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RESUMO 
Muitos problemas de otimização da vida real são multimodais. Algoritmos Evolutivos tem sido 

aplicados a estes problemas com êxito, porém apresentam a desvantagem de convergirem para um 

único ótimo, mesmo existindo mais que uma solução ótima. Propomos assim um algoritmo híbrido 

combinando o algoritmo evolução diferencial (DE) e o algoritmo busca tabu (TS) para tratar esses 

problemas, permitindo achar mais de uma solução ótima. O algoritmo proposto foi testado em 

problemas de otimização com múltiplos ótimos e resultados comparados com aqueles fornecidos 

pelo algoritmo DE. 

PALAVRAS CHAVE: problemas de otimização multimodais, evolução diferencial e busca tabu. 

MH – Metaheuristica

ABSTRACT

Many real life optimization problems are multimodal. Evolutionary Algorithms (EA) have 

successfully been applied to solve these problems, but have the disadvantage that converge to only 

one optimum, even though there are many optima. We proposed a hybrid algorithm combining 

differential evolution (DE) with tabu search (TS) to solve these problems, allowing to find multiple 

solutions. The proposed algorithm was tested on optimization problems with multiple optima and 

the results compared with those provided by the DE algorithm. 

KEY WORDS:  multimodal optimization problems, differential evolution and tabu search. 

MH – Metaheuristics 
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1. Introduction 

Evolutionary Algorithms (EA) and Particle Swarm Optimization (PSO) techniques are effective and 

robust techniques for solving optimization problems (Eberhart and Shi, 2007). Typically, these 

algorithms converge to a single final solution. However, many real-world problems are multimodal 

in nature and may have many satisfactory solutions (Li, 2010). Niching methods have been 

developed in recent decades to find solution of multimodal optimization problems with multiple 

optima. These niching methods play an important role when incorporated into evolutionary 

algorithms to promote the diversity of the population and maintain multiple solutions within a stable 

population. 

Several niching methods have been proposed in recent years, and the most relevant include 

(Li, 2010): fitness sharing, derating, restricted tournament selection, crowding, deterministic 

crowding, clustering, clearing, parallelization, speciation, among others. Most of the methods listed 

above present difficulties for solving multimodal optimization problems with multiple local or 

global optima because they need to specify the parameters of niching, which are difficult to tune 

and they generally are dependent on the problem to be optimized. 

An interesting approach recently proposed by Li (2010), which does not require specification of any 

niching parameters uses a PSO with ring topology. In this case, the "local memory" of the 

individual particles of the PSO is able to maintain the best positions found so far, while the particles 

explore the search space. In the niching PSO without niching parameters proposed  by Li (2010) it 

is shown that large populations using PSO with ring topology is capable of forming stable niche and 

able to find multiple local and global optima. The promising results suggest that this method present 

good results without requiring parameters to tune. 

The method developed by Li (2010), motivated us to extend this method to Differential 

Evolution (DE). In fact, DE with ring topology (Das et al. 2009) and (Dorronsoro and Bouvry,

2011) were applied to multimodal problems with promising results to find a single solution of 

optimization problems. However, for problems with multiple optima, as far as we know, DE with 

ring topology has not been used yet. The DE version proposed by Das et al. (2009) called DEGL 

has a good capacity of exploration/exploitation of the search space. 

In case of PSO with ring topology, the personal best positions pbest of all particles in the 

population are used to form the memory of the swarm and retain the best solutions found so far in 

the population, and the positions of the particles act to explore the search space. In this work, 

inspired by the PSO with ring topology, the DEGL is used to explore the search space, but as DEGL 

has no memory, this motivated us to combine the algorithm withTabu Search (TS) to fulfill the 

function of memory. In this context, the hybrid method, which consists of a genetic algorithm (GA) 

embedded with a niching method and Tabu search has been proposed by Li et al. (2010). The main 

disadvantage of that method is that is necessary to specify the niching parameters. So, in order to 

overcome this problem, we propose the DEGL with ring topology combined with Tabu search. As 

in (Li et al. 2010), the method proposed here also consists of two stages. The first stage uses DEGL 

to explore the search space. In the second stage, the TS takes the initial solutions provided by 

DEGL in the first stage and performs a local search aiming to improve the population of solutions 

of the DEGL. At the end of the algorithm run, a population containing local/global solutions is 

provided. 

