
September 24-28, 2012
Rio de Janeiro, Brazil

A Tabu Search Algorithm for the Capacitated Centred
Clustering Problem

Albert Einstein Fernandes Muritiba1, Marcos Negreiros2,
Hedley Luna Gois Oriá2, Michael Ferreira de Souza1

1 Universidade Federal do Ceará (UFC)
Departamento de Estatística e Matemática Aplicada (DEMA)

2Universidade Estadual do Ceará (UECE)
Mestrado Profissional em Computação Aplicada

MPCOMP/UECE-IFCE-UFRJ
Av. Paranjana, 1700 – Campus do Itaperi

CEP: 60740-000 – Fortaleza – CE – Brazil

einstein@ufc.br, negreiro@graphvs.com.br, hedleygois@gmail.com, michael@ufc.br

Resumo. O problema de agrupamento capacitado em centro geométrico PACCG
consiste em particionar um conjunto de n pontos no <2 em p grupos disjuntos
com capacidade limitada. A cada ponto está associado um valor de demanda e
o objetivo é minimizar a soma das distâncias euclideanas entre os pontos e os
seus respectivos centros. Neste trabalho, nós consideramos o PACCG e sua vari-
ante, o gCCCP, que não estabelece a priori o número de grupos p e estabelece
um custo fixo F de abertura dos grupos. Nós propomos um conjunto efetivo de
estratégias que se combinam à metaheurística clássica Busca Tabu, as quais em
conjunto atingem melhores soluções que as até aqui publicadas pela literatura.

Palavras Chaves: Agrupamento, Agrupamento Min-Sum, PACCG, Metaheuris-
tica.
Área principal : MH

Abstract. The capacitated centered clustering problem CCCP consists in par-
titioning a set of n points in <2 in p disjoint clusters within a given capacity.
Each point has an associated demand and the objective is to minimize the sum
of the Euclidean distances between the points and the their respective clusters
centroids. In this work, we address the CCCP and also its variant, the g-CCCP,
which unleashes the number of clusters p and establishes the opening cost of
clusters F . We propose effective strategies that combined with the classical Tabu
Search metaheuristic outperform the recent methods published.
Keywords: Clustering, Min-Sum-Square Clustering, CCCP, Metaheuristics.
Main area: MH

1 Introduction
Clustering is a very well known problem related to the process of assigning individuals to
a number of disjoint partitions. The clustering problems may be classified in many ways,
one of them is the min-sum of squares clustering. Its objective is to minimize a function of
least-square distance between individuals to the geometric center of their partitions, in such

2344

September 24-28, 2012
Rio de Janeiro, Brazil

a way that it is known previously the number of clusters to be built. In this type of clustering
process, the solutions are composed of hyper-spherical clusters. The unconstrained min-
sum-square clustering is largely studied and has a number of exact and approximative
methods that can find very close to optimal solutions, [7], [3], [15], [16], [2].

Recently, a version of the problem was proposed by Negreiros & Palhano (2006),
considering to the euclidean plane, a constrained process of doing min-sum clustering of
a set of individuals, [8]. Once clustering can be done in many different ways, this new
problem searches for solutions where there are limits on the capacity of the clusters or
even their size (maximum number of individuals per cluster). This new problem is also NP-
Hard, and introduces interesting research topics on exploring combinatorial optimization
methods to solve it.

The related literature explored a number of applications of the CCCP in the dry
food distribution logistics, designing zones for urban garbage collection, territorial design
of salesmen regions, dengue desease control, [8], [10].

Two problems were introduced, the p-CCCP and the generalized CCCP or gCCCP.
In the first version, the capacitated constrained min-sum clustering is bounded by a number
of groups, where in the second generalized version there is no limit on the number of
groups, but it is added to the objective function a fixed cost to open a new cluster. To
evaluate the problems, the authors prepared a set of test instances extracted from diferent
sources.

Effort is beeing done for some researchers in the direction of solving the CCCP.
Negreiros & Palhano (2006) introduced the problem and proposed a binpacking greedy
constructive heuristics and VNS based methods, to improve the solutions to a set of selected
instances from many origins of real applications and special configuration tests. They
evaluated instances for both versions of the problem, [12].

In the direction of the p-CCCP, new constructive heuristics were proposed by Pal-
hano, Negreiros & Laporte (2008), the authors used spanning trees and Delaunay diagrams
to perform the methods called wave and fireworks. The methods showed to be of better
quality in the sense of doing good solutions then previous, the spatial clustering techniques
reveal to be more effective for the set of instances evaluated. A new result was obtained for
just one instance from garbage collection, [12]. The first column generation to the p-CCCP
schema was proposed Pereira & Senne (2008), whitch results overpass mostly the previ-
ous works for a selected number of instances, [13]. Chaves & Lorena (2009) proposed
a Cluster Search metaheuristic to the p-CCCP, combining simulated annealing and Clus-
ter Search metaheuristic previously developed by Oliveira & Lorena (2007). Their results
improved mostly 25 of the instances selected from the seminal work, [4], [11]. Chaves
& Lorena (2011), most recently introduced a new combined procedure, by using Genetic
Algorithms with local search VND heuristic to find promised clustering regions, and then
apply Cluster Search metaheuristic. They found 16 new upper bounds for the 25 selected
instances from the literature, [5].

Stefanello & Muller (2009) explored a new p-CCCP formulation, by introducing in
the objective function a manhattan distance between the individuals and the center of the
clusters. The formulation evaluated to the problem showed that for the selected instances
(sjc), the results obtained were very far away (>100%) from the previous upper bounds

2345

September 24-28, 2012
Rio de Janeiro, Brazil

published, [14].

The gCCCP was only investigated by Negreiros & Palhano (2006), and lately by
Negreiros & Batista (2010), [8], [9]. The late work explored a B&B combinatorial proce-
dure to the problem. They evaluated new instances from the max-cut problem literature,
and proved optimality to instances up to 30 vertices. They also evaluated a set-partitioning
approach using TS for the problem, by evaluating all the possible clusters of the instances.
For all testes the authors achieved very close results (<0.2%) from the proved optimal in-
stances.

