
September 24-28, 2012
Rio de Janeiro, Brazil

An Efficient-FFD Method to Solve Very Large Guillotinable Cutting Stock Problem
*
 

 
David Mauricio

 

 Universidad Nacional Mayor de San Marcos, FISI 
Av. Germán Amézaga s/n, Ciudad Universitaria, Lima01, Lima, Perú 

dms_research@yahoo.com 
 

Abstract 

In this work we introduce an efficient version of classical First Fit Decreasing (FFD for 
short) algorithm that is denoted by efficient-FFD and that is oriented to solve very large 
guillotine- cutting-stock-problem (GCSP). We show that FFD algorithm for GCSP presents 

 ))(log( 2

2

2 NNNO   asymptotic complexity, where N is the total number of items to attend. 
The Efficient-FFD algorithm has complexity ))/(log)(log( 2

2

2 NnNnnnO  , where n is the 
number of different items. Also, we show that both algorithms obtain the same solution, i.e. both 
algorithms have the same efficiency according to the quality of solution. The numerical 
experiments on instances with thousands of items confirm the theoretical results. 

KEYWORDS. Guillotine cutting stock problem, Bin packing problem, FFD algorithm. 

Main area (MH – Metaheuristics, OC – Combinatorial Optimization)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

__________________________________________________ 
(*)Work partially supported by CSI-UNMSM,  Perú. 

2409



September 24-28, 2012
Rio de Janeiro, Brazil

  

1. Introduction 

 (GCSP): 
Given an unlimited rectangular boards with LxA dimension and rectangular 
items with dimensions nn wlwlwl x..., ,x,x 2211 , where  Lli  , Wwi   i  and 
demands  nddd ,...,, 21  respectively. The Guillotine-Cutting-Stock Problem 
consists to compute all items from the rectangular boards through straight line 
cut and parallel of from beside to beside and with the minimum number of 
boards. 

GCSP is known in the literature with several names as cutting stock (Gilmore (1965), 
Israni (1982), Dyckhoff (1990)), bin packing (Chung (1982), Dowsland (1992)) and trim loss 
(Hinxman (1980), Dyckhoff (1985)). By Dyckhoff (1990) this problem can be classified as 
2/V/I/M. 

The main application of the GCSP is to minimize the loss obtained in cutting processes, 
for example  wood (Morabito (1997), Garcia (1996), Venkateswarlu (1992)), paper (Harjunkoski 
(1996), Westernlund (1995)), glasses (Dyson  (1976), Farley (1983), Madsen (1979), Canto 
(2010)), textile manufacturing (Farley  (1988)), mats (Liton (1977), canvas Farley (1990)), etc. 
 Since GCSP is NP-hard problem, it is justified the development of heuristics and 
metaheuristics as simulated annealing (Parada (1998), Faina (1999)), AND/OR graph approach 
(Morabito (1992), Parada (1995)), tabu search (Lodi (1999)), genetics algorithm (Kröger 
(1995)), greedy algorithm FFD/ BFD (Mauricio (2002)), GRASP (Mauricio (2003), Alvarez 
(2008)), for a review see for example Whitwell (2004). All these approaches consider unitary 
demand and are not good for very large problem for example with thousands of items. 

Mauricio et alt (2010) developed a fast version of First Fit Decreasing (FFD for short) 
algorithm  (Johnson et al,  1974) to solve one-dimension cutting stock problem. Their algorithm 
builds a pattern by placing all possible requirements on a board, and then replicates this one as 
often as possible. The proposed algorithm guarantees the same quality of solution 
that FFD but with complexity ))/(log( 2

2 nNnO  rather than )log( 2 NNO , where N is total 
number of items and n is the total number of different types of items. In this work we present an 
extension of this idea to develop a fast version of FFD algorithm to solve big instance of GCSP. 

This paper is organized as follows. In the second section, it is reviewed the cutting 
process of Wang (1983) and Mauricio (2002). A brief review of FFD algorithm for GCSP and its 
complexity are presented in section 3. The proposed algorithm, its complexity and quality of 
solution are presented in section 4. The numerical results and conclusions are presented in 
section 5 and 6 respectively. 

