Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

Metaheuristic GRASP for the Bicluster Editing Problem

Gilberto F. de Sousa Filho', Lucidio dos Anjos F. Cabral?, Luiz Satoru Ochi®, Fabio Protti’

!Departamento de Ciéncias Exatas — Universidade Federal da Paraiba(UFPB)
Rio Tinto — PB — Brazil

2Centro de Informatica — Universidade Federal da Paraiba(UFPB)
Jodo Pessoa — PB — Brazil

3Instituto de Computagdo — Universidade Federal Fluminense(UFF)
Nitero61 - RJ - Brazil

gilberto@dce.ufpb.br, lucidio@ci.ufpb.br, {satoru, fabio}@ic.uff.br

ABSTRACT

The NP-hard Bicluster Editing Problem consists of adding and/or removing at
most & edges in order to transform an input bipartite graph G = (V, F) into a vertex-
disjoint union of complete bipartite subgraphs. It has applications in the analysis of gene
expression data. We propose the generation and analysis of random bipartite graphs to
perform empirical tests. A new reduction rule of graphs is proposed, based on the idea of
critical independent sets; it allows more effective reduction in the size of the instances,
without compromising the optimal solution. We further propose a metaheuristic GRASP
for the Bicluster Editing Problem, containing a heuristic construction based on handling
vertex neighborhoods.

Keyword. Bicluster Editing, Clustering, GRASP.

1. Introduction

The concept of grouping data into clusters arises in numerous contexts and disciplines.
This subject has been extensively studied and various exact, approximation and heuris-
tic algorithms were proposed, where the goal is to partition a data set into clusters
such that elements within a cluster are similar, while elements in distinct clusters have
less similarity. This similarity is often modeled as a graph: each vertex represents a
data point, and two vertices are connected by an edge if the entities that they repre-
sent have some (context-specific) similarity. If the data were perfectly clustered, this
would result in a cluster graph, that is, a graph where every connected component is
a clique. A simple clustering model is then defined by the Cluster Editing Problem
[Bansal et al. 2004, Shamir et al. 2004]: find a minimum set of edges to be added and/or
deleted in order to transform the input graph into a cluster graph.

In some settings, the standard clustering model is not satisfactory. An important
example, described by [Guo et al. 2008], is clustering of gene expression data, where
under a certain number of conditions, the level of expression of a number of genes is
measured. This yields a bipartite similarity graph. Here, clustering only genes or only
conditions often does not yield sufficient insight; we would like to find subsets of genes
and subsets of conditions that together behave in a consistent way. This is called biclus-
tering [Madeira and Oliveira 2004, Tanay et al. 2006]. The concept of biclustering was

2564

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

first introduced in the seventies [Kluger et al. 2003], but its first usage in the context of
computational biology was due to [Cheng and Church 2000].

A simple formulation of biclustering, analogous to cluster editing, is defined by
the Bicluster Editing Problem. Here, as a consistency condition for a cluster, we demand
that it forms a biclique, that is, a complete bipartite subgraph. Further, we do not allow
intersection between any two clusters.

Further applications of biclustering arise in collaborative filtering, information re-
trieval, and data mining. Despite its importance, there are fewer results for Bicluster
Editing than for Cluster Editing. Amit[Amit 2004] proved the NP-hardness of the Biclus-
ter Editing Problem and described a 11-approximation algorithm based on the relaxation
of a linear program. Using a simple branching strategy, the problem can be solved in
O(4% + m) time [Protti et al. 2006], where m is the number of edges in the graph. The
parameterized version of the Bicluster Editing Problem is fixed-parameter tractable (see
e.g. [Protti et al. 2006]). In [Guo et al. 2008], two reduction rules and a 4-approximation
algorithm based on a random heuristic for the Bicluster Editing Problem are described.

In this paper we present a linear programming model for the Bicluster Editing
Problem, and its generalization to weighted graphs (Section 2). We propose an algorithm
for generating random bipartite graphs and a new rule to reduce input bipartite graphs
without affecting optimality (Section 3). Existing approximation algorithms are described
and a metaheuristic GRASP is proposed to the Bicluster Editing Problem (Section 4).
Computational results are presented in Section 5 and concluding remarks in Section 6.

