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Resumo

In this paper, we present the problem of strategic bidding under uncertainty in a who-
lesale energy market, where the economic remuneration of each generator depends on the
ability of its own management to submit price and quantity bids. This stochastic problem
is highly non-convex and due to its difficulty, there has been an intensive search for efficient
algorithms to solve it. We present a bilevel formulation for the problem and propose a
genetic based algorithm for its solution, where the individual represents the decision of the
leader of the bilevel problem. For each individual the linear programming formulation of
the follower problem is considered and its exact optimum solution is obtained in a very effi-
cient way. We also consider a local search strategy to improve the solutions generated after
crossover and mutation on the genetic algorithm. The results obtained with the application
of the algorithm to random instances of the problem are presented and compared with the
results obtained by the solution of a mixed integer linear reformulation of the problem.

Keywords: metaheuristics, genetic algorithm; bilevel problem; electricity pool market;
strategic pricing.
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1 Introduction

In the strategic pricing problem the traditional planning of the operation, based on a centralized
optimization has been replaced by decentralized procedures, based on market functioning. In
this problem the private agents, generators, compete for contracts for power sales to distribution
companies and free consumers. The generators can freely make their price offers for energy
production. The units are then loaded in order of increasing supply of a minimum unit price
until demand is met. All generators dispatched receive the unit price charged more expensive,
which corresponds to the marginal cost of short-term or spot price of the system, Hunt(2003).

One of the basic features of the deregulation process is the creation of a wholesale energy
market, or short-term electricity market, where all electric power purchase and sale transactions
take place. In a simplified way, the wholesale energy market works as follows:

-All generators freely bid prices for their energy production, typically price-quantity bids
on an hourly basis for the next day;

-A system operator dispatches the units by increasing price until demand is met. The
dispatched generators are paid the price of the most expensive loaded unit, which corresponds
to the system short-run marginal cost, or spot price. This corresponds to the well known
uniform-price auction format, which is generally adopted in electricity markets and will be
considered in this paper as well.

Different approaches have been used to solve the strategic pricing problem. In Fampa(2008),
for example, the problem is formulated as a special class of bilevel program known as taxation
problem, Labbé(2000), and then reformulated as a mixed integer linear program (MILP). In
Pereira(2005) a MILP formulation is also presented for the problem. The exact solution of
MILP is presented on both papers for some small instances. However, due to the size of the
instances in real applications, especially when a reasonable number of scenarios is considered,
this approach may not be suitable. The authors also present in Fampa(2008) some heuristics
for the problem, which due to the deterministic behavior are suitable of converging to local
optimal solutions.

In this paper we propose a genetic based algorithm (GA) for the strategic pricing problem
in competitive electricity markets presented in Fampa(2008) and compare the results obtained
with the GA to the solutions of the MILP formulation presented in Fampa(2008), for some
randomly generated instances. Genetic algorithms have been widely used in the solution of
combinatorial optimization problems, Pimentel(2001), and are theoretically and empirically
proven to provide robust search in complex spaces, Goldberg(1989). Some recent papers also
apply genetic algorithms to solve bilevel programming problems. For example, Marinakis(2007)
propose a genetic algorithm for the vehicle routing problem modeled as a bilevel problem and
Kuo(2010) uses a genetic algorithm with particle swarm to solve a bilevel linear programming
problem for supply chain management. As it was done in Marinakis(2007), we use the mathe-
matical formulation of the follower problem to obtain its solution for each individual of the
population of the genetic algorithm, which represents itself the decision of the leader of the
bilevel problem.

This paper is organized as follows: Section 2 presents an overview of the strategic pricing in
competitive electricity markets. In this section the mathematical formulation of the strategic
bidding problem under uncertainty is presented. Section 3 describes the genetic based algo-
rithm proposed for the problem. Section 4 presents the numerical results of our computational
experiments and compare them with the optimal solutions of the random instances considered,
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provided by the MILP formulation of the problem. Section 5 concludes the paper.