 
2. The guillotine cutting process  

Several efforts have been developed to solve GCSP of which most are heuristic and 
meta-heuristic because this problem is NP-Hard. Wang (1983) introduced a schema to build a 
pattern cut as follow, select an unattended item with largest area then attached horizontally or 
vertically an item unattended (see Figure 1) such that the building block has an acceptable loss. 
In the example of Figure 1, the block on the right shows less loss and will be considered in next 
process. 

The cutting-guillotine process of Wang is one of the most widely used to solve GCSP. 
We can ask some questions on Wang’s process. What is the acceptable loss? Does the process 
ensure less loss on the board?   

Another alternative to construct a pattern is described in Mauricio (2002). The 
alternative process considers the remaining parts generated before cutting. Thus, to meet an item 
from an uncut board, this item fitted into the bottom left (see Figure 2), and then you attach 
a piece horizontal and vertical. To meet an item from a piece horizontal (or vertical) we proceed 
as follows. First, it fits the item into the bottom left of the horizontal (or vertical). Second, 
we generate a horizontal piece and vertical piece. Third, we update the dimensions of the vertical 

2410



September 24-28, 2012
Rio de Janeiro, Brazil

  

piece (horizontal) associated with the horizontal (vertical) piece to be cut, called “fixed piece” 

(see figure 3). The decision to use a horizontal or vertical piece is done so as to obtain less 
waste.    

 
 
 
 
 
 
 

 
Figure 1. Wang process for constructing a pattern 

 
  

                                             
 
 
                                                                                        
                   
  
 

(a)                                                                  (b) 
Figure 2. (a) Cutting a product on a new board. (b) Horizontal and vertical piece associated. 

 
 
 
 
 
 
 
 
 

Figure 3. Cut on a horizontal piece to meet an item. 
 

When the items have dimensions close or equal, the alternative process 
can generate many pieces horizontal or vertical with undesirable dimensions as seen in 
Figure 4.A. Mauricio (2002) proposed a way to overcome this difficulty that involves bringing 
these products to treat them as a unique product, see Figure4.B. 
        horizontal piece 
 
 
 
 
 
 
   (a)      (b) 

Figure 4. (a) Cut without grouping. (b) Cut with grouping.  
 

The alternative cutting process has shown promising for solving GCSP with unit 
demands; see for example Cevallos (2010), Guzman (2010). In the remainder of this paper 
we will consider the alternative cutting process. 

 

 
 

1 

 
 

Horizontal piece 

 
 

Vertical piece 

Fixed piece 

 

 

 

 

vertical piece 

 
 

1 

 2 

 2 

 
 

 
 

1 

 
 

1 

 2 

 

 

 

 

W
aste 

W
aste 

2411



September 24-28, 2012
Rio de Janeiro, Brazil

  

3.  FFD Algorithm 

All algorithms developed to solve GCSP only considered unit demand, i.e. jd j    1 . An 
alternative to overcome this difficulty is to transform the GCSP with not unit demand to a GCSP 
problem with unit demand. This transformation is easy; it is enough to replicate the items as 
often as directed by your demand. 
Denote by GCSP-U the transformed problem of GCSP with unitary demands. Let  


n

j jdN
1

:  

and consider 111 ,...,1  ~  ,
~

diwwll ii  , ,...,2,1  ~  ,
~ 1

1

1

1
 









k

j j

k

j jkiki ddiwwll  

 

k

j jd
1

nk ,...,2   

The FFD algorithm is defined as follows. First, we order the items so that 

NN wlwlwl ~~
...~~~~

2211  . We then proceed to pack the items in the order, starting with first item 

)~,
~

(
~

111 wlI  , which we place in the first board 1B through the guillotine cutting process (see 

section 2). In general the item  )~,
~

(
~

kkk wlI   is placed into first board that has room for it, i.e. we 

find the smallest i such that kI
~

 can be obtained by guillotine cutting process from iB  board. 