2. Bicluster Editing Problem

The Bicluster Editing Problem consists of adding and/or removing at most k£ edges in
order to transform an input bipartite graph G = (4, V5, F) into a vertex-disjoint union of
complete bipartite subgraphs.

Preliminaries. We consider only undirected bipartite graphs G = (Vi, V5, E). Let P,
denote an induced path with 4 vertices. Furthermore, let 7jk[denote a P, in which ¢ and
[have degree 1 and j and k have degree 2. The neighborhood of a vertex v is denoted
by N(v), and the closed neighborhood N (v) U {v} is denoted by N[v]. We furthermore
extend this notation to vertex sets, that is, for a vertex set S, N(S5) = ([J,cq NV (v))\S.
For a vertex v, No(v) = N(N(v))\{v} denotes the set of vertices at distance exactly 2
from v.

2.1. The Linear Program

In [Amit 2004], a formulation is presented for the 41 Bicluster Editing Problem, de-
scribed as follows: assign a binary variable x;; to every edge (i, j), such that ;; = 0 if 4
and j end up in the same bicluster. Consider the integer programming problem below:

Minimize Z Ty + Z (1 — i) (1)
+(4.4) —(4,5)

Subject to:

L5 sz’l‘i‘xkj"i‘xkh forallz',k:GVl,j,lEVQ (2)

2565

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

Ti; € {0, 1},\V/Z S %,VJ e Vs 3)

where (i, j) = {(i.J) | w(i,j) = +1}, and —(i, j) = {(i, j) | w(i,j) = ~1}.
To generalize the formulation by [Amit 2004], allowing values for w(i, j) such

that w(i,) ¢ {—1, +1}, we propose to replace the objective function (1) by the following
function:

Minimize Z w(i, J)zi; + Z [w(i, j)] (1 — i) “4)
+('7j) 7(7:7j)

Hereafter, +(i,7) = {(i,7) | w(i,j) > 0}, and — (4, j) = {(¢,7) | w(i,5) < 0}.

The objective function measures the number of errors. This includes positive er-
rors, i.e., positive edges between biclusters (positive edges (i, j) for which z;; = 1), as
well as negative errors, i.e., negative edges inside biclusters (negative edges (i, ;) for
which z;; = 0). It is easy to see that inequalities x;; < x; + xy; + x); guarantee that
if vertices ¢, [are in the same bicluster, as well as vertices k, [and k, j, then vertices i, j
must be in the same bicluster.

3. Generation and Reduction of Instance

This section discuss how to generate random instances for the Bicluster Editing Problem,
and presents an analysis of the generated instances with varying levels of difficulty. Below
we describe existing reductions in the literature, and propose a new reduction rule.

3.1. Generation Algorithms

Studies concerning the Bicluster Editing Problem in the literature propose formal proofs
of the effectiveness of their solutions without presenting empirical results. Therefore there
is a need of creating test instances to perform our computational experiments.

We follow the model of random graphs proposed in [Gilbert 1959]. We denote by
G(n, m, p) arandom bipartite graph with n vertices in partition V4, m vertices in partition
V5 and such that each edge between partitions can occur independently with probability
p. [Bastos 2012] proposed a simple and suitable framework for generation of random
graphs. We adapt their approach for generation of bipartite graphs. First, initialize the set
of vertices V; with n elements, V5 with m elements, and £/ = () (recall that E is the set
of edges). Next, for each pair of vertices ¢« € V; and j € V5, decide with probability p
if edge (7,) is added to E. Finally, the bipartite graph G generated by this procedure is
returned.

To determine the difficulty of an instance, [Bastos 2012] uses a criterion based on
the number of editions of edges needed to achieve optimality (the value opt(()). For two

instances (G; and GG, with the same number of vertices n * m, we say that G; is more
difficult than G if opt(G1) > opt(Gs).

The value opt(G(n, m,p)) was calculated for various pairs (n * m, p). Figure
1 shows the results for some values of n * m. Note that, in general, the most difficult
instances are concentrated a for values p € [0.6,0.7].

