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Abstract

We propose a novel neighbor generation method for a Simulated Annealing (SA) algorithm
used to solve the Minmax Regret Path problem with Interval Data, a difficult problem in Com-
binatorial Optimization. The problem is defined on a graph where there exists uncertainty in the
edge lengths; it is assumed that the uncertainty is deterministic and only the upper and lower
bounds are known. A worst-case criterion is assumed for optimization purposes. The goal is
to find a path s-t, which minimizes the maximum regret. The literature includes algorithms
that solve the classic version of the shortest paths problem efficiently. However, the variant that
we study in this manuscript is known to be NP-Hard. We propose a SA algorithm to tackle
the aforementioned problem, and we show that our implementation is able to find good solu-
tions in reasonable times for large size instances. Furthermore, a known exact algorithm that
utilizes a Mixed Integer Programming (MIP) formulation was implemented by using a com-
mercial solver (CPLEX1). We show that this MIP formulation is able to solve instances up to
1000 nodes within a reasonable amount of time.

1 Introduction

In this work we study a variant of the well known Shortest Path (SP) problem. For the classical
version of this problem, efficient algorithms have been known since 1959 (Dijkstra, 1959). Given
a digraph G = (V,A) (V is the set of nodes and A is the set of arcs) with non-negative arc costs
associated to each arc and two nodes s and t in V , SP consists of finding a s-t path of minimum total
cost. Dijkstra designed a polynomial time algorithm and from this, a number of other approaches
have been proposed. Ahuja et al. present the different algorithmic alternatives to solve the problem
(Ahuja et al., 1993).

Our interest is focused on the variant of shortest path problems where there exists uncertainty
in the objective function parameters. In this SP problem, for each arc we have a closed interval
defining the possibilities for the arc length. A scenario is a vector where each number represents one
element of an arc length interval. The uncertainty model used here is the minmax regret approach
(MMR), sometimes named robust deviation; in this model the problem is to find a feasible solution
being α-optimal for any possible scenario with α as small as possible. One of the properties of the
minmax regret model is that it is not as pessimistic as the (absolute) minmax model. This model

1Although popularly referred to simply as CPLEX, its formal name is IBM ILOG CPLEX Optimization Studio.
For additional information, the interested reader may consult the following URL: http://www-01.ibm.com/
software/integration/optimization/cplex-optimizer/
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in combinatorial optimization has largely been studied only recently: see the books by Kouvelis
and Yu (Kouvelis and G., 1997), and Kasperski (Kasperski, 2008), as well as the recent reviews by
Aissi et al. (Aissi et al., 2009) and Candia-Véjar et al. (Candia-Véjar et al., 2011). The later also
mentions some interesting applications of the MMR model in the real world.

It is known that minmax regret combinatorial optimization problems with interval data (MM-
RCO) are usually NP-hard, even in the case when the classic problem is easy to solve; this is
the case of the minimum spanning tree problem, shortest path problem, assignment problems and
others; see Kasperski (2008) for details.

Exact algorithms for Minmax Regret Paths have been proposed by (Karasan et al., 2001; Kasper-
ski, 2008; Montemanni and Gambardella, 2004, 2005). All these papers show that exact solutions
for MMRP can be obtained by different methods and take into account several types of graphs and
degrees of uncertainty. However, the size of the graphs tested in these papers was limited to a
maximum of 2000 nodes.

In this context, our main contributions in this paper are the analysis of the performance of
the CPLEX solver for a MIP formulation of MMRP, the analysis of the performance of known
heuristics for the problem and finally the analysis of the performance of a proposed SA approach for
the problem. For experiments we consider two classes of networks, random and a class of networks
used in telecommunications and both containing different problem sizes. Instances containing from
500 to 20000 nodes with different degrees of uncertainty were considered.