We denote respectively by iii FVH  , , ,  the set of horizontal vertical and fixed pieces 
associated to board iB , then we have FFD algorithm as follow. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. FFD algorithm to solve GCSP-U  
 

Note that m is the number of boards required by the algorithm FFD to address all items.  
Note also that when i=m+1 (step 4.3) so we find on new board and therefore the Cut-on-a-new-
board procedure (step 4.4) is activated else the Cut-on-a-used-board (step 4.5) is activated. Also, 
theses procedures are defined in guillotine-cutting-process. The Cutting-on-a-new-board 
procedure refers to cut on a non-used board to address an item. The Cutting-on-a-used-board 
procedure refers to cut a piece (horizontal or vertical) associated to used-board to address an 
item. 
 

Theorem 1. The complexity of FFD algorithm to solve GCSP-U is ))(log( 2

2 NNNO   

FFD- Algorithm 

1.   InputInstance  WLwlwlwlN NN ,,~,
~

,...,~,
~

,~,
~

, 2211   

2.   Sort )~,
~

(
~

kkk alI   such that: NN wlwlwl ~~
...~~~~

2211   

3.   ;:: 11 VH  );,(: 11 WLBF     0:m ; 
4.    For   k:=1,..,N 

4.1 )~,
~

(:
~

kkk wlI  ; 

4.2   ;~
   : 1,...,2,1: k

jjj IincludeFVHmjMini   
4.3  If    i =  m+1 

4.4    Then   Cut-on-a-new-board( 1,
~ m

k BI ),   m:=m+1,  ),(: 11 WLBF mm     

4.5    Else   Cut-on-an-used-board( i

k BI ,
~

); 
4.6 end-if; 
4.7 end-for; 
5.   Return( iBm i   , ) 

2412



September 24-28, 2012
Rio de Janeiro, Brazil

  

Proof: Note the complexity of FFD algorithm is given by the complexity of step2 and steps 4-
4.5. Let T the complexity of steps 4-4.7 then the complexity of FFD algorithm is 

))(log( 2 TNNO         (1) 
Now let us calculate the complexity of T.  Note that complexity of procedures Cut-on-a-new-
board and Cut-on-an-used-board is )1(O for all iteration. Therefore T depend on the effort to 
verify if a item is included in a used board (step 4.2), more precisely whether an item can be 
included in any pieces (horizontal, vertical or fixed), i.e. the total number of pieces horizontal 
vertical and fixed generated, because to know if an item fits into a piece has complexity )1(O . 
Note that when is realized a cut on horizontal or vertical piece this piece is removed and is 
generated in worse case a horizontal vertical and fixed piece, but when is realized a cut on fixed 
piece this piece is removed and is generated in worse case a horizontal and vertical piece. The 
next table illustrates this observation 
 

Cut on  Number and type of pieces generated Number of pieces 
removed Horizontal Vertical  fixed 

Horizontal  1 1 1 1 
Vertical  1 1 1 1 
Fixed 1 1 0 1 

Table 1. Number of pieces generated when a cut is realized 
 

Let kkk , f, vh  the number of cuts horizontal vertical and fixed respectively realized until the 
iteration k then the total number of pieces horizontal vertical and fixed generated until k is given 
by: 

kkk  fvh  22         (2) 
By the other hand, the number of cuts is equal to number of items, i.e. 

kkk  fvhk         (3) 
From (2) and (3), the cost to compute step 4.2 for each iteration k is given by: 
  )()()22( kO fvhO fvhO kkkkkk      (4) 
Since Nk ,...,1  then from (5) T is given by:  

)( 2NOT          (5) 
Finally, from (1) and (5)  we have shown the theorem ⁭ 

 
The complexity of FFD algorithm can be improved. Note that each item can 

be represented by a pair of points. Thus, a way to improved the complexity is to record a piece 
with two distant points for each board, then verify if an item is included in some pieces of board 
(step 4.2) is reduced to verify if an item is include in its piece with two distant points, and this 
can be compute in ).1(O  Therefore, it is possible to develop a version of FFD of complexity  