2566

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

5
(=}
u

- = n'm=180
/ \ a'm=TT
¥ n*m=120

Editions
8
|

L
10 —

e __________ ___________ |

p

Figure 1. opt(G(n,m,p)) values for n xm = {77, 120, 160}

3.2. Reduction Rules

[Guo et al. 2008] proposes and presents the formal proof of the following two data reduc-
tion rules; the second one works on critical independent sets.

Definition 1. A set S of vertices is called a critical independent set if all vertices in S have
the same open neighborhood and S is maximal under this property.

Observe that every critical independent set is an independent set. The connection
between critical independent sets and Bicluster Editing is given by the following lemma:

[R]=T| ‘

Figure 2. Applying Reduction Rule 2.

Lemma 1. For any critical independent set B, there is an optimal solution of the Bicluster
Editing Problem in which any two vertices v, and v, from B end up in the same biclique.
[Guo et al. 2008]

The following two data reduction rules were proposed in [Guo et al. 2008]:
Rule 1. Remove from the graph all connected components that are bicliques.

Rule 2. Consider a critical independent set R. Let S = N(R) and T = N(S)\R. If |R| >
|T|, then remove arbitrary vertices from R until |R| = |T|.

As illustrated in Figure 2, a vertex from R was removed of the problem without

2567

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

decreasing the solution optimality. [Guo et al. 2008] proves the correctness of Rule 2.
New proposed data reduction rule

Consider the generic Bicluster Editing problem, where the edges that cross parti-
tions are weighted.

New Rule. Consider a critical independent set R and S = N(R). Group all vertices of R
into a single vertex v; all parallel edges should be grouped and their weights accumulated
into a single edge e.

| Applying

| new reduction rule

Figure 3. Applying the New Reduction Rule.

As illustrated in Figure 3, the three vertices from R were grouped into a single
vertex v, and the parallel edges grouped as well; their accumulated weights are 43 or
—3.

4. Approximation Algorithms

In this section, we present three approximation algorithms for the Bicluster Editing Prob-
lem. The first one, called Noga Approximation, is based on a LP relaxation; the second
one, called Randomized 4-Approximation, was proposed by [Guo et al. 2008]; the third
one is a metaheuristic GRASP proposed in this work.

4.1. Noga Approximation Algorithm

[Amit 2004] presents a polynomial-time algorithm that guarantees an approximation fac-
tor of 11, i.e, the algorithm solution is at most 11 times the LP solution.

First, a relaxation was defined for the LP model presented in section 2. The relax-
ation is obtained by replacing the integer constraints of z;; € {0,1} by linear program-
ming (LP) constraints 0 < z;; < 1. Under this LP formulation, we refer to x;; as the
distance between ¢ and j. Intuitively, points (nodes) that are close should be placed in the
same bicluster ,and points that are far should be placed in different biclusters.

Using the concept of distance between vertices and the result obtained by the
linear relaxation, [Amit 2004] describes the following algorithm:

1. Let S = V U U. Repeat the following steps:

2568

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

2. Pick an edge (u, v) with z,, < 5.

Let N, and N, be the set of vertices within a distance of at most % from v and v,
respectively (not including u and v themselves).

Similarly, let N/, and N be the set of vertices within a distance of at most = from
u and v, respectively (again, not including v and v).

In addition, denote by au (av) the average distance of the vertices in N, from u
(N, from v). If N, = O then define au = 1.

3. Let
p . 3)
{v,u} if o, iy > T
or}f$<au§1;’—l,ocv>%
B— 0r1fﬁ<av§ﬁ,au>g
{v,u} UN, UN, if oy, < 53
. 1 3
{v,u}UNq’)Uqu }faugll—l,av>13—1
| {v,u} UN,UN], ifa, < {00 > 97

Output B as a bicluster, let S = S\ B, and return to step 2.