2. Differential Evolution 

In the following, the standard Differential Evolution and the Differential Evolution with ring 

topology are described. 

2.1. Standard Differential Evolution 

Differential Evolution (DE) is an optimization method introduced by Storn and Price (1995). 

Similar to other Evolutionary algorithms (EAs), it is based on the idea of evolution of populations 

of possible candidate solutions, which undergoes the operations of mutation, crossover and 

2489



September 24-28, 2012
Rio de Janeiro, Brazil

selection (Storn and Price, 1997). The candidate solutions of the optimization problem in DE are 

represented by vectors. The components of the vectors are the parameters of the optimization 

problem and the set of vectors make up the population. Unless stated otherwise in our study, we are 

considering minimization problems. Therefore, the higher the value of fitness, the smaller the 

values of the objective function.

Consider a population of NP individuals in an N-dimensional search space. The individuals 

in the population are initialized according to: 

																																									���� �	������ 		
���
����������� �	�������   (1)

where j is the index of the j-th component of the i-th individual of the population, ������ and ������
are the upper and lower bounds of the j-th component of the N-dimensional vector ��, respectively, 

and U(0,1) is a random number drawn from a uniform probability distribution. 

By means of the mutation operator, a new vector ���� is generated by the following equation: 
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where	()	is the crossover rate and *)��+ is a random component of each individual to ensure that at 

least one component of the vector ���� is part of the new vector. 
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where f(.) is the objective function. 

2.2. Differential Evolution with ring topology 

One disadvantage of standard DE may be the premature convergence to local optima in multimodal 

functions, losing the diversity of the population. To increase the diversity of the population, it is 

used a neighborhood with ring topology as shown in Fig. 1. So, the mutation operator is 

implemented through the creation of two vectors before the generation of the vector ����.
First, the vector is calculated as: 

,����- �	����- 	 	. /���01234 �	����-5 	 	6���7�- �	��8�-� (5) 

where	9:;<=4 indicates the best vector in the neighborhood of	����-. p, q are indices in the 

neighborhood chosen such that >	 & 	?	 & 	@� and >� ?	 ! 	 "@ � A� @ 	 A%�	where k is the length of the 

neighborhood. 

    Next, the vector B�� is calculated as: 

B���- �	����- 	 	.���C:;<= �	����-� 	 	6���)D�- �	��)E�-� (6) 

where gbest indicates the best of the entire population, �� and �� are such that �� 	& 	 �� 	& @� and 

��� �� 	 ! 		 "
� #$%.
Then, one calculates the vector	���� as follows: 

�����- � FB���- 	 �
 �F�,����-                                               (7) 

where w is a weighting factor. Small values of w increase the diversity of the population. An 

illustration of the ring topology is shown in Fig. 1, where the length of the neighborhood is k = 2 

and the number of individuals is NP.The DE algorithm pseudo-code of DE with ring topology is 

shown in Fig. 2. 
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Fig.1. Illustration of the ring topology.
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Fig. 2. Pseudo-code of the DE algorithm with ring topology. 