))(log( 2 mNNNO    
 

4.  An Efficient-FFD Algorithm 

 All algorithms developed to solve GCSP only considered unit demand, i.e. jd j    1 . 
We consider GCSP in its original form, i.e. we develop an algorithm to solve GCSP with no-
unitary demand. Our proposed is an extension of Efficient-FFD algorithm for cutting stock 
problem (one-dimension) to solve GCSP (two-dimension) and is called by the same name. The 
approach proposed is defined as follows. First, we order the items so that nnalalal  ...2211 . 
Second, an iterative process is executed until to meet all demand for all items. The iterative 
process consist tree phases. In the first phase, we construct a cutting pattern as follows, pack the 
item that has non zero demand and in order, and we place this item many times as possible 

2413



September 24-28, 2012
Rio de Janeiro, Brazil

  

without exceeding the demand and in the same board. We repeat this process with the rest of the 
items that have non-zero demand in the order of arrangement and on the same board. In the 
second phase, we replicate the pattern built many times permitted by demand for products that 
have non-zero demand. In the third phase, we proceed to update the demand of all packaged 
items. 
 As the algorithm FFD, we denote respectively by iii FVH  , , ,  the set of horizontal 
vertical and fixed pieces associated to board iB . Follows the Efficient-FFD algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Efficient-FFD algorithm to solve GCSP  
 
 Note that the process of building a pattern is given in steps 4.1-4.9. The cut-on-board 
procedure is defined by the procedures cut-on-a-new-board and cut-on-an-used-board both 
defined in previous section. The replication of the pattern and updating of the demands are given 
by the steps 4.10 and 4.11 respectively. 
 The following theorem states that the complexity of Efficient-FFD algorithm (EFFD for 
short) is less than complexity of FFD algorithm.  
 
Theorem 2. The complexity of EFFD algorithm to solve GCSP is 

))/(log)(log( 2

2

2 NnNnnnO   
 
Proof: Note the complexity of Efficient-FFD algorithm is given by the complexity of step 2 and 
steps 4-4.11. Let T the complexity of steps 4-4.11 then the complexity of Efficient-FFD 
algorithm is 

Efficient-FFD Algorithm 

1.   InputInstance  WLwlwlwln nn ,,,,...,,,,, 2211   
2.   Sort ),( kkk wlI   such that: nnwlwlwl  ...2211  

3.   ;:: 111  FVH      0:m ;     

4.    While 0
1

 

n

i id  

/*        construction of a pattern       
4.1         m:=m+1;  );,( WLBm    ,...,nixi 1   0:  ; 
4.2   For   k:=1,..,n 
4.3         ),(: kkk wlI  ; 

4.4                While kk dx    and  k

mmm IincludeFVH     

4.5                           Cut-on-a-board( m

k BI , )    
4.6        1:  kk xx  
4.7               end-while 
4.8        end-for 
/*        replication of the pattern 
4.9          ;0  / : 1   kkknkm x such thatxdMint  
/*        updating of demands  
4.10      ,...,nitxdd miii 1   :   
4.11 end-while 
5.    Return( mjtBm j

j ,...,1  ,,  ) 

2414



September 24-28, 2012
Rio de Janeiro, Brazil

  

 ))(log( 2 TnnO         (6) 
Now let us calculate the complexity of T.  Since the complexity of steps 4.9 (replicate the pattern 
phase) and 4.10 (update the demand phase) is )(nO  then the complexity of steps 4.1-4.11 is 
dominated by complexity of the construction phase of a pattern. Next, we compute the 
complexity of the construction phase of a pattern, that is equivalent to the complexity of steps 
4.2-4.8 plus )(nO .  