3. When no edges with distance smaller than ﬁ are left, output all the vertices of
S as singletons.

4.2. Randomized 4-Approximation Algorithm (4Approx)

[Guo et al. 2008] presents a polynomial-time randomized 4-approximation algorithm
for the Bicluster Editing Problem that is based on a technique introduced by
[Ailom et al. 2005]. The basic strategy of the algorithm is to randomly pick a pivot vertex
v, and then randomly destroy all P,’s that contain v. The pseudo-code of the algorithm is
shown in Figure 4.

procedure ApproxBicluster(G = (Vi,Va, E))

I. G+ (9,0,0);

2. while V; UV, #£ O do

3. randomly select a pivot vertex ¢ € V7 U Va3
4. C <« {i} UN(7);

5. forallj e {v#i| Nw)NN(@G) # O}
6. if N(j)=N(i):add jto C

7. else: add j to C with probability 1/2
8. transform G[C] into an isolated biclique

9. G + G'UG[C]

10. G+ GIV\C;

11. end-while
12. output set of edge modifications from G to G’
end ApproxBicluster.

Figure 4. A randomized 4-approximation algorithm for the Bicluster Editing Prob-
lem.

Eventually, after destroying all the F,s, the algorithm creates an isolated biclique
that contains v, since a connected component in which no vertex appears in a P is a

2569

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

biclique. This procedure is applied until the graph is a bicluster graph. Below, we describe
the procedure that creates a biclique containing the pivot vertex v.

Given a pivot vertex ¢, it creates a vertex set C' that initially contains N[¢]. In the
end this set C' contains the vertices that are in the same biclique as ¢ in the final bicluster
graph. First, it adds all vertices that are in the same critical independent set as i. Then it
randomly decides for each vertex w that is adjacent to at least one vertex of V(i) whether
w should be added to C. Since w is adjacent to neighbors of N (i) but is not in the same
critical independent set as ¢, there must be a P, that contains ¢ and w. By randomly
deciding whether ¢ and w end up in the same biclique, the algorithm randomly decides
which edge modification is made in order to destroy the P;. After this is done for all such
vertices, we output C' and remove C' from G. This is done until GG is empty.

4.3. Metaheuristic GRASP for Bicluster Editing

In this subsection, we describe the metaheuristic GRASP - Greedy Randomized Adaptive
Search Procedure - proposed in this paper to solve the Bicluster Editing Problem.

GRASP [Resende 2001] is an iterative procedure where each iteration consists of
two stages: a phase of construction of the solution and a local search phase. The best
solution obtained among all the iterations is considered the final solution.

In the construction phase of a solution, start with an empty set which iteratively
receives an element to form a feasible solution. In this step, two aspects are analyzed at
each iteration: the randomness and the adaptation.

The solutions obtained in the construction phase of GRASP are not guaranteed
to be local optima, considering a given neighborhood. Therefore, the use of the second
phase of GRASP is done in order to improve the solution obtained during the construction
phase.

4.3.1. Construction Phase

The construction phase, illustrated in Figure 5, starts with an empty graph G’. At each
iteration, a candidate list (CL) is created, consisting of the set {(7,j) | i € V; and j € V,}.
Then an edge (7, j) is randomly chosen from the restricted candidate list (RCL). The RCL
consists of the best elements in CL according to the value of a greedy function, called
g(1,7), set for each edge (i, 7):

9(i,J) = w(i,j) + in(i, j) + diff (i,) — out(i, j), (5)
where:
w(i, j): represents the weight of edge (i, j);
in(7, 7): sum of weights of edges + (7, j) between N5 (i) and No(j);
diff (i, 7): sum of weights of edges — (7, j) between Ny(7) and Ny(j);
out(i, j): sum of weights of edges +(i, j) between Ny (i) and {v | v & Ny(j)}.

The best candidates satisfy the condition:

g(%]) 2 Imin + a(gmaz - gmzn)a (6)

2570

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

where ¢, = min{g(,j) | (¢,7) € CL}, gmae = max{g(i,j) | (i,5) € CL}, and
a € (0,1).

procedure ConstructGRASP(G = (V1, Vo, E), a, g(.))
. G« (0,0,0),

2. while G # O do

3 CL<+ {(i,5)]i € V1,5 € Vo };

4. RCL + {(i,7) € CL| g(i,7) = 9maz — ®(gmaz — Gmin) };
5. (i,j) + randomly selection in RCL;

6 C+ N@E)UN();

7 transform G[C] into an isolated biclique;

8. G+ G'UG[C]

9. G+ G[V\C};

10. end-while

11. return(G").

end Construct GRASP.