In this work, section 2 review the mathematical formulation for both versions of the
CCCP, in section 3 we show a constructive method. In section 4 we define a neighboorhood
to p-CCCP and gCCCP. In section 5 we describe out the Tabu Search heuristic for the
CCCP. In section 6 we evaluate the instances extracted from the literature to the p-CCCP
and to the gCCCP, and compare the results obtained with the ones found in the literature.

2 Problem Description
Lets suppose that the CCCP can be represented by using the following set of parameters
and variables:

l - is the dimension of the space (l = 2, in our case);
I - is the set of individuals;
J - is the set of clusters centers;
|J | - is the cardinality of the set J , or a fixed number of clusters (= p);
p - is the number of clusters;
ai - is a vector of l dimension with the coordenates of the individual i;
qi - is the demand of an individual i;
Q - is the maximum capacity of a cluster;
nj - is the number of individuals in cluster j;

x̄j =

{
1, is a vector of dimension l representing the coordenates of the cluster j
0, otherwise

yij =

{
1, if an individual i is assigned to the cluster j
0, otherwise

(p−CCCP)Minimize
∑
i∈I

∑
j∈J

||ai − x̄j|| yij (1)

such that :
∑
j∈J

yij = 1,∀i ∈ I (2)∑
i∈I

yij ≤ nj,∀j ∈ J (3)∑
i∈I

ai yij ≤ njx̄j, ∀j ∈ J (4)∑
i∈I

qi yij = Q,∀j ∈ J (5)

x̄j ∈ <l, nj ∈ ℵ, yij ∈ {0, 1}, ∀i ∈ I,∀j ∈ J (6)

2346

September 24-28, 2012
Rio de Janeiro, Brazil

The objective function 1 wants to minimize the dissimilarity between clusters. The
constraint 2 assign one individual to just one cluster. The constraint 3 consider a maximum
number of individuals per cluster. The constraint 4 defines the center of the clusters. The
constraint 5 limits the assigned individuals to the cluster maximum capacity. The constraint
4 refer to the decision variables of the problem.

The p-CCCP is non-linear. It is NP-Hard, once its unconstrained version is also
NP-Hard, [7]. Its major difficulty is in fact in the knapsack constraint, althougth it is also
non trivial if we just consider the constraints to form the center of the clusters.

Consider the previous model used to define p-CCCP, and suppose that the CCCP
can be represented by also using the following set of parameters and variables:

F - fixed cost to open a cluster;

zj =

{
1, If cluster j is opened
0, otherwise

The new formulation can be expressed as:

(gCCCP)Minimize
∑
j∈J

F zj +
∑
i∈I

∑
j∈J

||ai − x̄j|| yij (7)

such that :
∑
j∈J

yij = 1,∀i ∈ I (8)∑
j∈J

zj ≥ 1 (9)∑
i∈I

yij ≤ nj,∀j ∈ J (10)∑
i∈I

ai yij ≤ njx̄j,∀j ∈ J (11)∑
i∈I

qi yij = Q zj,∀j ∈ J (12)

x̄j ∈ <l, nj ∈ ℵ, zj ∈ {0, 1}, yij ∈ {0, 1}, ∀i ∈ I,∀j ∈ J (13)

The difference between both problems are in: the objective function 7, that wants to
minimize the dissimilarity between clusters while also minimizing the fixed cost of opening
a new cluster, and a new constraint 10, which says that there is a necessity of opening at
least a cluster to attend all the individuals.

3 Constructive heuristic
In order to provide a good starting solution to our Tabu Search procedure (TS), we propose
a randomized best-fit constructive method for both problems. The p-RBFC and g-RBFC
are versions of our constructive heuristic for the CCCP and g-CCCP respectively.

Both methods randomize the list of vertices, they use a random multistart greedy
strategy to distribute the vertices through the clusters and them apply our local search
procedure (LS, see section 4) to improve resulting solutions. This process is repeated few
times, which by previous experiments we found to be 10 the best number to be used here

2347

September 24-28, 2012
Rio de Janeiro, Brazil

Algorithm 1 p - Randomized Best-Fit Constructive Heuristic.
Procedure RBFC
V - set of vertex
C, best - set of clusters
M() - the center of a cluster
w() - the demand of vertex or the actual demand of a cluster.
1: for k ← 1 to StartCount do
2: reset(C)
3: randomize(V)
4: for p← 1 to P do
5: Cp ← random(V)
6: end for
7: for i← P + 1 to |V | do
8: j ← argminj∈C{||vi −M(Ci)|| : w(vi) + w(Ci) ≤ Q}
9: insert vi into Cj

10: end for
11: if C < best then
12: best← C
13: end if
14: end for
15: return best

in our implementation. Then, the best found solution is used to start the Tabu Search
procedure.

The algorithm 1 shows the p-RBFC used to obtain an initial solution to the CCCP.
In this algorithm we have p as a given number of clusters. These clusters are initially
filled with the p first vertices of a randomized vector V , steps 2-6. Then, a best-fit fashion
strategy places the remainders vertices in the nearest feasible cluster.

The algorithm 2, in other hand, treat the gCCCP. The g-RBFC version works plac-
ing the vertex vi from the randomized vector V into the nearest feasible cluster. A new
cluster is opened whenever any feasible cluster could not be found. For this case, we
consider an infeasible cluster, also, the cluster Cj whose the distance between its current
centroid M(Cj) and the vertex vi is greater or equal to the opening cost F .

The computational performance of the constructive heuristics above reported are
discussed in section 6.

4 Local Search Movements

The core of our method is the local search (LS). It scans efficiently the neighborhood of a
feasible solution. The LS procedure searches for improving movements committing them
as soon as they are found. Our affords aimed a simple but efficient local search.

Three types of movements compose our LS. They are called transfer, swap and
wave movements.