In the next section, we present the formal definition of the problem and notation associated and
in Section 3 a mathematical programming formulation for MMRP is presented. We also discuss the
midpoint scenario and the upper limit scenario heuristics for MMRP in more detail and then present
the general algorithm for SA. In Section 4 we formally define the neighborhood used for our SA
approach. Details of our experiments and their results are analyzed in Section 5. Finally in Section
6, our conclusions and suggestions for future work are presented.

2 Notation and Problem Definition

LetG = (V,A) be a digraph, where V corresponds to the set of vertices and A is conformed by a set
of arcs. With each arc (i, j) in A we associate a non-negative cost interval [c−ij , c

+
ij ], c

−
ij ≤ c+ij , i.e.,

there is uncertainty regarding the true cost of the arc (i, j), and whose value is a real number that
falls somewhere in the above-mentioned interval. Additionally, we make no particular assumptions
regarding the probability distribution of the unknown costs.

The Cartesian product of the uncertainty intervals
[
c−ij , c

+
ij

]
, (i, j)εA, is denoted as S and any

element s of S is called a scenario; S is the vector of all possible realizations of the costs of arcs.
csij , (i, j)εA denote the costs corresponding to scenario s.

Let P be the set of all s-t paths in G. For each XεP and sεS, let

F (s,X) =
∑

(i,j)εX

csij , (1)

be the cost of the s-t path X in the scenario s.
The classical s-t shortest path problem for a fixed scenario sεS is
Problem OPT.PATH(s). Minimize F (s,X) : XεP .
Let F ∗(s) be the optimum objective value for problem OPT.PATH(s).
For any XεP and sεS, the value R(s,X) = F (s,X)− F ∗(s) is called the regret for X under

scenario s. For any XεP , the value

Z(X) = maxsεSR(s,X), (2)

2

2333



September 24-28, 2012
Rio de Janeiro, Brazil

is called the maximum (or worst-case) regret for X and an optimal scenario s∗ producing such
a worst-case regret is called worst-case scenario for X . The minmax regret version of Problem
OPT.PATH(s) is

Problem MMRP. Minimize {Z(X) : XεP} .

Let Z∗ denote the optimum objective value for Problem MMRP.
For any XεP , the scenario induced by X , s(X), for each (i, j)εA is defined by

c
s(X)
ij =

{
c+ij , (i, j) εX

c−ij , otherwise.
(3)

Let Y (s) denote an optimal solution to Problem OPT.PATH(s).

Lemma 1 (Karasan et al. (Karasan et al., 2001)). s(X) is a worst-case scenario for X .

According to Lemma 1, for any XεP , the worst-case regret

Z(X) = F (s(X), X)− F ∗(s(X))

= F (s(X), X)− F (s(X), Y (s(X)), (4)

can be computed by solving just one classic SP problem according to the definition of Y (S) given
above.

3 Algorithms for MMRP

In this section we present both a MIP formulation for MMRP, which will be used to obtain an exact
solution by using a solver CPLEX, and our SA approach for finding an approximate solution for
the problem. Two simple and known heuristics based on the definition of specific scenarios are also
presented.

3.1 A MIP Formulation for MMRP

Consider a digraph G = (V,A) with two distinguished nodes s and t. According with the past
section each arc (i, j) ∈ A has interval weight

[
c−ij , c

+
ij

]
and also has a binary variable xij associated

expressing if the arc (i, j) is part of the constructed path. We use Kasperski’s MIP formulation of
MMRP (Kasperski, 2008), given as follows:

min
∑

(i,j)∈A

c+ijxij − λs + λt (5)

λi ≤ λj + c+ijxij + c−ij(1− xij), (i, j) ∈ A, λ ∈ R (6)

∑
{i:(j,i)∈A}

xji −
∑

{k:(k,j)∈A}

xkj =


1, j = s

0, j ∈ V -{s, t}
−1, j = t

(7)

xij ∈ {0, 1} , for (i, j) ∈ A (8)

The solver CPLEX is then used to solve the above MIP.
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3.2 Basic Heuristics for MMRP

Two basic heuristics for MMRP are known; in fact these heuristics are applicable to any MM-
RCO problem. These heuristics are based on the idea of specifying a particular scenario and then
solving a classic problem using this scenario. The output of these heuristics are feasible solutions
for the MMRCO problem (Candia-Véjar et al., 2011; Conde and Candia, 2007; Kasperski, 2008;
Montemanni et al., 2007; Pereira and Averbakh, 2011a,b).