Figure 5. Algorithm GRASP: construction phase.

Finally, after obtaining RCL and choosing a random (i, j) € RLC, we add biclus-
ter C, with vertex set N (i) U N(j), into solution G’, and remove C' from G. The stop
condition for the construction phase is V (G) = .

4.3.2. Local Search

In the local search phase, solutions surrounding the solution obtained in the construction
phase will be generated, using neighborhood movements proposed in this paper.

procedure Mov-Vertex(Geonstr = (V1, Va, A), (1))
1 G« Gconstr;

2. forall ¢; € Geonsir[C] do

3 forall v € ¢; do

4. forall c; € Geonstr[C\Ci] do
5. Gls < Gconst’r;

6 remove v from Gi4[c;];

7 Gislej] <= Gusle;] U {v}
8. if f(G) > f(Gjs) then
9 G« Gls;

10. end-forall
11. end-foral

12. end-forall
13. return(G).
end Mov—-Vertex.

Figure 6. Local search Mov-Vertex.
Local Search Mov-Vertex: Consider a solution G formed by a set C' of biclusters. For

each bicluster ¢; € C, scroll all vertices v € ¢;, remove v from ¢;, and add v to another
bicluster ¢; € C\¢;. The procedure returns the best solution, a neighbor of G, obtained

2571

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

by moving any vertex between any two biclusters. This algorithm is illustrated in Figure
6.

5. COMPUTATIONAL RESULTS

All algorithms tested in this work were developed in C++ with the aid of the mathematical
solver CPLEX 11. All computational experiments were done on a machine consisting of
four Intel Core 2 Quad, each with the following specification: 4 processors at the speed
of 2.33 GHz with 4 GB of RAM, running the operating system Linux Ubuntu 9.04.

In Section 3.1, we have observed that the most difficult problems for Bicluster
Editing are generated with probabilities p € [0.6,0.7]. For our computational experi-
ments, four groups of random instances were generated using the algorithm described in
Section 3.1. Each group has five pairs of values (n,m), where n = |V;| and m = |V5|,
and for each pair two values of p are considered. Thus, all groups contains 40 random
instances. The sizes of the instances in each group BC; are:

BC, = {(5,7); (6,8); (6,12); (7, 11); (6,20) }

BC, = {(10 16), (20 23); (16, 30); (20, 35): (24, 40)}
BCj = {(28,46); (30, 41): (30, 50); (35, 45); (40, 40)}
BCy = {(37,54); (30, 90): (40, 70); (50, 50); (40, 100)}

5.1. Comparison of computational results between Rule 2 and New Rule.

The comparison of the reduction rules described in Section 3.2 was performed as follows.
We have implemented the LP for the Bicluster Editing Problem presented in Section 2
using the solver CPLEX. In the first run we have used an instance with no reductions, in
the second we have applied Rule 1 and Rule 2 on the same instance before passing it to
the solver, and in the third we have similarly applied Rulel and New Rule on the instance.
The experiments used 12 instances whose size enabled the solver to find solutions. All
executions achieved the same final value for the number of editions of the problem.

Instance BCE(CPLEX) R1 +R2 R1 +NR

[Vi| = [Va| | E* | Time(ms) | |Vi|*|Va| | gap (%) | Time(ms) | |Vi|=*|Va| | gap (%) | Time(ms)
35 8 37 35 0.00 37 30 14.29 20
35 7 12 35 0.00 10 30 14.29 8
48 11 79 48 0.00 85 48 0.00 86
48 12 41 48 0.00 36 36 25.00 24
72 17 951 72 0.00 950 60 16.67 279
72 20 1221 72 0.00 1198 72 0.00 1226
77 19 2173 71 0.00 2136 70 9.09 967
77 21 1196 77 0.00 1228 77 0.00 1222
120 30 15118 120 0.00 15132 90 25.00 2936
120 28 221 120 0.00 224 78 35.00 104
160 47 1136304 160 0.00 1119979 160 0.00 1088038
160 48 126672 160 0.00 130006 160 0.00 123177

Table 1. Comparison of computational results between Rule 2 and New Rule.

