
September 24-28, 2012
Rio de Janeiro, Brazil

Continuous GRASP for nonlinearly-constrained global
optimization

JõaoL. Faćo
Universidade Federal do Rio de Janeiro

Rio de Janeiro, RJ, Brazil.

faco@ufrj.br

Mauricio G. C. Resende
Algorithms and Optimization Research Department

AT&T Labs Research
Florham Park, NJ 07932 USA.

mgcr@research.att.com

Ricardo M. A. Silva
Centro de Inforḿatica

Universidade Federal de Pernambuco

Recife, PE, Brazil.

rmas@cin.ufpe.br

Abstract

Global optimization seeks a minimum or maximum of a multimodal function over a discrete
or continuous domain. In this paper, we propose a continuous GRASP heuristic for finding
approximate solutions for bound-constrained continuous global optimization problems subject
to nonlinear constraints. Experimental results illustrate its effectiveness on some functions from
CEC2006 benchmark (Liang et al. [2006]).

Keywords: Nonlinear constraints, global optimization, continuous optimization, heuristic,
local search, nonlinear programming, GRASP, C-GRASP.

1

2454

September 24-28, 2012
Rio de Janeiro, Brazil

1 Introduction

Continuousglobal minimization optimization seeks a solutionx∗ ∈ S⊆ Rn such that f (x∗) ≤
f (x), ∀ x∈ S, whereS is some region ofRn and the objective functionf is defined byf : S→ R.
In this paper, we consider the domainS as the intersection between a set of nonlinear constraints
and a hyper-rectangleS= {x = (x1, . . . ,xn) ∈ Rn : ℓ ≤ x≤ u}, whereℓ ∈ Rn andu∈ Rn such that
ui ≥ l i , for i = 1, . . . ,n, in order to present the C-GRASP heuristic for solving bound-constrained
continuous global optimization problems subject to nonlinear constraints:

min f (x), x= (x1,x2, . . . ,xn) (1)

subject to:
gi(x)≤ 0, i = 1, . . . ,q (2)

h j(x) = 0, j = q+1, . . . ,m (3)

l i ≤ xi ≤ ui , i = 1, . . . ,n (4)

Given that the constraints (2) can be written as equalities with the introduction of theq slack
variablesxn+1, . . . ,xn+q:

gi(x1, . . . ,xn)+xn+i = 0, i = 1, . . . ,q, with xk ≥ 0, k= n+1, . . . ,n+q, (5)

the original problem can be reduced to the following global optimization problem:

min F(x1, . . . ,xn+q) = [f (x1, . . . ,xn)− f ∗]2+
q

∑
i=1

[gi(x1, . . . ,xn)+xn+i]
2+

m

∑
j=q+1

[h j(x1, . . . ,xn)]
2 (6)

subject to:
l i ≤ xi ≤ ui , i = 1, . . . ,n (7)

xk ≥ 0, k= n+1, . . . ,n+q, (8)

where f ∗ is a known optimum value of problem (1-4), or the best known value in the literature. In
case we do not know what the global solution value is, if possible, we can consider an appropriate
lower bound asf ∗.

SinceF(x1, . . . ,xn+q) ≥ 0 for all l i ≤ xi ≤ ui , i = 1, . . . ,n, andxk ≥ 0,k = n+1, . . . ,n+q, it is
easy to see thatF(x1, . . . ,xn+q) = 0⇐⇒ f (x1, . . . ,xn) = f ∗; gi(x1, . . . ,xn) = xn+i , i = 1, . . . ,q; and
h j(x1, . . . ,xn) = 0, j = q+1, . . . ,m. Hence, we have the following:∃ z∗ = (x1, . . . ,xn+q)

∗ feasible
∋ F(z∗) = 0=⇒ z∗ is a global minimizer of problem (1-4).

This paper is organized as follows. C-GRASP heuristic for global optimization problem is
described in Section 2. In Section 3, experimental results illustrate the effectiveness of C-GRASP
for global optimization with nonlinear constraints. Concluding remarks are made in Section 4.

2 Continuous GRASP

Continuous GRASP is a method for finding good quality solutions to bound-constrained global
optimization problems. A pseudo-code for C-GRASP is shown in Figure 1. The procedure takes
as input the problem dimensionn, lower and upper bound vectorsℓ andu, the objective function
f (·), as well as the parametershs, he, andρlo. As described in Hirsch et al. [2010], parameters
hs andhe define, respectively, the initial and final grid discretization densities, while parameterρlo

specifies the portion of the neighborhood of the current solution that is searched during the local
improvement phase.