First we mention the midpoint scenario, sM defined as sM = [(c+e + c−e )/2] , e ∈ A. The
heuristic based on the midpoint scenario is described in Algorithm HM.

Algorithm HM(G,c)

Input: Network G, and interval costs
function c

Output: A feasible solution Y for MMRP.
1: for all e ∈ A do
2: cs

M

e = (c+e + c−e )/2
3: end for
4: Y ← OPT (sM )
5: return Y, Z(Y )

Algorithm HU(G,c)

Input: Network G, and interval costs
function c

Output: A feasible solution Y for MMRP.
1: for all e ∈ A do
2: cs

U

e = c+e
3: end for
4: Y ← OPT (sU )
5: return Y,Z(Y )

We refer to the heuristic based on the midpoint scenario as HM. The other heuristic based on
the upper limit scenario will be denoted by HU and is described in Algorithm HU.

The heuristics HU and HM have been designed for rapidly obtaining feasible solutions. These
heuristics find a solution by solving the corresponding classic problem only twice. The first is the
computation of the solution Y in the specific scenario, sM for HM or sU for HU, and the second is
the computation of Z(Y ) (see steps 4 and 5 in Algorithm HM and Algorithm HU). These heuristics
have been used in an integrated form by the sequential computing of the solutions given by HM and
HU and using the best. In the evaluation of heuristics for MMR problems, some experiments have
shown that if these heuristics are considered as an initial solution for a heuristic, improved solutions
are not easy to achieve, please refer to Montemanni et al. (Montemanni et al., 2007), Pereira and
Averbakh (Pereira and Averbakh, 2011a,b) and Candia-Véjar et al. (Candia-Véjar et al., 2011) for
a more detailed explanation.

3.3 Simulated Annealing for MMRP

Simulated Annealing (SA) is a very traditional metaheuristic, see Dréo et al. (2006) for details. A
generic version of SA is specified in Kirkpatrick et al. (1983).

We shall now describe the main concepts and parameters used within the context of the MMRP
problem,

Search Space A subgraph S of the original graphG is defined such that this subgraph contains a s-
t path. In S a classical s-t shortest path subproblem is solved, where the arc costs are chosen
taking the upper limit arc costs. Then, the optimum solution of these problem is evaluated for
acceptation.

Initial Solution The initial solution Y0 is obtained applying the heuristic HU to the original net-
work S0 The regret Z(Y0) is then computed.
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Initial Temperature Different values for the initial temperature were tested and t0 = 1 was used
for all experiments.

Cooling Programming A geometric descent of the temperature was according to parameter beta.
Several experiments were performed and after to consider the trade-off between the regret of
the solution and time needed to compute it, β was fixed as 0.94 for all experiments.

Internal Loop This loop is defined by a parameter L and depended on the size of the instances
tested. After initial experiments, L was fixed at 25 for instances from 500 nodes to 10000
nodes. For instances with 20000 nodes the L was fixed at 50.

Neighborhood Search Moves Let Si be the subgraph of G considered at the iteration i and let xi

be the solution given by the search space at the iteration i. Then we generate a new subgraph
Si+1 of G from Si changing the status of some components of the vector characterizing Si.
The number of components is managed by a parameter λ and a feasible solution is obtaining
searching Si+1 (according with the definition of Search Space) which must be tested for
acceptation.

Acceptation Criterion A standard probabilistic function is used to determine if a neighboring so-
lution is accepted or not.