For each instance of Table 1, the first column shows the dimensions of the instance
tested, and the remaining columns are divided into three groups: BCE(CPLEX), R1+R2
and R1+NR. In BCE(CPLEX), column £* denotes the optimal value and the column
Times(ms) indicates the running time (in milliseconds) spent solving the instance. For
the groups of columns R1+R2 and R1+NR, we have: column |V;| * |V5| indicates the
dimension of the problem after the reduction, gap(%) indicates the percentage reduction

2572

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

with respect to the dimension of the original instance, and column Times(ms) indicates
the running time in milliseconds.

Due to the complexity of the generated problems, Rule 2 did not achieve a reduc-
tion of the dimensions in any instance; moreover, its computational time is worse in some
cases due to the processing overhead of the method. The new reduction rule have reduced
on average the size of the original data by 11,6%, obtaining a reduction of 35% for the
instance n = 6 and m = 20. The instances with their sizes reduced gained, on average, a
reduction of 76,6% in computational time.

5.2. Comparison of computational results between approximation algorithms

To compare the approximation methods presented in Section 4, all 40 random instances
were used. The NogaApprox method (a deterministic algorithm) was run one time for
each instance. On the other hand, 4Approx and GRASP methods were run five times for
each instance; each run performed 2000 iterations, in both algorithms. The value used for
parameter o in GRASP was 0.5, which in empirical analysis presented better results.

Instance NogaApprox 4Approx GRASP
Vil | |Vz| E Time(ms) E Time(ms) E Time(ms)
5 7 21 50 14 17 10 85
6 8 29 17 15 25 11 108
6 12 43 27 23 29 17 115
7 11 46 43 27 33 20 118
6 20 72 49 44 42 32 217
10 16 96 177 64 69 51 358
20 23 276 2934 186 167 170 1477
16 30 288 3368 196 174 167 1269
20 35 420 10891 296 253 260 1852
24 40 576 33725 398 352 349 2962
28 46 773 82766 565 484 481 4020
30 41 738 69028 522 453 463 5107
30 50 900 165799 636 573 590 5203
35 45 945 213577 682 592 606 6293
40 40 960 172651 694 608 616 6964
37 54 1199 662523 866 790 777 8377
30 90 - - 1122 1203 1070 13939
40 70 - - 1234 1175 1076 11237
50 50 - - 1096 986 1000 4636
40 100 - - 1766 1907 1590 23627

Table 2. Comparion of computational results between NogaApprox, 4Approx and
GRASP (p = 0.6).

For each instance of Tables 2 and 3, the first column shows the dimensions of the
instances tested, and the remaining columns are divided into three groups: NogaApprox,
4Approx and GRASP. In each group of columns we have: column £ indicates the best
solution found for each method, and column 7imes(ms) indicates the running time in
milliseconds.

The Noga approximation algorithm fail to complete its execution in large prob-
lems (marked with -), because of the amount of memory allocated. The metaheuristic
GRASP obtained the same result as the other approximation algorithms in 3 problems, ob-
taining better solutions in the remaining 37 problems. GRASP compared to the 4Approx
algorithm gets, on average, a gain of 13.3% in their solutions, and spends a reasonable
computational time, running the largest problem in 23.6 seconds.

2573

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

Instance NogaApprox 4Approx GRASP
Vil | |Val E Time(ms) | avgE | Time(ms) | avgE | Time(ms)
5 7 7 601 9 15 7 38
6 8 34 11 14 20 12 70
6 12 50 52 24 31 22 106
7 11 54 72 22 39 22 82
6 20 84 57 36 37 28 137
10 16 112 158 52 72 48 186
20 23 322 2366 138 179 131 512
16 30 336 2709 164 187 144 604
20 35 490 7117 246 268 186 1455
24 40 672 20692 302 381 288 1217
28 46 902 60889 472 528 386 1532
30 41 861 43665 405 487 350 2467
30 50 1050 96989 522 615 450 1962
35 45 1103 130104 522 640 472 1978
40 40 1120 128531 480 646 480 3597
37 54 1399 282157 599 846 593 4951
30 90 - - 980 1291 808 8439
40 70 - - 1036 1278 840 4459
50 50 - - 808 1075 748 4529
40 100 - - 1292 2037 1190 9813

Table 3. Comparion of computational results between NogaApprox, 4Approx and
GRASP (p =0.7).