 Let j

kx  the number of piece kI  in the board jB     (7) 
As seen in the previous proof, the complexity of Cut-on-a-board procedure (step 4.5) and the 
complexity of check if jjj FVH   includes kI  (step 4.5) is )1(O , then by (7) the 

complexity of steps 4.45-4.7 is )( j

kxO . Thus, the complexity of steps 4.2-4.8 is )(
1 

n

k

j

kxO  

and therefore  The complexity of steps 4.1-4.11 is )(
1 


n

k

j

kxnO   

 (8) 
By the other hand, the iteration number of step 4 depends of the convergence to zero of the 
expression  

n

i id
1

, where each remaining of demand id  is decreased in some iteration after 

forming a pattern jB  and their replication. So, we concluded that exist an items  kI  with 

0kd  and a pattern jB  such that all or part of this demand is covered by this pattern and their 
replications jt , i.e. 

  k

j

k dx 0         (9) 

      ;0   //: 1   r

i

rrnr

j

kkj x such thatxdMinxdt    (10)  

This imply 1jt , because from (9) we have 1/ j

kk xd . This means that the number of 

repetitions of the jB  pattern is always greater than zero. With this, the expression 4.10 

j

j

kkk txdd : , will be expressed as 

    j

k

j

kkkk xxddd /:         (11) 

From (9) we have two cases.  First case: if k

j

k dx  , by using (11), we have  

  0/:  kkkkk ddddd . This means that all items of type kI  are attended. The same occurs 

when .1j

kx  Second case: if k

j

k dx  , then from (9) kd  is update by the remaining of the 

division of kd  by a positive and not unitary number j

kx . This means that in the worst case, in 
each iteration (steps 4-4.11), as minimum one demand of all requirements is updated by a 
positive and non-unitary number. In this last case we have two situations: If 2/k

j

k dx   then kd  

will be updated by a value less than 2/kd ; and If 2/k

j

k dx   then kd  will be updated 
by a value less than 2/kd . This means that in the worst case the series of the values of kd  will 
be dominated by: 
  ku

kkk /,..., d/, d/d 222 21       (12) 
Where ku  is the number of times is updated kd  . Therefore, from the previous expression, in 
worst case, we have: 
  12 ku

k /d         (13) 
That is, after iterations ku , the demand of the item kI  is 1. We can compute ku  from (13), by 
applying logarithms, as 

2415



September 24-28, 2012
Rio de Janeiro, Brazil

  

  kk du 2log         (14) 
On the other hand, the stopping condition in step 4 controls the iteration to attend all demand. 
Therefore, in the worse case the number of total iterations (step 4.-4.11) is given by: 
   


n

k k

n

k k du
1 21
log       (15) 

Using logarithmic properties to the expression above, we have:    
   


n

k k

n

k k dd
121 2 loglog  

             

n
n

k k

n

d
















 1
2log      (16) 

As  


n

k ndN
1

 then from (15) and (16), the total of iterations of step 4 is dominated as: 

  )/(log21
nNnu

n

k k  
      (17) 

Note that the total of iterations of step 4 is m, because in each iteration a pattern is built. 
Therefore, from (8) and (17) we have: 
  ))/(log(

1 12

2   


m

i

n

k

i

kxnNnOT      (18) 

Note that Nxtx
m

i

n

k

i

ki

m

i

n

k

i

k       1 11 1
, because N is the total items and the number 

of replicates is always at least one. Therefore from (18) we have: 
  ))/(log( 2

2 NnNnOT        (19) 
Finally, from (6) and (19) we have shown the theorem  ⁭ 
 
 Note that the EFFD algorithm is more efficient than original FFD algorithm when the 
number of different items is small compared to the total items. For example, for 576,048'1N  
total items and 16n  different items in the worst case, the EFFD algorithm requires 1’052736 
operations but the original FFD algorithm will require a number of iterations of the order of 120 
digits, i.e. it is impossible to solve this instance with FFD algorithm. 
 Now, we analyze the quality of calculated solution by proposed algorithm. The 
following theorem says that the quality of the solution obtained by EFFD and FFD are the same. 
 