2 Strategic Pricing in Electricity Markets

In deregulated electricity markets, generators submit a set of hourly generation prices and
available capacities for the following day. Based on these data and on an hourly load forecast,
the system operator carries out the following economic dispatch at each time step, Fampa(2008):

dual variable
Minimizeg;, > e s Ajg),

subject to > .. ;9; =d, Td (1)
gj S gja Trgj .] € Ja
gj > 07 j € Ja

where the input data d, A; and g; represent, respectively, load (MW h), price bid ($/MWh)
and generation capacity bid (MWh) of generator j and the variable g; represents the energy
production of generator j (MWh). The optimal value of the dual variable 74 is considered
as the system spot price. The profit of each generator j, in each time step, corresponds to:
(ma —cj)g;,for j € J, where ¢; represents its unit operating cost. Note that ¢; may be different
from \;, its price bid.

The net profit of a generation company F, which may be a utility or an independent power
producer that owns several different generation units, is given by:

> (ma—¢)gj,

JEE

where FE is also used to denote the set of indexes associated to the plants belonging to the
company E (E C J).

Company F aims to determine a set of price bids A\g = {};,j7 € E} and quantity bids
e = {gj,J € E} that maximize its total net profit.

2.1 Bidding Strategies Under Uncertainty

In this paper we consider the Bertrand scheme for the optimal bidding problem, where the
quantity bid of each generator of company E is fixed as g; and the problem consists in deter-
mining the price bids of the company in order to make it receive the maximum profit. The
complexity of this problem is greatly compounded by the fact that the calculation of 74 and
gj in the dispatch problem (1) depends on the knowledge of price vectors for all companies,
as well as their generation availability and system load values. However, this information is
not available to any single company at the time of its bid. Therefore, the bidding strategy
has to take into account the uncertainty around these values, Fampa(2008). An approach used
to deal with the uncertainty on the data of the problem is to define a set of scenarios for the
remaining agent’s behavior and maximize the profit of the company over all scenarios, in a
classical strategic bidding under uncertainty problem. In this case, the bids from generators
not belonging to company E and the load are considered uncertain, and represented by a set
of scenarios indexed by s, which occur with exogenous probabilities {ps, s=1,...,S}. The bilevel
formulation for the problem is given by
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Maximize) , > oses Ps 2jeplmy — ¢lg;,
subject to
Minimizegs 36> icn Aig5 + Djen X705
subject to Zje] g; =&, s €5,
0<g;<g;, JeEE, s€Sb,
0<gi<g?® J¢&E, seS

The first level of problem (2) represents the interest of company E (maximize expected pro-
fits), while the second level represents the interest of the system operator (minimize operational
costs). The company is classified as leader of the bilevel program and controls the variables
Aj, for j € E, while the system operator is classified as follower and controls the variables g7
for j € J, s € S. Once the variables of the leader are determined, the linear programming
(LP) follower problem can be solved by any LP solver. Due to its structure, this LP problem
can be solved separately for each scenario and the subproblems for the scenarios can be solved
by the polynomial procedure presented in Figure 1, which returns the energy production of all
generators and the spot price in all scenarios. We note that in order to satisfy the objective of
leader, where we maximize the profit of company F, if a generator in E bids the same price
as a generator not in F, then the generator in E should be considered first by the follower on
the dispatch procedure. Furthermore, if two generators in E bid the same price, the one with
smaller cost should be dispatched first.

Input: Price and quantity bids of all generators in J for all scenarios in S. Load d° for
all scenarios in S.
for s € S do
2 Let 5\]-1 < 5\j2 <...< :\j\J\ be the ordered price bids of all generators in J in scenario
s and gj,, 9js, - - - G5, be the corresponding quantity bids.
3 Let k be the maximum index such that Zle gj; < d°.
fori=1,...,k do
L g;,- = ?]Jl
G =& = T G
fori=k+2,...,]J| do
L gﬂi‘ = 0.