Transfer: An individual is transfered from a cluster to another. In this movement,
an individual i is removed from a cluster A and placed in a different cluster B with enough
free capacity (Q− w(B) ≥ w(i)) whenever the global cost is improved.

In opposition to CCCP, the gCCCP transfer version permits to create or destruct a
cluster by, respectively, transferring a vertex to an empty cluster or removing a vertex from
a cluster composed of a single individual. Algorithm 3 shows this procedure.

2348

September 24-28, 2012
Rio de Janeiro, Brazil

Algorithm 2 g - Randomized Best-Fit Constructive Heuristic.
Procedure g-RBFC
V - set of vertex
C, best - set of clusters
M() - the center of a cluster.
w() - the demand of vertex or the actual demand of a cluster.
1: for k ← 1 to StartCount do
2: reset(C)
3: randomize(V)
4: P ← 0
5: for i← 0 to |V | do
6: j ← argminj∈C{||vi −M(Cj)|| : w(vi) + w(Cj) ≤ Q}
7: if j 6= then
8: insert vi into Cj

9: else
10: P ← P + 1
11: insert vi into CP

12: end if
13: end for
14: if C < best then
15: best← C
16: end if
17: end for
18: return best

Algorithm 3 Transfer movement.
Procedure Transfer(A,B)
A,B - clusters in a current solution C
Z(X) - cluster X cost
w() - the demand of vertex or the actual demand of a cluster.
1: for all a ∈ A do
2: if w(B) + w(a) ≤ Q and Z(A− {a}) + Z(B ∪ {a}) < Z(A) + Z(B) then
3: A← A− {a}
4: B ← B ∪ {a}
5: Aflag ← true
6: Bflag ← true
7: end if
8: end for

Swap: The individual i from the clusterA is exchanged by the individual j from the
cluster B. This movement takes two individuals, i from a cluster A and j from a different
cluster B, and places point i in B and j in A. The necessary condition to not exceed the
clusters capacity are: Q − w(A) + w(i) ≥ w(j) and Q − w(B) + w(j) ≥ w(i). Note
that the transfer does not dominate the swap movement since the condition needed to swap
may not imply in the necessary conditions (Q − w(B) ≥ w(i) and Q − w(A) ≥ w(j)).
Algorithm 4 shows the procedure.

The Swap movement can become computationally expansive due to the great amount
of cluster costs recalculations. To speed up the cost verification we established a function
called guess, that can provide an approximative value for the resulting clusters objective
function. The guess function calculate a delta (δ) cost by computing the equation 16:

2349

September 24-28, 2012
Rio de Janeiro, Brazil

Algorithm 4 Swap movement.
Procedure Swap(A,B)
A,B - clusters in a current solution C
Z(X) - cluster X cost
w() - the demand of vertex or the actual demand of a cluster.
1: for all a ∈ A do
2: for all b ∈ B do
3: Ok := w(A) + w(b)− w(a) ≤ Q
4: Ok := Ok and w(B) + w(a)− w(b) ≤ Q
5: Ok := Ok and Z((A ∪ {b})− {a}) + Z((B ∪ {a})− {b}) < Z(A) + Z(B)
6: if Ok then
7: A← (A ∪ {b})− {a}
8: B ← (B ∪ {a})− {b}
9: Aflag ← true

10: Bflag ← true
11: end if
12: end for
13: end for

Figure 1. Overlapping clusters, as overlapping boxes

M(A) =

∑
ai∈A ai

|A| (14)

M̃(A, i, j) =
(M(A) ∗ |A| − ai + aj)

|A| (15)

δ = ‖M̃(A, i, j)− aj‖ − ‖M(A)− ai‖+ ‖M̃(B, j, i)− ai‖ − ‖M(B)− aj‖ (16)

If δ is less then a small ε, we may compute the exact value of the cost of the
movement. Note that the equation 14, which computes the clusters centroids, can be stored
on the cluster data structure, thus the whole calculation can be performed in O(1).

In addition, we only consider a swap movement between a pair of clusters if the
clusters boxes intercept each other. As shown in figure 1, we define as the box of a clus-
ter the rectangle formed by the minimums and maximums (x, y) coordinates of its vertex.
For this case, the procedure will not attempt to swap vertices between clusters A and C.
More over, only vertex belonging to the common area can be swapped. This filter repre-
sents an important speed up for instances where the number of vertex in a single cluster is
significant.

Wave: In this movement, an individual ik is removed from the cluster Ak and be
inserted in another cluster Ak+1, whenever there would be an improvement in the global
cost, even if the cluster Ak+1 overflows its capacity. In this case, the point ik+1, that
maximizes the distance to ik, is removed from Ak+1 and is inserted in another cluster
Ak+2 6= Ak+1. The process is recursively repeated for a given maximum value to k (30 in

2350

September 24-28, 2012
Rio de Janeiro, Brazil

Figure 2. An example of the Wave movement between vertices of clusters

our experiments). We also set a maximum number of calls as the number of vertex in the
problem, forcing the procedure to be O(n). The algorithm 5 shows the procedure.

The figure 2 represents a wave movement. For sake of simplicity, we assume in
the example that the vertices have demand equal to one and the capacity of each cluster
is 5. The cluster A, B and D have initially 5 vertices each one, while cluster C has 4.
There is no improving transfer moves between clusters A and C, B and C or D and C.
However, the unfeasible transfer t1 of a vertex from A to B results in a cost improvement.
The execution of t1 implies in the need of t2, a transfer move that will make cluster B be
feasible. Note that t2 is not necessarily an improving transfer, it can be as worst as the
accumulate improvement permits. The t2 transfer makes cluster D infeasible and the t3
transfer becomes necessary. The t3 transfers a vertex to the clusterC, which had 4 vertices.
With all clusters feasible and some improvement, the wavemovement returns successfully.

The LS procedure combines the movements above to provide a fast intensification.
As shown in the algorithm 6, the LS takes use of a cluster flag that is set to false when the
search process starts and set true if the cluster is altered by any movement. Then we just
check movements involving at least one flagged cluster, avoiding redundant computations.