Theorem 3. Given EFFDFFD MM  , the number of board required by FFD and EFFD algorithms to 
solve GCSP, respectively. Then, 
 EFFDFFD MM    
 

Proof: Without loss of generality, we consider that all demands of CGSP are unitary, for this, it 
is sufficient replicate the items as times as their demand.  
Denote by EFFD

i

FFD

i BB   ,  the patterns generated in the iteration i  ),( EFFDFFD MMi   by FFD 
and EFFD algorithms respectively  

Suppose that EFFDFFD MM          (20) 
Then there is  EFFDFFD MMMinj ,  such that 

EFFD

j

FFD

j BB             (21) 
EFFD

i

FFD

i BB      ji         (22) 

Let EFFD

jh

FFD

jh BB   ,   the h item placed in EFFD

j

FFD

j BB   ,  respectively, then from (21) there is 

v such that  EFFD

j

FFD

j BBMinv ,  and there is an item kI  for some k, Nk 1 such that 

2416



September 24-28, 2012
Rio de Janeiro, Brazil

  

 EFFD

jvk

FFD

jv BIB           (23) 
EFFD

jh

FFD

jh BB      h  such that vh 1      (24) 
This means that first 1v items are the same for both patterns. In this situation these horizontal, 
vertical and fixed set are the same for both patterns, i.e. 
 , 11

EFFD

jv

FFD

jv HH     , 11

EFFD

jv

FFD

jv VV     EFFD

jv

FFD

jv FF 11        (25) 

Where FFD

jv

FFD

jv

FFD

jv FVH 111  , ,   and EFFD

jv

EFFD

jv

EFFD

jv FVH 111  , ,   are the horizontal vertical and fixed set 

for FFD

jvB 1  and EFFD

jvB 1  respectively.  
Then, from (23) and step 4.2 of FFD algorithm we have 
 )  ( 111

FFD

jv

FFD

jv

FFD

jvk FVHI          (26) 
From (25) and (26): 
 )  ( 111

EFFD

jv

EFFD

jv

EFFD

jvk FVHI         (27) 
From (27) and steps 4.4-4.7 of EFFD algorithm we have: 
 k

EFFD

jv IB           (28) 
This last result contradicts the affirmation given in (23) and therefore the supposed given in (20) 
is false.   ⁭ 
 
 The theorems 1, 2 and 3 show that for guillotine-cutting-stock very large problem is 
possible to develop a fast version of FFD algorithm without sacrificing the quality of solution. 
To continue we show some numerical results that confirm this assertion. 
 
5.  Test Results 

 We observe the results of some set of input data defined by Items kI and their dimension 
),( kk wl  and demand kd , number of items type n and the dimension of board ),( WL . We use 

the FFD and EFFD algorithm implemented on Java  IDE NetBeans 6.9 to compare the results, 
running in PC core duo 2.1Ghz, 3GB RAM Windows 7. 
 The results of same efficiency of FFD and EFFD algorithm, as formalized in theorem 3, 
is presented in Table 2, where the Factor is multiplied to each demand that define the total 
number of demand N. So, the first line is referred to instance with original demands, the second 
line is referred to instance with original demand multiplied by 6 for each items, etc. The both 
method obtain the same result in number of board used and percent lost. 
 

Items:       (1,1), (2,1), (2,2),(3,1),(3,2),(3,3)(4,1),(4,2),(5,1),(5,2),(6,2),(7,1),(7,2),(10,1) 
Demands:    6      21      6      15     22    13    3       8       5      2      1       7      1        1  
N=111, n=14, L=10, W=5 

Factor N FFD EFFD 
boards used milliseconds % lost boards used milliseconds % lost 

1 111 12 350 5 12 352 5 
6 666 69 2217 1 69 1120 1 

11 1221 126 6782 0 126 1034 0 
16 1776 184 12921 1 184 1684 1 
21 2331 241 20447 0 241 1666 0 
26 2886 298 30551 0 298 1784 0 
31 3441 355 40961 0 355 1232 0 
36 3996 412 54655 0 412 1700 0 
41 4551 470 71621 0 470 1093 0 
46 5106 527 89517 0 527 1016 0 