9 752 = )\jk+1-

Y

10 return g]S»,Vj €J,seS, m,Vse s,

Figure 1: Polynomial solution of the follower problem

3 Genetic Algorithm

In the following we propose a genetic based algorithm (GA) to solve the bilevel strategic
bidding problem. In the first level of the proposed algorithm, a genetic algorithm is used for
calculating promising price bids for the generators of the company E. In the second level of the
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proposed algorithm, the follower problem of (2) is solved, independently for each individual of
the population. In Figure 2 we present the general description of the GA.

Create the initial population of MAXPOP individuals, using the three options: Type 1
solution, Type 2 solution or Type 3 solution.

2 Evaluate the fitness of each individual solving the follower problem of (2) by the
procedure presented in Figure 1.

while stopping criterion do

Select two parents from the current population using rank selection.

5 Apply the CROSSOVER operator to the two parents, randomly selecting each gene
from either one of the parents to be copied into the chromosome of the new
individual.

6 Repeat the previous two steps until 90% of MAXPOP individuals are generated.
Apply the MUTATION operator to 2% of the offspring, randomly selecting a gene of
each selected individual to be updated by another randomly selected price bid.

8 Apply the LOCAL SEARCH PROCEDURE to two randomly selected individual
from the offspring and from the set ELITE, and replace the individual by the
solution obtained.

9 Copy the best 10% of MAXPOP individuals (set ELITE) from the current
population on the next population.

10 Copy the 90% of MAXPOP generated individuals on the next population.

11 Apply the LOCAL SEARCH PROCEDURE to the best individual obtained by the
genetic algorithm and return the solution obtained. return \;,Vj € E,

g;,Vj€J,s€S, my Vs €8;
Figure 2: General description of the Genetic Algorithm

=

W

3.1 [Initial Population

We define an individual for the genetic algorithm as a vector of |E| components, where the
J-th component corresponds to the price bid \; of the generator j € E.

It is straightforward to verify that there is always an optimal solution for the strategic
bidding problem, where all the generators belonging to company F bid the same price as
a generator not belonging to E in some scenario. Therefore, denoting by L the set of all
possible values for each component of the individual of our proposed genetic algorithm, we
initially define £ = {A*,j € E,s € S}. To improve the efficiency of the algorithm we can
still eliminate some of the price bids from this set. Consider A}, ., as the maximum value in £
that can be assigned to the price bid of each generator of company E such that at the optimal
solution of the economic dispatch problem (1) for the scenario s every generator of E generate
all of its capacity. Now let Apsry = min{\}, .., s € S}. Note that we can eliminate from £ all
the price bids that are smaller than Apsrn, with no risk of cutting the optimal solution of the
problem from the search space. Furthermore, consider A} . as the minimum value in £ that
could be assigned to the price bid of each generator of company F with none of them being
dispatched at the optimal solution of the economic dispatch problem (1) for the scenario s.
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Finally, let Ayax = max{\? , ,s € S}. Note that we can also eliminate from £ all the price

bids that are larger than or equal to Ay;ax. Therefore, in the following we consider the set £
of all possible values assigned to the price bids of the generators of company E on our genetic
algorithm defined as

L::{/\;S,ijE,SES‘/\M[N S)\js </\MAX}~ (3)

We consider three different solution types to generate the initial population of the algorithm.

The solution of type 1 is based on the idea of initializing the population with the solution
where company E generates all of its capacity on a randomly selected scenario s. We consider
Aj = Aae for all j € E, and therefore we have g7 = g; for all j € E.

The solution of type 2 corresponds to the case where no plant belonging to company E
is dispatched on a randomly selected scenario s. We consider A\; = A} . for all j € F, and
therefore we have g7 = 0 for all j € . Since we assume that the remaining plants can always
meet, the demand on all scenarios, the procedure always generates a feasible solution.