Termination Criterion A fixed value of temperature (final temperature tf ) is used as termination
criterion with tf = 0.01.

Our definition of Neighborhood Search Moves is new, but takes inspiration from that described
by Nikulin. In his paper (Nikulin, 2007), he applied this to the interval data minmax regret spanning
tree problem.

4 Neighborhood Structure for the MMRP problem

Given the importance of the neighborhood structure in our proposed method, we have dedicated this
section to explain it in detail. We start by defining the Local Search (LS) mechanism. Subsequently
we detail the concepts of neighborhood structure and Search Space. After that, we explicitly de-
scribe an architectural model for obtaining new candidate solution by restricting the original search
space.

4.1 Local Search (LS)

Local Search (LS), described in Algorithm local-search, is a search method for a CO problem P
with feasible space S. The method starts from an initial solution and iteratively improves it by
replacing the current solution with a new candidate, which is only marginally different. During this
initialization phase, the method selects an initial solution Y from the search space S . This selection
may be at random or taking advantage of some a priori knowledge about the problem.

An essential step in the algorithm is the acceptance criterion, i.e., a neighbor is identified as the
new solution if its cost is strictly less in comparison to the current solution. This cost is a function
assumed to be known and is dependent on the particular problem. The algorithm terminates when
no improvements are possible, which happens when all the neighbors have a higher (or equal) cost
when compared to the current solution. At this juncture, the method outputs the current solution as
the best candidate. Observe that, at all iteration steps, the current solution is the best solution found
so far. LS is a sub-optimal mechanism, and it is not unusual that the output will be far from the
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optimum. The literature reports many algorithms that attempt to overcome the hurdles encountered
in the original LS strategy. The interested reader may consult (Luke, 2009) for a survey.

Algorithm local-search(S,cost(·),N(·))

Input:
(i) S, A search space.
(ii) cost(·), a cost function.
(iii) N(·) a neighborhood function.

1: Y ← A starting solution from S.
2: while ∃Y ′ ∈ N(Y ) such that cost(Y ′)
< cost(Y ) do

3: Y ← Y ′

4: end while

Algorithm neighbor-induction(R)

Input: R, a subspace of the original search
space S.

Output: Y ′, the new candidate solution.

1: R′ ← subspace-perturbation(R)
2: Y ′ ← generate-candidate(R′)

4.2 Neighbor Induction Via Subspace Perturbation

Typically in LS, almost all cases of neighborhood structures are analogous to the k-opt method
explained above, in the sense that a candidate solution is obtained by applying a slight modification
to the previous candidate. A fundamentally different philosophy is the one of using sub-spaces to
induce candidate solutions. In this model, the new candidate is not obtained directly from a previous
solution. Rather the candidate is obtained by an indirect step, which consists in perturbing a sub-
space in a LS fashion so as to obtain a new subspace which is marginally different in comparison
to the former. Finally, the new subspace is employed to derive the new candidate solution. This
concept adds an extra layer in the architectural model for defining the neighborhood structure. The
method is detailed in Algorithm neighbor-induction, which generalizes the method presented in
(Nikulin, 2007). The author of (Nikulin, 2007), in the first step apply local transformations to a
connected graph (sub-space) to obtain a new graph which is also connected (new sub-space). In the
second step, they calculate the differences in the regret between the original and modified candidate
solutions.

4.3 MMRP Neighborhood

Our proposed solution for the MMRP Neighborhood retains the idea of using bitmap strings to
represent (and restrict) the search space. We start by defining a bitmap string with cardinality |A|,
such that π(j) = 1 if edge aj belongs to the current subset, and πi(j) = 0 otherwise. Further, π(j)
denotes the bit j of the bitmap vector. The full process for creating a new search space is detailed
in Algorithm MMRP-subspace-perturbation.