Table 2. Similar results of boards used and percent lost obtained by FFD and EFFD algorithms 
 
 

2417



September 24-28, 2012
Rio de Janeiro, Brazil

  

 
 
 In Table 3, another instance is used to determine the time consumed by the EFFD and 
FFD algorithms implemented. The Factor is increased by 1 and multiplied to initial demanded 
number for each executions, generating the total demanded number N. We observe that time 
consumed, getting in milliseconds, for EFFD methods is very low than the FFD method. The 
Figure 7 illustrates, by using Table 3, the behavior of the time consumed by both methods.  
 

Items:          (50,30), (22,60), (13,9), (5,4), (10,9), (8,6), (5,6), (5.55), (6.5,4.5), (2.5,2) 
Demands:        91        88         109     82      105     93    109     116         94         113 

Total demanded Time consumed in milliseconds 
Factor N FFD EFFD 

1 1000 57 4 
2 2000 79 21 
3 3000 129 8 
4 4000 163 4 
5 5000 182 21 
6 6000 219 7 
7 7000 276 5 
8 8000 364 18 
9 9000 381 7 

10 10,000 460 7 
Table 3. Time consumed by FFD and EFFD methods for demands increasing in geometric 

proportion defined by Factor 
 

 
 

2418



September 24-28, 2012
Rio de Janeiro, Brazil

  

6. Conclusion 

We introduce a fast version of ))/(log)(log( 2

2

2 NnNnnnO   complexity of the successful 
FFD algorithm to solve Guillotine Cutting Stock Problem (GCSP) with non-unitary demands, 
where N is the total requirements demanded and n the total of different size of pieces. The 
quality efficient analysis of our proposed method preserves the same quality efficient of original 
FFD algorithm. The proposed method is almost constant in time processing when the demand 
size varies. 
 
Acknowledgements  

The author is grateful to Kenny Cáceres by implementing the algorithm to generate the 
numerical tests. 
 
References 

Alvarez-Valdes R., Parreño F., and Tamarit J.M., (2008), Reactive GRASP for the strippacking 
problem. Computers and Operations Research, 35(4):1065–1083. 
Cevallos J., Algoritmo GRASP de corte de guillotina 2D con agrupamiento y rotación. 2010. 
Master Thesis, Universidad Inca Garcilaso de la Vega. (2010). 
Canto, N.C.F.,  Costa  F., Sassi R.J., (2010), A genetic algorithm for solving the two-
dimensional cutting in glass sheets problem. Proceeding of 5th Iberian Conference on 
Information Systems and Technologies (CISTI).  
Chung F.K.R., Garey M.R., Johnson D.S., (1982), On packing two-dimensional bins, SIAM 
Journal on Algebraic and Discrete Methods, 3 (1) 66-76. 
Dowsland K.A., Dowsland W.B., (1992), Packing problems, European Journal of Operation 
Research. 56 (1) 2-14. 
Dyckhoff H., Kruse H.J., Abel D., Gal T., (1985), Trim loss and related problems. Omega 13 
59-72. 
Dyckhoff H., (1990), A typology of cutting and packing problems. European Journal of 
Operation Research 44 145-159. 
Dyson R.G., Gregory A.S., (1976), The cutting stock problem in the flat glass industry. 
Operational Research Quartely 25 41-53. 
Farley A.A., (1983), Trim loss pattern rearrangement and its relevance to the flat-glass industry. 
European Journal of Operation Research  14, 386-392. 
Farley A.A., (1988), Mathematical programming model for cutting stock problems in the 
clothing industry. Journal of the Operation Operation Research Society 39 41-53. 
Farley A.A., (1990), The cutting stock problem in the canvas industry. European Journal of 
Operation Research 44 247-255. 
Faina L., (1999), An application of simulated anneling to the cutting stock problem, European 
jounal of Operation Research. 114, 542-556. 
Garcia V., (1996), Otimizacao de padroes de corte de chapas de fibra de madeiran reconstituida. 
Dissertation, Deapartamento de Engenharia de Producao, Universidade Federal de Sao Carlos, 
Brazil. 
Gilmore P., and Gomory R., (1965), Multistage cutting problems of two and more dimensions. 
Operation Research 13 94-119. 
Guzman J., Sistemas de optimización de cortes de guillotina en 2D basado en el 
algoritmo GRASP BFD reactivo con 2 parámetros de relajación. Enegineering Thesis, 
Universidad Nacional Mayor de San Marcos, 2010. 
Harjunkoski I., (1996), Ewsternlund T., Isaksoon J., Skrifvars H., Different formulations for 
solving trim-loss problems in a paper converting  mill with ILP. ESCAPE 6.  
Hinxman A.I., (1980), The trim-loss and assortment problems: a survey. European journal of 
Operation Research, 5, 8-18. 