Input:  Population size NP 

for i= 1 to NP 
�

for j = 1 to N �

���� �	������ 	 
���
����������� � ������� �

end for  �

end for �

while termination condition not met �

for i=1 to NP �

               choice p and q such that >	 & ?	 & @ from "@ � A� @ 	 A% �

,����- �	����- 	 	. /���01234 �	����-5 	 	6���7�- �	��8�-� �

              choice �� and �� such that �� 	& 	 �� 	& @ from [1,NP] �

B���- �	����- 	 	.���C:;<= �	����-� 	 	6���)D�- �	��)E�-� �
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for j = 1 to N �

                       if
���
���� 	G 	()HI					* � 	 *)��+ �

J��� � K��� �

Else �

J��� � ���� �

end if �

 end for �

 if L�'����� G L����� �

��� �	'���� �

end if �

end for �

end while �
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3. Proposed method�

In recent years, several approaches combining EA with local search methods have been proposed 

(Chelouah and Siarry, 2005), (Li, 2010), (Li et al., 2010), (Mashinchi et al., 2011) and (Wei and 

Zhao, 2005). In order to solve the optimization problem with multiple optima we propose a hybrid 

algorithm based on DE and TS. In our approach, the DE algorithm is used for global search in order 

to increase the diversity of the population. Then, the Tabu Search algorithm is used for local search 

to refine the search around promising solutions. The pseudo-code of Tabu Search algorithm is 

presented in Fig. 3. 

In order to generate the neighborhood two parameters are used: the number of neighbors (nn) and 

the step size M. So, the neighbors are generated according to: 

NO��� � N��� 	 
��
�
����M                                                      (8) 

where U(-1,1) is a random number drawn from a uniform probability distribution. 

To verify if the best neighbor is tabu, it is necessary to perform the comparison: 

�NP� 	Q 	 R��� � 	S�		HI			�NP� 	G 	 R��� 	 	S�                                        (9) 

where NO� is the j-th component of the best neighbor, R��� is j-th component of the i-th element of the 

tabu list and S is a parameter of the algorithm. 

The tabu list has a fixed length (L). So, elements are inserted into the head of the list, so that the last 

element is deleted when an element is inserted. 

Input: population size NP, step size M and number of neighbors nn 

for i= 1 to NP 

N � 	����
TUNR � N
V � 	W

while stopping condition not reached 

NP �	best neighbor of s that is not tabu 

if L�TUNR� X L�NP�
TUNR � NO

end if 

N � NO
       update tabu list T with NO
end while 

    return TUNR
end for 

Fig. 3. Pseudo-code of Tabu Search algorithm. 

4. Simulation Results

4.1. Experimental Settings 

The DE algorithm with ring topology has been tested on four benchmark functions as described in 

Table 1. Fig. 4 illustrates the multimodality of the benchmarks. The algorithm parameters used in 

the experiments are presented in Table 2. The algorithm DE with ring topology has been tested on 

four different population size. Next, we tested the performance of the proposed method combining 
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DE with ring topology and Tabu Search. In order to compare our results, we have also carried out 

the experiments with PSO with ring topologies: 

• PSO_r3: ring topology with two neighbors for each individual. 

• PSO_r3_lhc: similar to the first, but without overlapping neighborhoods. 

• PSO_r2: ring topology with one neighbor for each individual. 

• PSO_r2_lhc: similar to the third, but without overlapping neighborhoods. 

The experiments are run for 2000 iterations. For the proposed algorithm DE+TS after 2000 

iterations of DE are performed more 100 iterations for TS. The results are presented in Tables 3 and 

4.

Table 1: Benchmarks functions (Li, 2010). 

Y���� � 	 Z[\] ^_� � G � G 

							Y���� � 	 U`� abc��

defgD
fgh � Z[\] ^_� � G � G 


Y ��� � 	 Z[\] ^_ /�
i
j � �g�^5 � G � G 


					Yk��� � 	 U`� abc��
defgfh
fghlj � Z[\] ^_ /�

i
j � �g�^5 � G � G 


Table 2: Algorithm parameters used in DE and DE+TS. 

() 0.9
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99 10

S 0.01 

�

Fig. 4. Plot of the benchmarks functions used in the experiments. 

