
September 24-28, 2012
Rio de Janeiro, Brazil

OAS: A MIP Model for Ordering and Allocating Parallel Jobs on

Multi-Cluster Systems

Héctor Blanco

Universidad de Lleida
Escola Politécnica Superior. C/ Jaume II, 69. 25001. Lleida. Spain

hectorblanco@diei.udl.cat

Fernando Guirado

Universidad de Lleida
Escola Politécnica Superior. C/ Jaume II, 69. 25001. Lleida. Spain

f.guirado@diei.udl.cat

Josep Llúıs Lérida

Universidad de Lleida
Escola Politécnica Superior. C/ Jaume II, 69. 25001. Lleida. Spain

jlerida@diei.udl.cat

V́ıctor M. Albornoz

Universidad Santa Maŕıa
Departamento de Industrias. Av. Santa Maria 6400. Santiago. Chile.

victor.albornoz@usm.cl

ABSTRACT

Multi-cluster environments are composed of multiple clusters of computers that
act collaboratively, thus allowing computational problems that require more re-
sources than those available in a single cluster to be treated. However, the degree
of complexity of the scheduling process is greatly increased by the heterogeneity of
resources and the co-allocation process, which distributes the tasks of parallel jobs
across cluster boundaries.

In a previous work, the authors presented a scheduling strategy which selects from
the system queue only the set of jobs that fits the available resources, and finds their
best possible allocation by a Mixed-Integer Programming model (MIP), considering
both the processing and communication requirements of the applications.

In this study, the authors propose a new MIP model that treats a set of jobs in
the waiting queue determining their best execution order and allocation, in order to
improve the makespan of the set of jobs.

KEYWORDS: Job Scheduling, Multi-Cluster Heterogeneity and Perfor-

mance, Co-Allocation, Mixed Integer Programming

Acknowledgement: This work was supported by the Ministry of Education and Science of Spain under

contract TIN2011-28689-C02 and the CUR of DIUE of GENCAT and the European Social Fund. Also,

financial support from the DGIP (Grant USM 28.10.37) and CIDIEN of Univ. Técnica Federico Santa

Maŕıa is acknowledged.

3040



September 24-28, 2012
Rio de Janeiro, Brazil

1 Introduction

Computation problems that require the use of more processing resources than those offered
by a single cluster can be solved by the use of multiple clusters in a collaborative man-
ner. These environments, known as multi-clusters, are distinguished from grids by their
use of dedicated interconnection networks with a known topology and more predictable
performance [JAA07].

A critical aspect of exploiting the resources in a multi-cluster is the scheduling [BE07].
The scheduler has access to distributed resources across different clusters to allocate those
jobs that cannot be assigned to a single cluster. This allocation strategy, known as co-
allocation, can maximize the job throughput by reducing the queue waiting times, and
thus, jobs that would otherwise wait in the queue for local resources can begin its execu-
tion earlier, improving system utilization and reducing average queue waiting time [BE07].
However, mapping jobs across the cluster boundaries can result in rather poor overall per-
formance when co-allocated jobs contend for inter-cluster network bandwidth. Additionally,
the heterogeneity of processing and communication resources increases the complexity of
the scheduling problem [JLPS05].

Co-allocation scheduling strategies in multi-cluster environments have generated great
interest in recent years. The performance of different scheduling strategies using co-allocation
was analyzed in [BE07]. This work concludes that unrestricted co-allocation is not recom-
mendable, thus some studies have dealt with co-allocation by developing load-balancing
techniques [HFH08][YTCC08], selecting the most powerful processors [NLYW05] or mini-
mizing the inter-cluster link usage [JLPS05] without finding a compromise between them.
In order to fill this gap, a new analytical model was presented in [LSG+08] to reduce
the parallel jobs execution time by considering both resource availability: processors and
communication, .