At each iteration, a predetermined fraction of arcs from the original subspace are inverted, i.e.,
they are set to 1 (added) if they were not present in π or set to 0 (deleted) otherwise. This fraction
is controlled by the parameter γ, and directly relates the concept of exploration and exploitation
mentioned earlier. Small values for γ lead to slight perturbations of the current subspace, i.e., the
resultant subspace will be only marginally different from the subspace currently being examined.
This configuration favors the exploitation of the current solution. In contrast, large values for γ
produce strong perturbations of the subspace, producing subspaces which are expected to be much
different from the subspace currently being perturbed, which favors the exploration of unvisited
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regions in the original search space. Exploratory test on a variety of datasets have show evidence
that a suitable value for γ depends on the dataset being tested and particularly its size.

Once the subspace is determined, the algorithm ensures that there exists a path between s and
t. If so π′ is accepted, otherwise we reject it and randomly generate a new version of π′ following
the same scheme.

The overall algorithm starts with the entire search space by setting all the bits of the vector π to
1.

Algorithm 1 Algorithm MMRP-subspace-perturbation(π,γ)
Input:

i) π, a bitmap string with cardinality |A|, such that π(j) = 1 if edge aj belongs to the current
subset, and π(j) = 0 otherwise.

ii) γ, the fraction of arcs from the original subspace which are to be flipped.

Output:

i) π′, a bitmap string with cardinality |A|, such that π′(j) = 1 if edge aj belongs to the current
subset, and π′(j) = 0 otherwise.

Method:
repeat

π′ ← π
for k = 1→ γ do

j → RANDOM(0, |π′|)
if π′(j) = 0 then

π′(j)← 1
else

π′(j)← 0
end if

end for
until the graph induced by π′ contains at least one path from s to t.

Observe that, in our definition of neighborhood, a subspace is not restricted to connected graphs,
i.e., a subspace may (or may not) possess unconnected components. For this reason, we must check
at all iterations that at least a single s-t path exists. Note that the unconnected components may
become connected depending on the stochastic properties of the environment.

Once the auxiliary graph is determined, we obtain a new candidate solution from it. This pro-
cess is detailed in Algorithm MMRP-generate-candidate. In our proposition, the new candidate
solution, i.e., a new path, is obtained by a heuristic criterion. We decided to apply the HU method
mentioned earlier. Other avenues involve the replacement of this criterion, using HM instead of
HU, or selecting the path with the minimum cost between the two heuristics. We then calculate the
regret of this path with a classical SP algorithm over the original graph, then using it to determine
whether or not to accept the new subspace.
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Algorithm 2 Algorithm MMRP-generate-candidate(π′)
Input:

i) π′, a bitmap string with cardinality |A|, such that π′(j) = 1 if edge aj belongs to the current
subset, and π′(j) = 0 otherwise.

Output:

i) Y ′, the new candidate solution.

Method:
Y ′ ← HU(π′)

With this method, we are able to tailor the percentage of arcs we flip when generating a neighbor
candidate, enabling us to find the correct balance between exploration and exploitation. The result
of this, however, is that we can no longer use the delta between the regrets as our acceptation
criteria. Instead we have calculate the regret via a heuristic method. For MMRP this compromise
is acceptable, as we know of linear time algorithms for calculating the two shortest paths required
for the calculation of the HU and HM heuristics.

5 Experimental Results and Analysis

All the algorithms were implemented in C and the experiments were conducted on a computer with
a 2.3 GHz Intel i3 processor and 3 Gb of RAM.

Experiments with two classes of instances were performed, Karasan instances and a set of
random instances. We test how well a standard MIP formulation performs in solving both sets
of graphs, using those solutions to benchmark the relative performance of the HU, HM, and SA
approaches.

5.1 Karasan Instances

The Karasan graphs represent a network topology where the nodes are organized in w layers.
They are named here as K-n-c-d-w, where n is the number of nodes, each cost interval has form[
c−ij , c

+
ij

]
where a random number cij ∈ [1, c] is generated and c−ij ∈ [(1− d)cij , (1 + d)cij ],

c+ij ∈
[
c−ij + 1, (1 + d)cij

]
( 0 < d < 1) are generated and w is the number of layers (Monte-

manni and Gambardella, 2004).

