9.300961+ 0.0047026%x5 + 0.0012547xx3 + 0.0019085%x; — 25 < 0
gs(X) = —9.300961— 0.0047026x%x5 — 0.0012547xx3 — 0.0019085%x4 + 20 < 0
78< % <102,33< X, < 4527< % <45, = 3,4,5
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g05
min 3x; +0.000001% + 2% + (0.000002 /33
subject to:
01(X) = —x4+x3—055<0
02(X) = —x3+Xx4—055<0

hz(x) = 1000sin{-x3 — 0.25) +1000sirf—x4 — 0.25) +8948 —x; =0
ha(X) = 1000sir{x3 — 0.25) +10005ir{Xg — X4 — 0.25) +8948 — x, = 0
hs(X) = 1000sir{x4 — 0.25) +10005sir{xs — X3 — 0.25) +12948 = 0
0 < x1,% < 12000.55< X3,%4 < 0.55

In all five problems, we ran C-GRASP five times (a different starting random number seed for
each run from 270001 to 270005) wik= 0.05,he = 0.0001,rh0); = 0.15,MaxPointsToExamine =
1000, and = 0.0001. Atany time during a run, we define the optimality gajis?yP= |F (X1, ..., Xn1q) —
F(Z)], where(xy, ..., X 1q) is the current best solution found by the heuristic &ifd') = 0. There-
fore, according to Equation (9), we say that the heuristic has solved the prolBARPiK €, in this
case withe = 0.0001. In each problem, the heuristic was able to find its optimal (or best known)
solution in all five running.

g03times
l T T T T I T l + ] T +
0.8 | /i" rrrrrrrrrrrrrrrrrrrrrrrrrrrr .
>
.-(55 0.6 i [ "'jl'/ """""""""""""""""""""" 1
o) : : B
o | P
5. H :"r
° /
= ;
8 i %
g 04— e i e A -
3 f
) %
0.2 i : é """ e E
% empirical L
: : i ; theoretical --------
0 s | i i i 1 ]
0 0.02 0.04 0.06 008 01 012 014 0.16 0.18

time to target solution

Figure 4: Plot of cumulative probability distribution of C-GRASP running times in sectords
instanceg03.

To illustrate the robustness of C-GRASP, we make 100 independent runs of the heuristic on
problemg03, recording the time taken to find the best known solution for the instance, and plot
its runtime distribution in Figure 4. In other words, Figure 4 shows the time-to-target plot [Aiex
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et al., 2002, 2007] (or runtime distributions), where the sorted running times makhe plot.
For instance, the running time for 95% of the C-GRASP’s runs to find the best-valued solution for
problemg03 is 0.145 seconds. Furthermore, the maximum, average and minimum time found were
0.17,0.0738 and 0.02 seconds, respectively.

Table 2 illustrates the optimum (or best known) value and solution for each problemf (x*)
andx* respectively, as well as the best valfie) and solution(x,y) found by running C-GRASP
heuristic, where= (X1, ...,%n) andy = (Xn41, - - -, Xn+q)-

4 Concluding remarks

In this paper, we present the C-GRASP heuristic for finding approximate solutions for continuous
global optimization problems subject to box and nonlinear constraints. We illustrate the approach
using five challenging problems from CEC2006 benchmark [Liang et al., 2006]. The promising

results shown here illustrate the potential of C-GRASP for nonlinearly-constrained global opti-

mization problems.
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Table 2: The optimum (or best known) value and solution for problgdristo g05, as well as the
best value and solution found by C-GRASP.
Prob. [ obj. function solution

—15.0000000000 X =(1,1,1,1,1,1,1,1,1,3,3,3,1)

g01
—14.999977021300001 x=(0.9996470.9988610.9994210.999783,
0.9996860.9996930.9997070.999779,
0.9997932.9993963.0062723.002863,
0.999619)
y = (0.0000440.0001660.0000444.997691,
4.9846834.9925120.0000730.007167,
0.003532
—0.8036191042 X" = (3.1624606157218%8.12833142812967,
3.09479212988798.06145059523469,
3.02792915885552.99382606701730,
2.95866871765282.92184227312450,
0.49482511456938.48835711005490,
0.48231642711860.47664475092742,
0.47129550835498.46623099264167,
0.46142004984199.45683664767217,
0.452458769032610.44826762241853,
0.44424700958760.4403828595631)7

g02
—0.8035430237930818 x=(3.175996611086088.180627712694781,
3.066388234840308.058944915994798,
3.116091976677608.030529208214273,
2.967431149927402.992169560380718,
0.487215475849879.475759145750601,
0.481337756961270.464250333517413,
0.454804869592190.451165385881657,
0.462439199478229.460109970824757,
0.45213809495784P.450923903942073,
0.45121883044318D.46048129339577)2
y=(0.01170568129327419860600403830176
—1.0005001000 X* = (0.31624357647283060.316243577414338339,
0.316243578012345920.316243575664017895,
0.316243578205526066.31624357738855069,
0.31624357547294951@.316243577164883938,
0.31624357815592030@.316243576147374916

g03
—1.0004249935155028 x = (0.3260400.3162210.325100,
0.3119890.3241270.320020,
0.3004340.3094900.314283,
0.315553
—306655386717834 X* = (78,33,29.9952560256815985,
45,36.7758129057882073

g04

—3066553862992354 x = (780174842662495583.000188070479744,

29.70347286700895482.329819349577370,

38.189032013036609)

y = (0.0001366333346992.066357110170159,

10.863082742903556.136867955779394,
5.057347781868908.000033058014801

51264967140071 X" = (67994514829702870902606697600004691,
0.1188763690944104330.39623348521517826

g05
5126496782650232 x = (69421437510106030290.108629—0.401050Q
y=(0.0419071.061108

2464