5 Tabu Search

Our tabu search algorithm (TS) is a classical TS procedure, as proposed originally by
Glover (1989), it consists in applying a local search method up to reach a local optimum,
then a spoil movement is forced and a rule is stored in the tabu list in order to avoid the
immediate return to the previous local optimum, [6].

The tabu method is shown in the algorithm 7. The command in line 9 consists in
searching for the movement that will less spoil the current solution, commit it, and store
the role in the tabu list to avoid doing this movement.

6 Computational Results

6.1 Benchmark instances

The benchmark instances are those available in the literature related to the CCCP. There
are seven in the group of TA, six in the group sjc, five in the group p3038 and, at last, seven
in the group doni. All of these instances can be obtained from OR-library, [1].

Table 1 shows some statistics of the instances. The columns indicates the name of
the instance - Name, number of individuals - n, number of clusters - clusters p, the capacity

2351

September 24-28, 2012
Rio de Janeiro, Brazil

Name n p Q w_Avg w_Dev

TA25 25 5 6 1 0
TA50 50 5 11 1 0
TA60 60 5 13 1 0
TA70 70 5 17 1 0
TA80 80 7 12 1 0
TA90 90 4 23 1 0
TA100 100 6 17 1 0
SJC1 100 10 720 58.07 51.86
SJC2 200 15 840 46.34 37.15
SJC3a 300 25 740 37.51 29.58
SJC3b 300 30 740 37.51 29.58
SJC4a 402 30 840 39.76 32.87
SJC4b 402 40 840 39.76 32.87
p3038_600 3038 600 321 50.85 24.75
p3038_700 3038 700 273 50.33 25
p3038_800 3038 800 238 50.26 25
p3038_900 3038 900 216 51.29 25.34
p3038_1000 3038 1000 191 50.44 24.87
doni1 1000 6 200 1 0
doni2 2000 6 400 1 0
doni3 3000 8 400 1 0
doni4 4000 10 400 1 0
doni5 5000 12 450 1 0
doni6 10000 23 450 1 0
doni7 13000 30 450 1 0

Table 1. Characteristics of the CCCP benchmark instances

of each cluster - Q, the average demand of each vertex - (q_Avg) and the standard deviation
of the demand of each vertex, (q_Dev).

The codes were done in C++(4.5.2) under Ubuntu Linux 11.04. The hardware used
was an Intel Core 2 Quad Q9550 CPU 2.83Ghz (per core, 4 cores), 4 GBytes of RAM.
The CPU times were measured in seconds, the codes were done to use just one core, in the
sequential form.

To proceed with the tests, we created a priori 100 initial solutions to the tabu search,
also limited the process in 48h, where 24h were given to the constructive phase and 24h to
the refinement phase. The tabu search was imposed to be limited to 4000 iterations.

6.2 Results for CCCP
In the table 2, the columns show respectively the name of the instance (Name), the ini-
tial solution cost (Start-sol), the needed CPU time to obtain the initial solution (Start-
time),the tenure used (tenure), the solution cost found (Sol), the CPU time needed to find
the best solution (Best-time), the maximum number of iteration without current solution
cost improvement (#Ite), the global time (time) to process the method, and the percentual
improvement gap obtained between the starting and final solution achieved (GAP). The
times on the table 2 are reported in seconds, rounded to the nearest integer value.

The columns p_min and pMinCost are respectively the minimum number of clus-
ter that our constructive heuristic was still able to produce an initial solution, and the cost
of this solution. The columns shows that our method found no difficulties to produce initial
solutions to the bechmark instances, and averagely the starting solution is 0.59% far from
the best solution obtained by the classical TS.

2352

September 24-28, 2012
Rio de Janeiro, Brazil

Name #Starts Start-sol Start-time Tenure #Ite Sol Best-time time GAP%

TA25 10 1256.62 0 7 1000 1251.45 0 0 0.41
TA50 10 4474.52 0 7 1000 4474.52 0 0 0.00
TA60 10 5370.05 0 7 1000 5356.58 0 0 0.25
TA70 10 6241.56 0 7 1000 6240.67 0 0 0.01
TA80 10 5730.28 0 7 1000 5730.28 0 0 0.00
TA90 10 9069.85 0 7 1000 9069.85 0 1 0.00
TA100 10 8116.71 0 7 1000 8102.04 0 0 0.18

SJC1 10 17588.62 0 59 1000 17359.75 0 1 1.32
SJC2 10 33637.60 0 59 1000 33181.65 0 3 1.37
SJC3a 10 45923.61 0 149 5000 45356.35 2 24 1.25
SJC3b 100 41008.12 1 59 5000 40661.94 4 21 0.85
SJC4a 100 62737.21 3 149 10000 61993.66 4 133 1.20
SJC4b 100 53006.33 3 59 10000 52202.48 94 153 1.54

p3038_600 10 127947.34 34 101 1000 126567.31 435 810 1.09
p3038_700 10 115893.45 38 101 1000 115168.49 600 1022 0.63
p3038_800 10 105860.22 68 101 1000 105352.33 1405 2411 0.48
p3038_900 10 98191.75 73 101 1000 97319.54 898 1650 0.90
p3038_1000 10 90328.40 88 101 1000 89896.55 499 1017 0.48

doni1 20 3052.33 3 101 1000 3025.12 13 40 0.90
doni2 20 6393.10 36 101 1000 6384.84 45 142 0.13
doni3 20 8345.57 105 101 1000 8343.49 627 1032 0.02
doni4 10 10814.29 79 101 500 10777.64 969 1450 0.34
doni5 10 11115.25 114 101 500 11114.67 175 437 0.01
doni6 3 15736.19 245 101 500 15610.46 2972 5476 0.81
doni7 3 18595.48 535 101 300 18484.13 32074 36878 0.60

Table 2. Computational results for p-CCCP benchmark instances

6.3 Results for g-CCCP

For the run with g-CCCP approach, we performed three runs for each instance, changing
their opening cost. We here estabilish open cost parameters to the benchmark instances for
future algorithm evaluations.