2419



September 24-28, 2012
Rio de Janeiro, Brazil

  

Johnson D.S., Garey M. R., Graham R. L., A. Demers and J. D. Ullman., (1974), Worst Case 
Performance Bounds for Simple One-Dimensional Packing Algorithms, SIAM J. Computing, 3, 
299-325. 
Israni S., Sanders J.L., Two dimensional cutting stock problem research: A review and new 
rectangular layout algorithm. Journal of Manufacturing Systems 1 (1982) 169-182. 
Kröger B., Guillotinable bin packing: a genetic approach. European Journal of Operation 
Research 84 (1995) 645- 661. 
Liton C.D., A frecuency approach to the one dimensional cutting problem for carpet rolls. 
Operation Researchn Quartelly 28 (1977) 927-938. 
Lodi A., Martello S., Vigo D., Approximation algorithms for the oriented two-dimensional bin 
packing problem, European Journal of Operation Research. 112 (1999) 158-166. 
Madsen O.G.B., Glass cutting in small firm. Mathematical Programming 17 (1979) 85-90.  
Mauricio D., Delgadillo R., Algoritmos FFD y BFD para  resolver el problema de cortes de 
Guillotina.  Technical Report UPG-FISI/2002-01, Universidad Nacional Mayor de San Marcos.  
(2002), Lima, Perú.  
Mauricio D., Algoritmos GRASP para el Problema de Cortes. D. Mauricio. Relatorio 
Técnico UPG-FISI, Universidad Nacional Mayor de San Marcos, (2003). Lima, Perú.  
Mauricio D.  Rivera L. Maculan N., (2010), An efficient FFD method to solve the one 
dimensional stock cutting problem. GEST Int’l Trans.Computer Science and Engr., Vol. 

61, (1) 25-36.  
Morabito R.N., Arenales M.N., Arcaro V.F., (1992), An And-Or-Graph approach for two 
dimensional cutting problems. European Journal of Operation Research, 58, 263-271. 
Morabito R., Garcia V., (1997), The cutting stock problem in hardboard industry: a case study. 
Computer Operation Research, 25 6, 469-485. 
Parada V., Gómes A., De Diego J., (1995), Exact solutions for constrained two-dimensional 
cutticng stock problems. European Journal of Operation Research, 84, 633- 644. 
Parada V., Sepúlveda M., Solar M., Gómes A., (1998), Solution for the constrained guillotine 
cutting problem by simulated annealing. Computer Operation Research, 25, 1 37 – 47. 
Venkateswarlu P., Martyn C.W., (1992),The trim loss problem in a wooden drum industry, OR-
92 Proceeding of the Convention of Operation Research Society of India.  
Wang, P.Y.  (1983),  Two   algorithms  for  constrained  two-dimensional cutting stock  
problems, Operations Research 3l,  573-58 
Westernlund T., Isaksoon J., Harjunkoski I., Solving a production optimization problem in the 
paper industry. Report 95-146A, Process Desing Laboratory, Abo Akademi University (1995). 
Whitwell G., Novel Heuristic and metaheuristic approaches to guillotine packing, PhD Thesis, 
University of Nottingham, 2004. 
 

2420