At last, the solution of type 3 is based on a polynomial algorithm to solve the strategic
bidding problem for a randomly selected scenario s. In Fampa(2008) it was proven that,
when there is only one possible scenario, there is an optimal solution for the strategic bidding
problem, where all plants belonging to company E bid the same price. In Figure 3 we present
the procedure used to generate the solution of type 3.

Input: A randomly selected scenario s.

1 Let L% = {/\;5 € LA o < A7 < A int

2 Let the price bids of all generators of company E equal to each price bid in £%.
Compute the corresponding profit of company E solving the economic dispatch problem
(1) for scenario s.

3 Determine as the price bids of the generators of company F, the price bid that leads to

the maximum profit of £ on scenario s. return \;,Vj € E;

Figure 3: Procedure to generate Type 3 solution

3.2 Local Search

The goal of the local search procedure is to improve a solution obtained by the genetic
algorithm, by an iterative process. Without lost of generality, consider that the indexes
j = 1,...,|E| correspond to the plants belonging to company E and satisfy the relation
g =g > ... > 57\*E|‘ Consider 31 < B2 < ... < [, as the different price bids in £ (3).
The local search procedure considers a initial solution for the strategic bidding problem (2),
given by 5\3-, for j € E, gj, for j € J,s € S and 7, for s € S with objective function value Z,
and iteratively test if there is a better value §;, j = 1,...,n for the price bid of each generator
of F, starting the procedure from a randomly selected generator. In Figure 4 we present our
local search procedure, that returns the best price bid obtained for each generator of company

E.
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Input: 31 < fa < ... < Bn, \;,Vj € J, ¢;,Vj € E, ps,Vs € S, 2.

1 forj=1...,|J| do

2 L )‘j = 5\]‘.

3 I=0.

4 fori=1,...,|E| do

5 Randomly select a generator j from F — I.

6 fork=1,...,ndo

7 )\j = ﬂk

8 Solve the follower problem of (2) with the procedure presented in Figure 1 and

obtain the solution g7 and 73, j € J,s € S.

9 2= esPs ZjeE(WS - Cj)g;"
10 if z > Z then
11 5\]- = Ok
12 zZ =z

13 )\]‘ = 5\]‘. I =1+ {j}

14 return S\j,Vj € F;

Figure 4: Local Search Procedure

4 Numerical Results

In this section we present computational results obtained by the proposed GA when applied to
randomly generated instances of the strategic bidding problem. Our code was implemented in C
and compiled with gcc (GNU COMPILE C). All runs were conducted on a 2GB Ram, 2.13GHz
Intel Core processor running under Linux Ubuntu, Version: 9.10. The solver CPLEX, v12.2,
Gay(2009), was used to obtain the optimal solution of the instances, considering the MILP
formulation of the problem presented in Fampa(2008). In all tests we limited in 10800 seconds
the CPU time used to obtain the optimal solution of the instances by CPLEX and in 1800
seconds the CPU time to obtain the solution by the GA.

All test problems considered in our numerical experiments were randomly generated ins-
tances where:
|J| € {20,30,40,50}, |E| € {9,10,11,12,13, 15, 20,25,40}, |S| € {5, 10, 15,20, 25, 36, 72}, g} €
(50,100}, ¢; € [0,25],5 € E, g;° € [50,100], A;® € [0,31], j ¢ E,s € S, and ds € [6°/2,0°],s € 5,
where §° is the sum of the generation capacities of the generators that do not belong to F in
scenario s. Four instances were generated for each combination of values for |E|, |J| and
|S]. We ran the GA five times for each instance and computed the relative gap between each
solution obtained and the optimal solution.