2

2455

September 24-28, 2012
Rio de Janeiro, Brazil

procedure C-GRASP(n,ℓ,u, f (·),hs,he,ρlo)
1 f ∗← ∞;
2 while stopping criteria not metdo
3 x← UnifRand(ℓ,u);
4 h← hs;
5 while h≥ he do
6 ImprC← false;
7 ImprL← false;
8 [x,ImprC]← ConstructGreedyRandomized(x, f (·),n,h, ℓ,u,ImprC);
9 [x,ImprL]← LocalImprovement(x, f (·),n,h, ℓ,u,ρlo,ImprL);
10 if f (x)< f ∗ then
11 x∗← x;
12 f ∗← f (x);
13 end if
14 if ImprC = false and ImprL = false then
15 h← h/2; /* make grid more dense */
16 end if
17 end while
18 end while
19 return(x∗);
end C-GRASP;

Figure 1: Pseudo-code for C-GRASP.

Line 1 of the pseudo-code initializes the objective function valuef ∗ of the best solution found
to infinity. Since C-GRASP is a multi-start procedure, it is continued indefinitely, until one or more
stopping criteria are satisfied in line 2. These stopping criteria could be based, for example, on
the total number of function evaluations, the number of major iterations, or a target solution quality.
The current implementation of thelibcgrpp library [Silva et al., 2012] can use one of two stopping
criteria: (1) stop when the number of outer iterations (loop from line 2 to line 18 in the pseudocode)
reaches a specified value; (2) stop when the optimality gap

GAP= | f (x)− f (x∗)| ≤
{

ε if f (x∗) = 0

ε · | f (x∗)| if f (x∗) 6= 0,
(9)

wherex is the current best solution found by the heuristic andx∗ is a known global minimum
solution, or the best known solution in the literature. In case we do not know what the global
solution value is, if possible, we can consider an appropriate lower bound asf (x∗).

Each time the stopping criteria of line 2 are not satisfied, another iteration takes place (lines 3–
17). During each iteration, the initial solutionx is set, in line 3, to a random point distributed
uniformly over then-dimensional box defined byℓ andu. Parameterh, which controls the dis-
cretization density of the search space, is re-initialized tohs in line 4. The construction and local
improvement phases are then called sequentially in lines 8 and 9, respectively. The solution returned
from the local improvement procedure is compared against the current best solution in line 10. If
the returned solution has a better objective value than the current best solution, then in lines 11–12
the current best solution is updated with the returned solution. In line 14, if variablesImprC and
ImprL arefalse, then the grid density is increased by halvingh, in line 15. The variableImprC
(resp.ImprL) is false upon return from the construction (resp. local improvement) procedure if
and only if no improvement is made in the construction (resp. local improvement) procedure. The
grid density is increased at this stage because repeating the construction procedure with the same
grid density will not improve the solution. This allows C-GRASP to start with a coarse discretiza-
tion and adaptively increase the density as needed, thereby intensifying the search with a more
dense discretization when no improvement has been found. The best solution found, at the time the

3

2456

September 24-28, 2012
Rio de Janeiro, Brazil

stopping criteria are satisfied, is returned.
Theconstructionprocedureis shown in Figure 2. It takes as input a solution vectorx. Initially,

the procedure allows all coordinates ofx to change (i.e. they are calledunfixed). In turn, in line 10 of
the pseudo-code, ifReUse is false, a discrete line search is performed in each unfixed coordinate
directioni of x with the othern−1 coordinates ofx held at their current values. Consider the line
search in directionei , where vectorei has zeros in all components except thei-th, where it has value
one. The objective function is evaluated at pointsx+ k ·h ·ei for k = 0,1,−1,2,−2, . . . such that
l i ≤ xi +k·h≤ ui . Letk∗ a the value ofk that minimizesf (x+k·h·ei) subject tol i ≤ xi +k·h≤ ui . In
lines 10 and 11 of the pseudo-code, the valuezi = xi +k∗ ·h, for thei-th coordinate, that minimizes
the objective function, together with the objective function valuegi , are saved. In line 11, ˇxi denotes
x with the i-th coordinate set tozi .

procedure ConstructGreedyRandomized(x, f (·),n,h, ℓ,u,ImprC)
1 UnFixed←{1,2, . . . ,n};
2 α← UnifRand(0,1);
3 ReUse← false;
4 while UnFixed 6= /0 do
5 g