Table 3 shows the obtained values for each run. Each row display the instance’s
name (Name), the applied opening-cost (Opening), the g-RBFC procedure iteration (#Starts),
the initial solution cost (Start-cost), the number of point on the starting solution (Start-p),
the needed CPU time to run g-RBFC procedure (Start-t), the tenure used (tenure), the
maximum number of iteration without current solution cost improvement (#Ite), the found
solution cost (Sol-cost), the number of cluster in the found solution (Sol-p), the CPU time
needed to find the best solution (Best-t) and the global time (Time).

Note that the columns Start-cost and Sol-cost show only the costs referent to the
sum of distances between the cluster’s points and its centroid. The opening cost are taken
only in the column Sol.

6.4 Comparisons of Performance

The table 4 compares the computational results for the CCCP with the results obtained
from the literature.

In table 4 we compare the results obtained using the tabu search method proposed
with the existing reported results to the CCCP, from [8], [13],[12],[4], [5].

2353

September 24-28, 2012
Rio de Janeiro, Brazil

Note that in 20/25 runs, we obtained the best known solutions where 12 are unheard
solutions for [13]. Our average CPU time is smaller than the ones reported in [4] and [5]
whose have comparable machines and compiler. Our executions were always performed
faster than the ones reported by [5] (even our machine clock being a bit slower). The
exceptions are the Doni3 and Doni7 runs.

In terms of percentage gap from best known solution, our method have average
of 0.44% against 1.06 (2.4 times) of [5], 1.87 (4.25 times) of [4] whose have run all the
instances.

Specifically, for the p3038 instances’ class, our results was far better than the pre-
vious literature ones. Our solutions cost are averagely 2.13% better than [5] ones while out
CPU times were roughly 10 times faster. It can be also noted that even our starting solu-
tions were superior in cost. This could happen because our methodology scan better the
neighbourhood space between clusters. These particular instances have a big number of
clusters with few number of points. The neighbour between clusters is very wide. Probably
there is still room for future improvements.

7 Conclusions
We proposed a simple Tabu search scheme, as well as its movements and local search
procedure, that shows itself competitive for all benchmark instances with the state of art
methods to the CCCP. The robustness of our approach can be reinforced by the fact that
we obtained the best known solutions on 80% of runs on a such heterogeneous set of
benchmark instances classes.

We extended our method to embrace the gCCCP case, and we reported some com-
putational results with the new correspondents opening costs parameters. The resulting
method can be improved by the addiction of mechanisms that permit easier change on the
number of opened clusters, that would be the focus of future studies.

In our experiments we found a noticiable improvement in p3038 instances, which
have a wide neighbour between clusters with few individuals. These instances still open
room for future improvements.

2354

September 24-28, 2012
Rio de Janeiro, Brazil

Algorithm 5 Wave movement.
Procedure Wave(A,l,ṽ)
A - cluster in a current solution Cur
l - level of recursion
ṽ - last propagated vertex
Z(X) - cluster X’s cost
δ - global change in the current solution cost
M(X) - cluster X’s geometric center
w() - the demand of vertex or the actual demand of a cluster.
1: if l > MAXLEVEL then
2: return
3: end if
4: if l = 0 then
5: v ← argmaxi∈A{||ai −M(A)||)}
6: else
7: v ← argmaxi∈A{||ai −M(A)||)} : w(A)− w(i) ≤ Q and i 6= ṽ
8: end if
9: δ ← δ + Z(A− {v})− Z(A)

10: A← A− {v}
11: auxFA← Aflag

12: Aflag ← true
13: for all B ∈ S : B 6= A do
14: if δ + Z(B ∪ {v})− Z(B) < 0 then
15: δ ← δ + Z(B ∪ {v})− Z(B)
16: B ← B ∪ {v}
17: auxFB ← Bflag

18: Bflag ← true
19: if w(v) + w(B) ≤ Q then
20: return
21: else
22: call Wave(B, l + 1, v)
23: if δ < 0 then
24: return
25: end if
26: end if
27: δ ← δ + Z(B − {v})− Z(B)
28: B ← B − {v}
29: Bflag ← auxFB
30: end if
31: end for
32: δ ← δ + Z(A ∪ {v})− Z(A)
33: A← A ∪ {v}
34: Aflag ← auxFA

Algorithm 6 Local Search.
Procedure LocalSearch
1: repeat
2: for all A ∈ C do
3: for all B ∈ C : B 6= A and (Aflag or Bflag) do
4: call Swap(A,B)
5: call Transfer(A,B)
6: end for
7: call Wave(A,0,φ)
8: end for
9: until No movement has been committed

2355

September 24-28, 2012
Rio de Janeiro, Brazil

Algorithm 7 Tabu Search.
Procedure Tabu Search

1: call Randomized Best-Fit Constructive Heuristic.
2: count← 0
3: repeat
4: call LocalSearch(C).
5: if C < best then
6: best← C
7: count← 0
8: end if
9: Apply Tabu movement.

10: count← count+ 1
11: until count =MAXITE

2356

September 24-28, 2012
Rio de Janeiro, Brazil

Name Opening #Starts Start-cost Start-p Start-t Tenure #Ite Sol-cost Sol-p Sol Best-t Time

TA25
100 10 1035.53 6 0 7 1000 1035.53 6 1635.53 0 0
300 10 1251.44 5 0 7 1000 1251.44 5 2751.44 0 0
600 10 1251.44 5 0 7 1000 1251.44 5 4251.44 0 0

TA50
100 10 1486.3 17 0 7 1000 1486.3 17 3186.30 0 0
300 10 3550.88 7 1 7 1000 3546.34 7 5646.34 1 1
600 10 4474.51 5 0 7 1000 4474.51 5 7474.51 0 0