Tables 1 and 2 present average results for each instance size. In Table 1 we consider only
the instances with known optimal solution. In the first column of the table we indicate the
size of the instances considered. In the line corresponding to instance Inst g s, We present
the mean values for four instances with |.J| generators on the total, |E| of them belonging to
company FE, and |S| scenarios, of the average gap (Z4qp), the standard deviation of the gap
(0gap), the average CPU time (Zyime) and the standard deviation of the CPU time (oime)
for the five runs of the GA. In the last column of Table 1 we also present the average CPU
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Tabela 1: Instances with known optimal solution

Instance Gap CPU Time
Inst‘JMEMS‘ Tgap Ogap Ttime Otime MILP
Insta,09,05 0.0000 0.0000 | 1.8190 1.2772 73.2500
Instao 09,10 0.0000 0.0000 | 1.1485 0.9105  260.7500
Instao. 10,10 0.0000 0.0000 | 2.6885 2.7154  991.7500
Instag 11,05 0.0000 0.0000 | 1.8305 1.1038 32.2500
Insta,12,05 0.0000 0.0000 | 2.2135 0.8856  239.0000
Instao 13,05 0.0000 0.0000 | 4.2990 4.5225  759.2500
Insto 15,05 0.0000 0.0000 | 2.9815 1.9558 5134.7500
Instso.12,05 0.0000 0.0000 | 8.2975 5.8677 4516.5000
Inst40,09,05 0.0000 0.0000 | 0.6740 0.3935  434.5000
Instso,09,10 0.0000 0.0000 | 3.3575 2.8401  929.0000

Tabela 2: Instances with the best solution in 3 hours MILP

Instance Gap(2%ofbest) | CPU Time oo pesty | Gap in 1800 sec.
In3t|J|,|E\,\S| Zgap Ogap Ttime Otime Zgap Ogap
Instao 1515 0.0108 0.0031 | 0.4060 0.2190 0.0000  0.0000
Instag, 15,20 0.0093  0.0029 | 1.0450 0.7287 | -0.0037  0.0000
Instzo,20,15 0.0116  0.0043 | 8.0305 4.3748 | -0.0025 0.0006
Instsp 20,20 0.0061 0.0064 | 15.9010  15.0319 | -0.0008 0.0007
Instsp 20,25 0.0051  0.0057 | 5.7020 2.3627 | -0.0139 0.0006
Instsp.25.25 0.0062 0.0043 | 18.6960 9.0902 | -0.0065 0.0000
Instso,20,36 0.0080 0.0056 | 12.1805 7.4679 | -0.0063 0.0003
Instsg 20,72 0.0003  0.0029 | 13.5480 5.1626 | -0.0063  0.0003
Instso.40,36 0.0004 0.0059 | 39.4335  34.2748 | -0.0370 0.0029
Instsoa0,72 | -0.0023  0.0097 | 69.2395  40.7482 | -0.0301 0.0019

time to obtain the optimal solution of the instances with CPLEX (MILP). The CPU time
is always given in seconds. The GA obtained the optimal solution of all instances generated
for Tablel in a very small computational time. The algorithm has a very robust behavior,
since the standard deviation of the gap is always equal to zero. In Table 2 we present similar
statistics for instances for which we were not able to prove optimality in three hours of CPU
time running CPLEX. In this case the gaps presented are related to the best solution (best)
found by CPLEX. Two stoping criterion were used for GA: the solution obtained is at most 2%
worse than best and the CPU time is 1800 seconds. The results in Table 2 show again the good
quality of the results given by GA, which are better than the results obtained by CPLEX for
all groups of instances except the first one with |J| = 20, |E| = 15 and |S| = 15. In this case,
GA obtained the same solutions of CPLEX, which we note that can be the optimal solutions
of the instances.
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5 Conclusion

In this paper we present a genetic based algorithm (GA) for the strategic bidding problem
under uncertainty in a wholesale energy market, which is formulated as a bilevel programming
problem. The variables controlled by the leader of the bilevel problem are determined by a de-
tailed described genetic algorithm, combined with a local search procedure. For each individual
of the genetic algorithm, the follower of the bilevel problem, a linear programming problem, is
exactly solved by a polynomial algorithm. We present computational results obtained with the
application of the GA to randomly generated instances of the problem and compare them to
their best known solutions. The results show that the GA is very robust and obtain solutions
of very good quality for all instances considered.
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