�
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4.2. Results Discussion 

From Table 3, for a population size of 51 individuals, the hybrid algorithm presents better 

performance than the DE algorithm in 3 out of 4 benchmarks. Increasing the population size, we 

noticed that the DE algorithm and the DE+TS present very similar performance. The DE algorithm 

with population size 201 shows a superior performance on 2 out of 4 benchmarks. The cause of this 

may occur because TS refines the previous found solutions (local optima) allowing to reach the 

global ones. 

Table 3: Success rate in terms of mean and standard deviation for the algorithms DE and DE + TS. 

Function NP DE DE + TS 

F1 51 94,40% (10,61%) 98,00% (6,00%) 

F2 51 80,00% (13,86%) 71,20% (13,95%)

F3 51 92,40% (10,50%) 98,40% (5,43%) 

F4 51 81,20% (14,09%) 82,40% (5,43%) 

F1 102 99,60% (2,80%) 99,60% (2,80%) 

F2 102 90,80% (10,74%) 78,00% (10,77%)

F3 102 99,60% (2,80%) 100%
F4 102 91,20% (10,70%) 90,00% (10,00%)

F2 201 100% 100%
F3 201 91,60% (9,87%) 87,60% (9,71%)

F4 201 100% 100%
F5 201 97,60% (6,50%) 96,40% (7,68%)

Among the four topologies tested for the PSO, the one that found the best results was that with the 

topology r3_lhc. For a population size of 51, the performance of PSO with topology r3_lhc is better 

than DE and DE+TS in 3 out of 4 benchmarks. Increasing the population size to 201 the 

performance of DE and DE+TS is getting closer to PSO r3_lhc. In this case, the performance is the 

same for two benchmarks, and for the other two benchmarks PSO r3_lhc beats DE and DE+TS. 

Table 4: Success rate in terms of mean and standard deviation for the algorithm PSO. 

Function NP r3 r3_lhc r2 r2_lhc 

F1 51 98,00% (7,21%) 99,20% (3,92%) 99,20% (3,92%) 99,20% (3,92%) 
F2 51 20,00% (0%) 80,40% (12,96%) 20,00% (0%) 77,20% (17,44%)

F3 51 92,80% (11,14%) 96,80% (7,33%) 96,40% (7,68%) 97,60% (6,50%)

F4 51 20,00% (0%) 91,20% (11,43%) 20,00% (0%) 87,60% (14,91%)

F1 102 99,60% (2,80%) 100% (0%) 100% (0%) 100% (0%) 
F2 102 20,00% (0%) 94,80% (8,77%) 20,00% (0%) 89,60% (13,41%)

F3 102 98,80% (4,75%) 100% (0%) 99,60 (2,80%) 99,60% (2,80%)

F4 102 21,60% (11,20%) 98,40% (5,43%) 23,20% (15,68%) 98,40% (5,43%) 

F2 201 100% (0%) 100% (0%) 100% (0%) 100% (0%) 
F3 201 21,60% (11,20%) 98,40% (5,43%) 24,80% (19,00%) 96,80% (7,33%)

F4 201 99,60% (2,80%) 100% (0%) 100% (0%) 100% (0%) 

F5 201 26,40% (21,70%) 99,60% (2,80%) 31,20% (27,76%) 100% (0%) 
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5. Conclusions 

In this paper, we propose a DE with ring topology without overlapping neighborhood combined 

with Tabu Search. The results of the DE+TS have been compared to DE for 3 different population 

sizes. Increasing the population size, we noticed that DE provided better performance. This may be 

caused by the fact that DE+TS refines the solution found by DE, resulting in a loss of diversity of 

the population. We compare our results with a state of the art PSO with 4 different ring topologies 

(r2, r2_lhc, r3, r3_lhc). The best results using PSO with ring topologies was obtained with the 

topology r3_lhc. Increasing the population size of DE, the performance of the algorithm is getting 

closer to PSO r3_lhc. The next step of this research is to investigate the use of other local search 

methods, e.g., Nelder-Mead, or Hooke and Jeves for a larger suite of benchmark functions. 
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