TA60
100 10 2005.05 19 0 7 1000 1869.14 20 3869.14 0 0
300 10 4191.95 7 0 7 1000 4191.95 7 6291.95 0 0
600 10 5356.58 5 0 7 1000 5356.58 5 8356.58 0 0

TA70
100 10 2350.61 18 0 7 1000 2350.61 18 4150.61 0 0
300 10 2350.61 18 0 7 1000 2350.61 18 7750.61 1 1
600 10 2350.61 18 0 7 1000 2350.61 18 13150.61 0 0

TA80
100 10 2668.46 20 0 7 1000 2550.33 21 4650.33 0 0
300 10 4668.28 9 0 7 1000 4668.28 9 7368.28 0 0
600 10 5740.58 7 0 7 1000 5730.28 7 9930.28 1 1

TA90
100 10 2945.16 22 0 7 1000 2787.2 23 5087.20 0 0
300 10 6315.97 7 0 7 1000 6315.97 7 8415.97 0 0
600 10 7791.95 5 0 7 1000 7791.95 5 10791.95 0 0

TA100
100 10 3509.34 20 0 7 1000 3443.36 20 5443.36 0 1
300 10 6407.02 8 0 7 1000 6407.02 8 8807.02 0 0
600 10 8126.82 6 0 7 1000 8115.7 6 11715.70 0 1

SJC1
1500 10 17486.93 10 0 59 1000 17359.75 10 32359.75 0 1
2000 10 19437.46 9 0 59 1000 18543.66 10 38543.66 0 0
2500 10 19437.46 9 0 59 1000 18642.08 10 43642.08 0 1

SJC2
1500 10 36587.82 13 0 59 1000 36232.14 13 55732.14 0 1
2000 10 38477.38 12 0 59 1000 38477.38 12 62477.38 0 1
2500 10 38298.01 12 0 59 1000 38298.01 12 68298.01 0 1

SJC3a
1500 10 57676.79 18 0 149 5000 56718.29 18 83718.29 17 33
2000 10 59731.05 17 0 149 5000 59354.39 17 93354.39 4 19
2500 10 60069.24 17 0 149 5000 59414.76 17 101914.76 8 25

SJC3b
1500 10 57676.79 18 0 59 5000 56679.32 18 83679.32 2 13
2000 10 59731.05 17 0 59 5000 59139.17 17 93139.17 5 17
2500 10 60069.24 17 0 59 5000 59076.84 17 101576.84 4 15

SJC4a
1500 100 76945.61 22 4 149 10000 76942.85 22 109942.85 4 53
2000 100 77474.25 22 4 149 10000 74549.24 23 120549.24 112 160
2500 100 80112.55 21 4 149 10000 79948.54 21 132448.54 20 70

SJC4b
1500 100 76945.62 22 3 59 10000 76845.05 22 109845.05 6 44
2000 100 77474.25 22 3 59 10000 76763.06 22 120763.06 29 67
2500 100 80112.55 21 4 59 10000 79723.06 21 132223.06 42 82

p3038_600
500 10 144451.32 524 52 101 1000 143923.65 524 405923.65 571 959
750 10 148713.46 513 93 101 1000 147761.9 513 532511.90 724 1236

1000 10 152771.65 506 169 101 1000 151369.25 506 657369.25 1338 2247

p3038_700
500 10 133692.45 607 81 101 1000 132359.21 608 436359.21 2726 4101
750 10 138113.43 596 194 101 1000 136379.91 596 583379.91 2231 3444

1000 10 42891.08 588 281 101 1000 141745.64 590 731745.64 408 3903

p3038_800
500 10 127302.21 692 196 101 1000 125832.87 694 472832.87 1717 3679
750 10 131598.25 681 420 101 1000 129379.49 682 640879.49 4509 7728

1000 10 132556.97 678 608 101 1000 131198.77 678 809198.77 10498 15090

p3038_900
500 10 117166.41 785 282 101 1000 115352 786 508352.00 5920 9266
750 10 124198.15 769 671 101 1000 122462.02 769 699212.02 9210 15888

1000 10 127827.03 762 1165 101 1000 125612.71 762 887612.71 14310 24279

p3038_1000
500 10 110962.98 871 544 101 1000 109228.96 871 544728.96 15496 20689
750 10 116480.70 857 875 101 1000 113881.12 857 756631.12 8614 14773

1000 10 121952.01 849 1282 101 1000 118697.67 849 967697.67 13511 26520

doni1
10 20 2083.46 13 3 101 1000 2067.37 13 2197.37 28 53
20 20 2587.31 9 5 101 1000 2586.57 9 2766.57 29 57
40 20 3042.15 6 3 101 1000 3024.99 6 3264.99 30 56

doni2
10 20 4349.28 12 13 101 1000 4347.62 12 4467.62 14 107
20 20 4999.67 10 18 101 1000 4992.42 10 5192.42 65 178
40 20 6428.1 6 19 101 1000 6400.4 6 6640.40 97 198

doni3
10 20 5241.03 16 35 101 1000 5159.83 16 5319.83 43 209
20 20 6431.9 13 72 101 1000 6412.79 13 6672.79 105 301
40 20 8344.92 8 173 101 1000 8343.65 8 8663.65 340 739

doni4
10 10 6449.84 19 29 101 500 6432.03 19 6622.03 41 174
20 10 7383.55 14 55 101 500 7381.69 14 7661.69 61 207
40 10 10111.6 11 66 101 500 10103.01 11 10543.01 296 517

doni5
10 10 7705.22 19 47 101 500 7705.12 19 7895.12 88 300
20 10 9147.51 16 81 101 500 9135.49 16 9455.49 529 763
40 10 11117.64 12 152 101 500 11112.05 12 11592.05 339 614

doni6
10 3 12112.15 28 107 101 500 12001.98 28 12281.98 797 1679
20 3 13605.61 25 321 101 500 13582.54 25 14082.54 1672 2591
40 3 15574.27 23 325 101 500 15519.26 23 16439.26 5017 6753

doni7
10 3 13527.13 38 278 101 300 13393.5 38 13773.50 672 1714
20 3 15919.46 32 488 101 300 15739.82 33 16399.82 6177 10175
40 3 18698.44 30 597 101 300 18435.28 30 19635.28 65923 70728