6. Conclusions and Future Work

In this paper we address the NP-hard Bicluster Editing Problem, which aims to transform
an input bipartite graph G = (V, E) into a vertex-disjoint union of complete bipartite
subgraphs by editing (adding and/or removing) the smallest possible number of edges.

Due to lack of empirical testing in the literature, we have proposed and analyzed
an algorithm for generating random bipartite graphs and, using the metric of the number
of editions, we have identified that the more difficult problems are generated when p €
[0.6,0.7].

In order to reduce the complexity of the instances tested, reduction rules are de-
fined, allowing the reduction of the size of input graphs without compromising the opti-
mality of the solution. In this paper we have proposed a new rule that uses the concept
of weighted graphs, accumulating the weights of the original edges by collapsing vertices
belonging to the same critical independent set. We have compared the proposed reduction
rule with Rule 2 described in the literature. Rule 2 failed to reduce the 12 instances used
for the comparison, while the new proposed rule reduced 7 of the instances, reaching a
reduction of 35% in the size of the problem |V;]| x |V5| = 120.

We have also proposed a GRASP for the Bicluster Editing Problem, and compared
its result with two approximation algorithms. For a total of 40 test instances, the GRASP
method achieved better results than the algorithms in the literature in 37 problems. The
average gap improvement of the solutions was 13.3%, and its computational time was
below 30 seconds in all instances tested.

As a future work, we intend to propose new neighborhood movements, such as
join and break biclusters, and to develop new metaheuristics for the Bicluster Editing
Problem, such as Iterated Local Search.

2574

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

References

Ailom, N., Charikar, M., and Newman, A. (2005). Aggregating inconsistent information:
ranking and clustering. In Proceedings of the thirty-seventh annual ACM symposium
on Theory of computing, STOC °05, pages 684-693, NY, USA. ACM.

Amit, N. (2004). The bicluster graph editing problem. Master’s thesis, Tel Aviv Univer-
sity.

Bansal, N., Blum, A., and Chawla, S. (2004). Correlation clustering. Machine Learning,
56:89-113.

Bastos, L. O. (2012). Novos Algoritmos e Resultados Teoricos para o Problema de Parti-
cionamento de Grafos por Edigcdo de Arestas. PhD thesis, UFF.

Cheng, Y. and Church, G. M. (2000). Biclustering of expression data. In Proceedings
of the Eighth International Conference on Intelligent Systems for Molecular Biology,
pages 93—103. AAAI Press.

Gilbert, E. N. (1959). Random graphs. In Annals of Mathematical Statistics, volume 3,
pages 1141-1144.

Guo, J., Hiiffner, F., Komusiewicz, C., and Zhang, Y. (2008). Improved algorithms for
bicluster editing. In TAMC’08, pages 445-456.

Kluger, Y., Basri, R., Chang, J., and Gerstein, M. (2003). Spectral biclustering of mi-
croarray data: Coclustering genes and conditions. 13:703-716.

Madeira, S. C. and Oliveira, A. L. (2004). Biclustering algorithms for biological data
analysis: a survey. In IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, volume 1, pages 24-45. 10.1109/TCBB.2004.2.

Protti, F., da Silva, M., and Szwarcfiter, J. (2006). Applying modular decomposition to
parameterized bicluster editing. In Bodlaender, H. and Langston, M., editors, Param-
eterized and Exact Computation, volume 4169 of Lecture Notes in Computer Science,
pages 1-12. Springer Berlin / Heidelberg.

Resende, M. (2001). Greedy randomized adaptive search procedures. In Floudas, C. A.
and Pardalos, P. M., editors, Encyclopedia of Optimization, pages 913-922. Springer
UsS.

Shamir, R., Sharan, R., and Tsur, D. (2004). Cluster graph modification problems. Dis-
crete Applied Mathematics, 144:173-182.

Tanay, A., Sharan, R., and Shamir, R. (2006). Biclustering algorithms: A survey. In Aluru,
S., editor, Handbook of Computational Molecular Biology. Chapman Hall/CRC Press.

2575