5.2 Random Graphs

Random graphs were defined in Montemanni et al. (Montemanni and Gambardella, 2004) and they
are named as R-n-c-δ where n is the set of nodes, interval costs are randomly generated in such a
way that c+ij ≤ c, ∀(i, j) ∈ A, 0 ≤ c−ij ≤ c

+
ij , ∀(i, j) ∈ A and δ defines the density of the graph.

5.3 Results and Analysis

Instances with 1000, 10000 and 20000 nodes were considered. For a fixed number of nodes, in-
stances with differing number of arcs were considered. The parameters used by SA (after tuning)
were defined as follows: Initial temperature was fixed by T0 = 1 and final temperature was fixed
by Tf = 0.1, the parameter λ was defined as λ = 0.1 for graphs with 1000 until 10000 nodes and
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by λ = 0.01 for graphs with 20000 nodes, the cooling programming was defined by β = 0.94, the
internal loop was defined by L = 25 for instances with 1000 and 10000 nodes. For instances with
20000 nodes the parameter was defined by L = 50.

CPLEX was able to solve at the optimum, instances with 1000 nodes. For instances with 10000
and 20000 nodes, memory problems only permit feasible solutions to be found. In the tables, when
the optimal value for the instance is known, we refer to it as GAP. When CPLEX can not find the
optimal solution, we give the gap estimated by CPLEX (denoted as Est. Gap) and the gap between
the best known value found by CPLEX and that found by the heuristic (denoted as GAP*).

Table 1 shows that the exact algorithm leads to larger values for the gaps as the complexity of
the instances increases. With respect to the heuristics HM and HU, it is clear that HU has a better
performance than HM and the gap of solutions found by HU is always small.

From Table 2 it is noted first that SA is able to obtain feasible solutions in no more than 22
minutes for all instances. Only a single instance with 20000 nodes took 1245 seconds (on average)
and the other solutions were obtained within 433 seconds or less. We observe that in most instances
SA was able to improve the solution given by the heuristic and all the instances achieved solutions
with small gaps with respect to the best solution given by CPLEX. For the most part, there is very
little variation in both the running time and the quality of the solution when using SA. However,
for two instances, one with 10000 nodes and the other with 20000 nodes, the running time had very
significant differences.

For random networks CPLEX was able to optimally solve all the instances. Our results for
random instances confirm the results commented in others papers. These classes of instances are
not complicated for exact algorithms. HU has better performance than HM and almost always finds
an optimal solution. In two particular cases HM and HU only find good feasible solutions. In these
cases, SA was not be able to improve on the solution provided by HU.

6 Conclusions and Future Work

A novel neighbor generation method for a SA algorithm was proposed and used for solving the
interval data minmax regret path problem. The performance of this method was compared with
the performance of two known simple and effective heuristics for MMRCO problems; the optimal
solution (in most cases) was provided by CPLEX from a linear integer programming formulation
known for MMRP. Two classes of instances were considered for experimentation; random graphs
and Karasan graphs. For random graphs, the optimal solutions were always obtained by CPLEX in
reasonable times. The heuristic using the upper bound scenario outperforms that using the midpoint
scenario in this problem and almost always finds the optimal solutions.

For Karasan graphs, the optimal solution was always found by CPLEX for instances with 1000
nodes. All the instances with 10000 and 20000 nodes had estimated gaps between 2.07% and
9.17% within the time limit. Also, in some cases CPLEX was not able to find the optimum because
of memory overflow errors.

According to our experiments, there are many cases where the SA improves on the result of
the HU and HM algorithm. In particular, in the case when the cardinality of the datasets is large.
This is an important feature of our proposed SA algorithm, that is, it consistently improves on the
best of two basic heuristics for the broad range of Karasan instances we tested. This shows that the
method of perturbing the search space during the neighbor generation process in the SA algorithm
is an effective means of generating better solutions than the two heuristic algorithms.