Table 3. Computational results with new open cost parameters for g-CCCP benchmark
instances

2357

September 24-28, 2012
Rio de Janeiro, Brazil

In
st

an
ce

B
es

t-
kn

o w
T

S
C

ha
ve

s
&

L
or

en
a

(2
01

1)
C

ha
ve

s
&

L
or

en
a

(2
01

0)
Pe

re
ir

a
&

Se
nn

e
(2

00
8)

Pa
lh

an
o

et
al

(2
00

8)
N

eg
re

ir
os

&
Pa

lh
an

o
(2

00
6)

So
l

G
ap

B
es

t-
tim

e
tim

e
B

es
t-

So
l

G
ap

B
es

t-
tim

e
tim

e
B

es
t-

So
l

G
ap

B
es

t-
So

l
G

ap
B

es
t-

So
l

G
ap

B
es

t-
So

l
G

ap

T A
25

12
51

,4
4

12
51

,4
4

0,
00

0,
00

0
12

51
,4

4
0,

00
0,

68
2

12
51

,4
4

0,
00

12
80

,4
9

2,
32

–
–

12
51

,4
4

0,
00

TA
50

44
74

,5
2

44
74

,5
2

0,
00

0
0

44
74

,5
2

0,
00

0,
99

6
44

74
,5

2
0,

00
44

74
,5

2
0,

00
–

–
44

76
,1

2
0,

04
TA

60
53

56
,5

8
53

56
,5

8
0,

00
0

0
53

56
,5

8
0,

00
1,

05
9

53
56

,5
8

0,
00

53
57

,3
4

0,
01

–
–

53
56

,5
8

0,
00

T A
70

62
40

,6
7

62
40

,6
7

0,
00

0,
00

0
62

40
,6

7
0,

00
0,

77
9

62
40

,6
7

0,
00

62
40

,6
7

0,
00

–
–

62
41

,5
5

0,
01

T A
80

55
15

,4
6

57
30

,2
8

3,
89

0
0

57
30

,2
8

3,
89

2,
59

23
57

30
,2

8
3,

89
55

15
,4

6
0,

00
–

–
57

30
,2

8
3,

89
TA

90
88

99
,0

5
90

69
,8

5
1,

92
0

1
90

69
,8

5
1,

92
1,

26
22

90
69

,8
5

1,
92

88
99

,0
5

0,
00

–
–

91
03

,2
1

2,
29

TA
10

0
81

02
,0

4
81

02
,0

4
0,

00
0

0
81

02
,0

4
0,

00
11

,2
4

49
81

02
,0

4
0,

00
81

68
,3

6
0,

82
–

–
81

22
,6

7
0,

25
[1

e x
]S

JC
1

17
35

9,
75

17
35

9,
75

0,
00

0
1

17
35

9,
75

0,
00

8,
17

39
17

35
9,

75
0,

00
17

37
5,

36
0,

09
20

34
1,

34
17

,1
8

17
69

6,
53

1,
94

SJ
C

2
33

18
1,

65
33

18
1,

65
0,

00
0

3
33

18
1,

65
0,

00
40

,3
7

17
9

33
18

1,
65

0,
00

33
35

7,
75

0,
53

35
21

1,
99

6,
12

33
42

3,
84

0,
73

SJ
C

3a
45

35
6,

35
45

35
6,

35
0,

00
2

24
45

35
8,

23
0,

00
50

9,
66

12
07

45
36

6,
35

0,
02

45
37

9,
69

0,
05

50
59

0,
49

11
,5

4
47

98
5,

29
5,

80
SJ

C
3b

40
66

1,
94

40
66

1,
94

0,
00

4
21

40
66

1,
94

0,
00

77
1,

83
14

34
40

69
5,

46
0,

08
41

18
5,

18
1,

29
–

–
–

–
SJ

C
4a

61
93

1,
60

61
99

3,
66

0,
10

4
13

3
61

93
1,

60
0,

00
10

92
,9

7
30

26
61

94
4,

85
0,

02
61

96
9,

06
0,

06
69

28
3,

05
11

,8
7

66
68

9,
96

7,
68

SJ
C

4b
52

20
2,

48
52

20
2,

48
0,

00
94

15
3

52
22

7,
60

0,
05

19
65

,8
2

39
95

52
21

4,
55

0,
02

52
98

9,
44

1,
51

–
–

–
–

[1
ex

]p
30

38
_6

00
12

65
67

,3
1

12
65

67
,3

1
0,

00
43

5
81

0
12

84
19

,9
5

1,
46

61
37

,6
7

97
37

12
91

94
,1

1
2,

08
–

–
13

54
81

,9
9

7,
04

19
20

24
,8

3
51

,7
2

p3
03

8_
70

0
11

51
68

,4
9

11
51

68
,4

9
0,

00
60

0
10

22
11

63
25

,0
5

1,
00

68
48

,5
2

11
65

8
11

72
95

,4
7

1,
85

–
–

12
36

98
,7

6
7,

41
17

67
31

,0
7

53
,4

5
p3

03
8_

80
0

10
53

52
,3

3
10

53
52

,3
3

0,
00

14
05

24
11

10
77

64
,6

9
2,

29
83

35
,3

6
13

19
5

10
95

32
,6

1
3,

97
–

–
11

77
05

,4
8

11
,7

3
18

45
02

,3
8

75
,1

3
p3

03
8_

90
0

97
31

9,
54

97
31

9,
54

0,
00

89
8

16
50

99
96

8,
15

2,
72

11
72

6,
17

15
34

2
10

24
58

,9
3

5,
28

–
–

11
10

33
,2

7
14

,0
9

17
67

81
,5

1
81

,6
5

p3
03

8_
10

00
89

89
6,

55
89

89
6,

55
0,

00
49

9
10

17
92

70
6,

38
3,

13
10

74
7,

13
17

12
8

97
77

1,
67

8,
76

–
–

11
00

49
,7

8
22

,4
2

15
91

39
,8

9
77

,0
3

[1
e x

]d
on

i1
30

21
,4

1
30

25
,1

2
0,

12
13

40
30

27
,6

3
0,

21
86

,3
8

12
7

30
22

,2
6

0,
03

–
–

32
34

,5
8

7,
06

30
21

,4
1

0,
00

do
ni

2
60

80
,7

0
63

84
,8

4
5,

00
45

14
2

63
73

,2
6

4,
81

30
9,

77
68

7
63

72
,8

1
4,

80
–

–
66

92
,7

1
10

,0
6

60
80

,7
0

0,
00

do
ni

3
83

43
,4

9
83

43
,4

9
0,

00
62