¯
←+∞;

6 ḡ←−∞;
7 for i = 1, . . . ,n do
8 if i ∈ UnFixed then
9 if ReUse= false then
10 zi ← LineSearch(x,h,i, n, f (·), ℓ,u);
11 gi ← f (x̌i);
12 end if
13 if g

¯
> gi then g

¯
← gi ;

14 if ḡ< gi then ḡ← gi ;
15 end if
16 end for
17 RCL← /0;
18 Threshold← g

¯
+α · (ḡ−g

¯
);

19 for i = 1, . . . ,n do
20 if i ∈ UnFixed and gi ≤ Threshold then
21 RCL← RCL∪{i};
22 end if
23 end for
24 j ← RandomlySelectElement(RCL);
25 if x j = zj then
26 ReUse← true;
27 else
28 x j ← zj ;
29 ReUse← false;
30 ImprC← true;
31 end if
32 UnFixed← UnFixed\{ j}; /* Fix coordinate j. */
33 end while
34 return(x,ImprC);
end ConstructGreedyRandomized;

Figure 2: Pseudo-code for C-GRASP construction phase.

After looping through all unfixed coordinates (lines 7 to 16), in lines 17 to 23 a restricted
candidate list (RCL) is formed containing the unfixed coordinatesi whosegi values are less than or
equal to g

¯
+α · (ḡ−g

¯
), whereḡ and g

¯
are, respectively, the maximum and minimumgi values over

all unfixed coordinates ofx, andα ∈ [0,1] is chosen uniformly at random in line 2. In line 24, a
coordinate is chosen at random from theRCL, say coordinatej ∈ RCL. Line 25 checks whetherx j

4

2457

September 24-28, 2012
Rio de Janeiro, Brazil

andzj areequal. If so, line 26 setsReUse to the valuetrue. Otherwise, in lines 28 to 30,ReUse is
set tofalse, ImprC is set totrue, andx j is set to equalzj . Finally, in line 32, the coordinatej of
x is fixed, by removingj from the setUnFixed. The above procedure is continued until all of the
n coordinates ofx have been fixed. At that stage,x andImprC are returned from the construction
procedure.

From a given input pointx ∈ Rn, the local improvement proceduregenerates a neighborhood
and determines at which points in the neighborhood, if any, the objective function improves. If
an improving point is found, it is made the current point and the local search continues from the
new solution. Let ¯x∈ Rn be the current solution andh be the current grid discretization parameter.
Define

Sh(x̄) = {x∈ S| ℓ≤ x≤ u, x= x̄+ τ ·h, τ ∈ Zn}
to be the set of points inS that are integer steps (of sizeh) away from ¯x. Let

Bh(x̄) = {x∈ S| x= x̄+h· (x′− x̄)/‖x′− x̄‖, x′ ∈ Sh(x̄)\{x̄}}

be the projection of the points inSh(x̄) \ {x̄} onto the hyper-sphere centered at ¯x of radiush. The
h-neighborhoodof the pointx̄ is defined as the set of points inBh(x̄).

A pseudo-code for the local improvement procedure is given in Figure 3. The procedure starts
from a solutionx∈S⊆Rn found in the construction procedure. The current best local improvement
solutionx∗ is initialized tox in line 1 of the pseudo-code and the current best solutionf ∗ of the local
improvement phase is initialized in line 2 asf (x∗). Based on the current value of the discretization
parameterh and the number of points inBh(x∗), the number of grid points is computed in line 3.
In line 4, the number of pointsPointsToExamine that can be evaluated is computed by using
parameterρlo, the portion of the neighborhood to be examined. However, different from what
is described in Hirsch et al. [2010], in lines 5 to 7 we impose the restriction that the maximum
number of points that can be evaluated in any neighborhood be limited to the value of the parameter
MaxPointsToExamine.

procedure LocalImprovement(x, f (·),n,h, ℓ,u,ρlo,ImprL,MaxPointsToExamine)
1 x∗← x;
2 f ∗← f (x);
3 NumGridPoints←∏n

i=1⌈(ui − ℓi)/h⌉;
4 PointsToExamine← ⌈ρlo ·NumGridPoints⌉;
5 if PointsToExamine> MaxPointsToExamine then
6 PointsToExamine← MaxPointsToExamine;
7 end if
8 NumPointsExamined← 0;
9 while NumPointsExamined≤ PointsToExamine do
10 NumPointsExamined← NumPointsExamined+1;
11 x← RandomlySelectElement(Bh(x∗));
12 if ℓ≤ x≤ u and f (x)< f ∗ then
13 x∗← x;
14 f ∗← f (x);
15 ImprL← true;
16 NumPointsExamined← 0;
17 end if
18 end while
19 return(x∗, ImprL);
end LocalImprovement;

Figure 3: Pseudo-code for C-GRASP local improvement phase.