For future work, when using SA in Minmax regret problems, it would be ideal to consider
more variety on some parameters when defining the test instances e.g., the parameter c. Also,
the neighborhood scheme used here could be considered when using different metaheuristics, like
Genetic Algorithms, to solve Minmax Regret combinatorial optimization problems.
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Table 1: The results of the analyses for Karasan graphs instances ranging from 7500 to 20000 nodes. The
columns show statistical information for the MILP, HM and HU schemes, respectively. In these instances,
GAP* for HM, HU, and SA are calculated from the best solution found by CPLEX, rather than the optimal
solution.

MILP HM HU
Instances Z(x) T (sec) Est. GAP(%) Z(x) T (sec) GAP*(%) Z(x) T (sec) GAP*(%)
K-1000-200-0.9-a-5 2854 23.30 0.00 2966 0.01 3.92 2918 0.01 2.24
K-1000-200-0.9-b-5 2463 12.70 0.00 2657 0.01 7.88 2482 0.01 0.77
K-1000-200-0.9-a-18 227 3.00 0.00 240 0.02 5.73 231 0.02 1.76
K-1000-200-0.9-b-18 250 3.90 0.00 255 0.02 2.00 251 0.02 0.40
K-1000-200-0.9-a-25 134 4.00 0.00 145 0.02 8.21 134 0.02 0.00
K-1000-200-0.9-b-25 125 4.70 0.00 127 0.02 1.60 126 0.02 0.80
K-1000-200-0.9-a-50 48 4.10 0.00 50 0.04 4.17 49 0.04 2.08
K-1000-200-0.9-b-50 56 2.80 0.00 62 0.04 10.71 56 0.04 0.00
K-1000-200-0.9-a-100 23 4.10 0.00 23 0.08 0.00 25 0.08 8.70
K-1000-200-0.9-b-100 17 3.70 0.00 17 0.08 0.00 17 0.08 0.00

K-10000-200-0.9-a-4 36091 7201.78 5.41 37912 0.06 5.05 37277 0.06 3.29
K-10000-200-0.9-c-4 36539 7202.01 7.00 38362 0.08 4.99 37685 0.08 3.14
K-10000-200-0.9-a-8 10083 7199.62 3.38 10490 0.11 4.04 10337 0.11 2.52
K-10000-200-0.9-c-8 10781 7200.46 4.46 11372 0.13 5.48 10940 0.13 1.47
K-10000-200-0.9-a-15 3147 7199.32 2.64 3322 0.18 5.56 3190 0.18 1.37
K-10000-200-0.9-c-15 3019 7198.59 2.07 3218 0.21 6.59 3039 0.23 0.66
K-10000-200-0.9-a-30 1018 7198.53 5.34 1074 0.33 5.50 1028 0.33 0.98
K-10000-200-0.9-b-30 1005 7197.98 5.31 1055 0.33 4.98 1014 0.33 0.90
K-10000-200-0.9-a-100 – 7200.00 – 184 1.06 – 172 1.05 –
K-10000-200-0.9-b-100 – 7200.00 – 172 1.05 – 166 1.06 –