7
10

32
84

38
,9

6
1,

14
62

4,
12

92
8

84
46

,0
8

1,
23

–
–

97
97

,1
2

17
,4

2
87

69
,0

5
5,

10
do

ni
4

10
77

7,
64

10
77

7,
64

0,
00

96
9

14
50

10
95

2,
27

1,
62

10
69

,0
7

23
90

10
85

4,
48

0,
71

–
–

11
59

4,
07

7,
58

11
51

6,
14

6,
85

do
ni

5
11

11
4,

67
11

11
4,

67
0,

00
17

5
43

7
11

20
9,

99
0,

86
21

75
,0

4
36

24
11

13
4,

94
0,

18
–

–
11

82
7,

69
6,

42
11

63
5,

18
4,

68
do

ni
6

15
61

0,
46

15
61

0,
46

0,
00

29
72

54
76

15
72

2,
67

0,
72

61
74

,8
3

10
31

7
15

92
8,

38
2,

04
–

–
–

–
18

44
3,

50
18

,1
5

do
ni

7
18

48
4,

13
18

48
4,

13
0,

00
32

07
4

36
87

8
18

59
6,

74
0,

61
15

86
0,

55
26

91
4

20
29

1,
52

9,
78

–
–

–
–

23
47

8,
79

27
,0

2

A V
G

35
93

0,
81

35
96

1,
03

0,
44

29
08

,0
0

43
63

,7
5

36
41

8,
08

1,
06

29
80

,0
8

48
82

36
93

1,
65

1,
87

22
47

6,
34

0,
51

58
32

4,
45

11
,2

8
51

22
6,

17
18

,4
1

Ta
bl

e
4.

C
om

pa
ri

so
n

of
re

su
lts

ob
ta

in
ed

be
tw

ee
n

pu
bl

is
he

d
w

or
ks

fo
r
p
-C

C
C

P
be

nc
hm

ar
k

in
st

an
ce

s

2358

September 24-28, 2012
Rio de Janeiro, Brazil

References
[1] Orlibrary, (2012), http://people.brunel.ac.uk/ mastjjb/jeb/info.html.

[2] D. ALOISE, P. HANSEN, and L. LIBERTI, An improved column generation algorithm
for minimum sum-of-squares clustering, Mathematical Programming Section A 131
(2012), 195–220.

[3] A.M. BAGIROV, Modified global k-means algorithm for minimum sum-of-squares cluster-
ing problems, Pattern Recognition 41 (2009), 3192–3199.

[4] A. A. CHAVES and A. LORENA, Clustering search algorithm for the capacitated centred
clustering problem, Computers and Operations Research 37 (2010), 552–558.

[5] , Hybrid evolutionary algorithm for the capacitated centered clustering problem,
Expert Systems with Applications 38 (2011), 5013–5018.

[6] F. GLOVER, Tabu search - part 1, ORSA Journal on Computing 1(3) (1989), 190–206.

[7] P. HANSEN and JAUMARD, Cluster analysis and mathematical programming, Mathe-
matical Programming (1997), 191–215.

[8] M.J. NEGREIROS and A.W.C.PALHANO, The capacitated centred clustering problem,
Computers and Operations Research 33 (2006), 1639–1663.

[9] M.J. NEGREIROS, P.L.F. BATISTA, and A.W.C. PALHANO, The capacitated centred
clustering problem, Annals of the ALIO/INFORMS (2010), A New Anytime B&B
Approach for the Capacitated Centred Clustering Problem.

[10] M.J. NEGREIROS, A.E. XAVIER, A.F.S. XAVIER, N. MACULAN, P. MICHELON,
J.W.O. LIMA, and L.O.M. ANDRADE, Optimization models, statistical and dss tools
for prevention and combat of dengue disease, vol. Chapter 7, INTECH, 2011.

[11] A. C. OLIVEIRA and A. LORENA, Hybrid evolucionary algorithms and clustering
search, In C. Grosan, A. Abraham, H. Ishibush (Eds.), Hybrid Evolucionary Systems
- Studies in computational intelligence (2007), 81–102.

[12] A.W.C. PALHANO, M.J. NEGREIROS, and G. LAPORTE, A constrained k-median pro-
cedure for the capacitated centred clustering problem, Anales del XIV CLAIO, cd
rom (2008).

[13] M. PEREIRA and E. SENNE, A column generation method for the capacitated centred
clustering problem, Annals of VI ALIO/EURO (2008), 1–6.

[14] F. STEFANELLO and F.M. MULLER, Um estudo sobre problemas de agrupamento ca-
pacitado, Anais do XLI SBPO in CD-ROM (2009), 2819–2828.

[15] A.E. XAVIER, The hyperbolic smoothing clustering method, Pattern Recognition 43
(2010), 731–737.

[16] , Solving the min-sum-of-squares clustering problem by hyperbolic smoothing and
partition into boundary and gravitational regions, Pattern Recognition 44 (2011),
70–77.

2359

	Introduction
	Problem Description
	Constructive heuristic
	Local Search Movements
	Tabu Search
	Computational Results
	Benchmark instances
	Results for CCCP
	Results for g-CCCP
	Comparisons of Performance

	Conclusions