Starting at the pointx∗, in the loop in lines 9–18 the algorithm randomly selectsPointsToExamine

points inBh(x∗), one at a time. In line 12, if the current pointx selected fromBh(x∗) is feasible and

5

2458

September 24-28, 2012
Rio de Janeiro, Brazil

is better thanx∗, thenx∗ is set tox, f ∗ is set to f (x), ImprL is set totrue, NumPointsExamined
is reset to zero, and the process restarts withx∗ as the starting solution.ImprL is used to determine
whether the local improvement procedure improved the best solution. Local improvement is termi-
nated if anh-local minimumsolutionx∗ is found. At that point,x∗ andImprL are returned from the
local improvement procedure.

3 Experimental results

All experiments were done using the Python/C library for C-GRASP introduced by Silva et al.
[2012] on a quad core Intel Core i7 processor (1.60 GHz) with Turbo Boost up to (2.80 GHz) and
16 Gb of memory, running Ubuntu 10.04 LTS. The algorithm used for random-number generation
is an implementation of the Mersenne Twister algorithm introduced by Matsumoto and Nishimura
[1998]. For the experiments to follow, we made use of the test problemsg01 [Floudas and Pardalos,
1990], g02 [Koziel and Michalewicz, 1999],g03 [Michalewicz et al., 1996],g04 [Himmelblau,
1972] andg05 [Hock and Schittkowski, 1981], whose properties are described in Table 1, followed
by their corresponding mathematical models.

Table 1: For the five problems (g01-g05) from CEC2006 benchmark [Liang et al., 2006]:n is the
number of decision variables;ρ = |F|/|S|, the estimated ratio between the feasible region and the
search space; LI, NI, LE and NE are the number of linear inequality, nonlinear inequality, linear
equality and nonlinear equality constraints, respectively; anda, the no. of active constraints atx.

Prob. n type f (x∗) ρ LI NI LE NE a
g01 13 quadratic -15.0000000000 0.0111 9 0 0 0 6
g02 20 nonlinear -0.8036191042 99.9971 0 2 0 0 1
g03 10 polynomial -1.0005001000 0.0000 0 0 0 1 1
g04 5 quadratic -30665.5386717834 52.1230 0 6 0 0 2
g05 5 cubic 5126.4967140071 0.0000 2 0 0 3 3

g01

min 5∗
4

∑
i=1

xi−5∗
4

∑
i=1

xi
2−

13

∑
i=5

xi

subject to:
g1(x) = 2∗x1+2∗x2+x10+x11−10≤ 0

g2(x) = 2∗x1+2∗x3+x10+x12−10≤ 0

g3(x) = 2∗x2+2∗x3+x11+x12−10≤ 0

g4(x) =−8∗x1+x10≤ 0

g5(x) =−8∗x2+x11≤ 0

g6(x) =−8∗x3+x12≤ 0

g7(x) =−2∗x4+x5+x10≤ 0

g8(x) =−2∗x6−x7+x11≤ 0

g9(x) =−2∗x8−x9+x12≤ 0

0≤ xi ≤ 1,i = 1, . . . ,9)

6

2459

September 24-28, 2012
Rio de Janeiro, Brazil

0≤ xi ≤ 100,i = 10,11,12)

0≤ x13≤ 1

g02

min −

∣

∣

∣

∣

∣

∣

∑n
i=1cos4(xi)−2∗∏n

i=1cos2(xi)
√

∑n
i=1 ix2

i

∣

∣

∣

∣

∣

∣

subjectto:

g1(x) = 0.75−
n

∏
i=1

xi ≤ 0

g2(x) =
n

∑
i=1

xi−7.5∗n≤ 0

0< xi ≤ 10,i = 1, . . . ,n

g03

min − (
√

n)
n

n

∏
i=1

xi

subjectto:

h1(x) =
n

∑
i=1

x2
i −1= 0

0< xi ≤ 1,i = 1, . . . ,n

g04

min 5.3578547x2+0.8356891x1x5+37.293239x1−40792.141

subject to:

g1(x) = 85.334407+0.0056858x2x5+0.0006262x1x4−0.0022053x3x5−92≤ 0

g2(x) =−85.334407−0.0056858x2x5−0.0006262x1x4+0.0022053x3x5≤ 0

g3(x) = 80.51249+0.0071317x2x5+0.0029955x1x2+0.0021813x2−110≤ 0

g4(x) =−80.51249−0.0071317x2x5−0.0029955x1x2−0.0021813x2+90≤ 0

g5(x) = 9.300961+0.0047026x3x5+0.0012547x1x3+0.0019085x3x4−25≤ 0

g6(x) =−9.300961−0.0047026x3x5−0.0012547x1x3−0.0019085x3x4+20≤ 0

78≤ x1≤ 102,33≤ x2≤ 45,27≤ xi ≤ 45,i = 3,4,5

7

2460

September 24-28, 2012
Rio de Janeiro, Brazil

g05

min 3x1+0.000001x31+2x2+(0.000002/3)x3
2

subject to:
g1(x) =−x4+x3−0.55≤ 0

g2(x) =−x3+x4−0.55≤ 0

h3(x) = 1000sin(−x3−0.25)+1000sin(−x4−0.25)+894.8−x1 = 0

h4(x) = 1000sin(x3−0.25)+1000sin(x3−x4−0.25)+894.8−x2 = 0

h5(x) = 1000sin(x4−0.25)+1000sin(x4−x3−0.25)+1294.8= 0

0≤ x1,x2≤ 1200,0.55≤ x3,x4≤ 0.55

In all five problems, we ran C-GRASP five times (a different starting random number seed for
each run from 270001 to 270005) withhs= 0.05,he= 0.0001,rholo = 0.15,MaxPointsToExamine=
1000, andε= 0.0001. At any time during a run, we define the optimality gap byGAP= |F(x1, . . . ,xn+q)−
F(z∗)|, where(x1, . . . ,xn+q) is the current best solution found by the heuristic andF(z∗) = 0. There-
fore, according to Equation (9), we say that the heuristic has solved the problem ifGAP≤ ε, in this
case withε = 0.0001. In each problem, the heuristic was able to find its optimal (or best known)
solution in all five running.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution

g03times

empirical
theoretical

Figure 4: Plot of cumulative probability distribution of C-GRASP running times in secondsfor
instanceg03.

To illustrate the robustness of C-GRASP, we make 100 independent runs of the heuristic on
problemg03, recording the time taken to find the best known solution for the instance, and plot
its runtime distribution in Figure 4. In other words, Figure 4 shows the time-to-target plot [Aiex

8

2461

September 24-28, 2012
Rio de Janeiro, Brazil

et al., 2002, 2007] (or runtime distributions), where the sorted running times make up the plot.
For instance, the running time for 95% of the C-GRASP’s runs to find the best-valued solution for
problemg03 is 0.145 seconds. Furthermore, the maximum, average and minimum time found were
0.17, 0.0738 and 0.02 seconds, respectively.

Table 2 illustrates the optimum (or best known) value and solution for each problem,f ∗ = f (x∗)
andx∗ respectively, as well as the best valuef (x) and solution(x,y) found by running C-GRASP
heuristic, wherex= (x1, . . . ,xn) andy= (xn+1, . . . ,xn+q).

4 Concluding remarks

In this paper, we present the C-GRASP heuristic for finding approximate solutions for continuous
global optimization problems subject to box and nonlinear constraints. We illustrate the approach
using five challenging problems from CEC2006 benchmark [Liang et al., 2006]. The promising
results shown here illustrate the potential of C-GRASP for nonlinearly-constrained global opti-
mization problems.

Acknowledgment

The research of R.M.A Silva was partially done while he was a post-doc scholar at AT&T Labs Re-
search in Florham Park, New Jersey, and was partially supported by the Brazilian National Council
for Scientific and Technological Development (CNPq), the Foundation for Support of Research of
the State of Minas Gerais, Brazil (FAPEMIG), Coordination for the Improvement of Higher Edu-
cation Personnel, Brazil (CAPES), and Foundation for the Support of Development of the Federal
University of Pernambuco, Brazil (FADE).

References

R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distribution of solution time in GRASP:
An experimental investigation.J. of Heuristics, 8:343–373, 2002.

R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. TTTPLOTS: A perl program to create time-to-target
plots. Optimization Letters, 1:201–212, 2007.