K-20000-200-0.9-a-3 118661 7200.15 9.17 123705 0.11 4.25 124588 0.11 4.99
K-20000-200-0.9-c-3 118751 7201.10 9.39 123314 0.13 3.84 124170 0.13 4.56
K-20000-200-0.9-a-5 50917 7199.79 7.19 53141 0.17 4.37 51902 0.17 1.93
K-20000-200-0.9-c-5 50868 7201.39 6.75 53107 0.19 4.40 51735 0.19 1.70
K-20000-200-0.9-a-8 21516 7199.21 5.36 22613 0.26 5.10 21913 0.24 1.85
K-20000-200-0.9-c-8 21219 7202.52 5.24 22270 0.23 4.95 21499 0.23 1.32
K-20000-200-0.9-a-20 3798 7200.00 4.39 4040 0.53 6.37 3831 0.50 0.87
K-20000-200-0.9-b-20 3729 7200.00 5.34 3947 0.51 5.85 3757 0.51 0.75
K-20000-200-0.9-a-50 – 7200.00 – 917 1.14 – 864 1.13 –
K-20000-200-0.9-b-50 – 7200.00 – 868 1.14 – 838 1.19 –
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Table 2: The results of the analyses for Karasan graphs instances ranging from 7500 to 20000 nodes. The
columns show statistical information about the SA, when the decaying factor for the temperature was 0.94.
For each instance, the average between 10 runs is reported.

SA(0.94)
Instances Z(x) GAP*(%) σ(GAP*) T (sec) minT (sec) maxT (sec)

K-1000-200-0.9-a-5 2897.6 0.02 0.005 2.40 1.90 6.30
K-1000-200-0.9-b-5 2476.9 0.01 0.002 3.80 2.00 12.10
K-1000-200-0.9-a-18 229.4 0.01 0.009 4.10 4.00 4.40
K-1000-200-0.9-b-18 250.7 0.00 0.002 18.20 4.10 143.60
K-1000-200-0.9-a-25 134.0 0.00 0.000 4.70 4.80 5.60
K-1000-200-0.9-b-25 126.0 0.01 0.000 4.70 4.80 5.40
K-1000-200-0.9-a-50 49.0 0.02 0.000 8.00 8.20 8.60
K-1000-200-0.9-b-50 56.0 0.00 0.000 8.20 8.40 8.50
K-1000-200-0.9-a-100 25.0 0.08 0.000 17.20 17.70 18.00
K-1000-200-0.9-b-100 17.0 0.00 0.000 17.50 17.70 17.80

K-10000-200-0.9-a-4 37093.6 2.70 0.210 42.60 40.80 44.26
K-10000-200-0.9-c-4 37510.6 2.61 0.090 44.13 40.88 56.67
K-10000-200-0.9-a-8 10318.5 2.28 0.150 55.49 54.57 56.80
K-10000-200-0.9-c-8 10913.8 1.22 0.070 56.70 54.48 64.25
K-10000-200-0.9-a-15 3189.1 1.32 0.050 152.55 90.30 705.71
K-10000-200-0.9-c-15 3037.7 0.62 0.050 94.55 91.80 108.85
K-10000-200-0.9-a-30 1028.0 0.97 0.000 139.13 138.22 139.72
K-10000-200-0.9-b-30 1011.9 0.68 0.280 135.76 134.94 136.67
K-10000-200-0.9-a-100 172.0 – – 432.87 429.46 435.10
K-10000-200-0.9-b-100 165.9 – – 420.23 417.38 422.80

K-20000-200-0.9-a-3 124075.2 4.30 0.100 97.12 95.07 100.83
K-20000-200-0.9-c-3 123652.0 3.96 0.120 124.98 120.74 129.00
K-20000-200-0.9-a-5 51846.2 1.79 0.060 118.81 116.74 121.61
K-20000-200-0.9-c-5 51649.5 1.51 0.070 144.04 136.16 147.49
K-20000-200-0.9-a-8 21890.9 1.71 0.080 116.21 114.54 117.63
K-20000-200-0.9-b-8 21483.5 1.23 0.060 140.51 117.86 265.97
K-20000-200-0.9-a-20 3829.3 0.82 0.090 222.05 219.57 223.66
K-20000-200-0.9-b-20 3754.1 0.67 0.080 246.83 233.27 299.18
K-20000-200-0.9-a-50 864.0 – – 1244.95 457.37 8196.27
K-20000-200-0.9-b-50 – – 0.000 0.00 – 0.00
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