C.A. Floudas and P.M. Pardalos.A collection of test problems for constrained global optimization
algorithms. Springer-Verlag New York, Inc., New York, NY, USA, 1990. ISBN 0-387-53032-0.

D.M. Himmelblau. Applied nonlinear programming. McGraw-Hill, 1972. URLhttp://books.
google.com.br/books?id=KMpEAAAAIAAJ.

M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende. Speeding up continuous grasp.European Journal
of Operational Research, 205(3):507 – 521, 2010. ISSN 0377-2217. doi: 10.1016/j.ejor.2010.02.
009. URLhttp://www.sciencedirect.com/science/article/pii/S0377221710001141.

W. Hock and K. Schittkowski.Test Examples for Nonlinear Programming Codes. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1981. ISBN 0387105611.

S. Koziel and Z. Michalewicz. Evolutionary algorithms, homomorphous mappings, and constrained
parameter optimization.Evolutionary Computation, 7:pp., 1999.

J. J. Liang, T. P. Runarsson, E. M. Montes, M. Clerc, P. N. Suganthan, C. A. Coello, and Deb K.
Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained
Real-Parameter Optimization. Technical report, 2006.

9

2462

September 24-28, 2012
Rio de Janeiro, Brazil

M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed uniform
pseudo-random number generator.ACM Transactions on Modeling and Computer Simulation, 8
(1):3–30, 1998.

Z. Michalewicz, G. Nazhiyath, and M. Michalewicz. A note on usefulness of geometrical crossover
for numerical optimization problems. InEvolutionary Programming, pages 305–312, 1996.

R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, and M.J. Hirsch. A python/c library for bound-
constrained global optimization with continuous grasp.to appear in Optimization Letters, 2012.

10

2463

September 24-28, 2012
Rio de Janeiro, Brazil

Table 2: The optimum (or best known) value and solution for problemsg01 to g05, as well as the
best value and solution found by C-GRASP.

Prob. obj. function solution

−15.0000000000 x∗ = (1,1,1,1,1,1,1,1,1,3,3,3,1)
g01

−14.999977021300001 x= (0.999647,0.998861,0.999421,0.999783,
0.999686,0.999693,0.999707,0.999779,
0.999793,2.999396,3.006272,3.002863,

0.999619)
y= (0.000044,0.000166,0.000044,4.997691,

4.984683,4.992512,0.000073,0.007167,
0.003532)

−0.8036191042 x∗ = (3.16246061572185,3.12833142812967,
3.09479212988791,3.06145059523469,
3.02792915885555,2.99382606701730,
2.95866871765285,2.92184227312450,
0.49482511456933,0.48835711005490,
0.48231642711865,0.47664475092742,
0.47129550835493,0.46623099264167,
0.46142004984199,0.45683664767217,
0.45245876903267,0.44826762241853,
0.44424700958760,0.44038285956317)

g02

−0.8035430237930818 x= (3.175996611086086,3.180627712694781,
3.066388234840301,3.058944915994798,
3.116091976677606,3.030529208214273,
2.967431149927409,2.992169560380718,
0.487215475849875,0.475759145750601,
0.481337756961271,0.464250333517413,
0.454804869592191,0.451165385881657,
0.462439199478225,0.460109970824757,
0.452138094957842,0.450923903942073,
0.451218830443182,0.460481293395772)

y= (0.011705681293274,119.860600403830176)
−1.0005001000 x∗ = (0.31624357647283069,0.316243577414338339,

0.316243578012345927,0.316243575664017895,
0.316243578205526066,0.31624357738855069,

0.316243575472949512,0.316243577164883938,
0.316243578155920302,0.316243576147374916)

g03

−1.0004249935155028 x= (0.326040,0.316221,0.325100,
0.311989,0.324127,0.320020,
0.300434,0.309490,0.314283,

0.315552)
−30665.5386717834 x∗ = (78,33,29.9952560256815985,

45,36.7758129057882073)
g04

−30665.53862992354 x= (78.017484266249554,33.000188070479744,
29.703472867008955,42.329819349577370,

38.189032013036609)
y= (0.000136633334695,92.066357110170159,

10.863082742903556,9.136867955779394,
5.057347781868908,0.000033058014801)

5126.4967140071 x∗ = (679.945148297028709,1026.06697600004691,
0.118876369094410433,−0.39623348521517826)

g05

5126.496782650232 x= (694.214375,1010.603029,0.108629,−0.401050)
y= (0.041907,1.061108)

11

2464