A common issue in those previous works is that jobs are allocated individually, consid-
ering all the available resources in a one-by-one job scheduling process. This methodology
does not take into account the set of jobs present in the waiting queue. Thus, allocating the
best available resources to a job without considering the requirements of the rest of jobs can
reduce the performance of future allocations and accordingly diminishing the overall sys-
tem performance [SF05]. In order to solve this problem, in [BLG11] the authors presented
a scheduling strategy, named PAS for Package Allocation Strategy, based on a linear pro-
gramming model, which brings together the parallel jobs in the waiting queue that fit the
available resources and allocates them simultaneously.

The main constraint on the PAS strategy comes from the necessity to determine the
set of jobs that fit on the available resources. In the present work, in order to overcome this
limitation, authors treat not only the best resources to allocate the jobs but also the order in
which they must be executed. To evaluate the effectiveness of this approach authors present
a MIP model with the ability to determine the best execution order and resources allocation
for a set of jobs (in next sections will be referenced as OAS for Ordering and Allocation
Scheduling). Although the scheduling problem is NP-hard, and thus, the complexity of
the MIP model, the result shown that considering a set of jobs take better profit of the
resources, improving the overall performance. Thus, the analysis of the obtained results gave
us relevant information to develop a new heuristic that will be applied on real environments.

2 Related Work

The research into scheduling parallel jobs has been treated extensively in the literature
and multiple heuristics and strategies had been proposed. The scheduling process can be
grouped into two categories; on-line and off-line modes. In the on-line mode, only arrived

3041



September 24-28, 2012
Rio de Janeiro, Brazil

jobs to the system are known, and then the allocation decisions are restricted to those jobs.
On the other hand, the off-line mode has knowledge of all the jobs, from beginning to end,
and thus can consider the whole set of job for allocation decisions [FRS05].

The on-line mode techniques have the disadvantage of allocating only one job without
taking into account the rest of jobs in the waiting queue, and then lacking relevant informa-
tion that could improve overall system performance. By maintaining the arrival order in the
waiting queue, resources that are available may end up not being allocated. The backfilling
technique aims to solve this by allowing the smaller jobs from the back of the queue to be
moved up [TEF07]. In [SF05], Shmueli et al. proposed a look-ahead optimizing scheduler to
generate the local optimal backfill selection by using dynamic programming. Shah et al. in
[SQR10] proposed a near optimal job packing algorithm to reduce the chances of job killing
and minimize external fragmentation. These approaches tried to map only the jobs that
better fill the gaps without considering other packing opportunities with the jobs waiting in
the queue. Previous research has shown that slightly modifying the execution order of jobs
can improve utilization and offer new optimization opportunities [SF05][BLG11][SKSS02].

The heuristics previously presented are extensively used on Parallel machines and Clus-
ter computing environments. Nevertheless, they are based on specific environment char-
acteristics and in most cases assuming jobs with independent tasks, i.e, without commu-
nication constraints. In the present paper, we consider jobs with a fixed number of pro-
cessors requirement, also called rigid Bulk-Synchronous Parallel jobs [SF05][SHM97]. The
meta-scheduling of such jobs on multi-cluster resources is more challenging than tradi-
tional scheduling on single-domain systems, due to the dynamic availability of resources
with different capabilities in different administrative domains, and the continuos arrival of
jobs at the meta-scheduler [ZCmH06]. Hence, to face the new challenges on multi-cluster
environments new heuristics should be proposed.

The research on multi-cluster and grid environments has provided many scheduling
solutions for different optimization criteria: cost, makespan, utilization, etc. Feng et al.
[FSZX03] proposed a deadline cost optimization model for scheduling one job with depen-
dent tasks. Buyya et al. [BMAV05] proposed a greedy approach with deadline and cost
constraints for efficient deployment of an individual job. In contrast, the current paper
is focused on the concurrent scheduling of many jobs. In [MLS07][GBS10] heuristics and
Genetic Algorithm solutions for scheduling concurrent jobs are proposed. However, those
studies assumed independent jobs with no communication restrictions.

The main goal of the present work is to determine the effectiveness of treating a set of
jobs at the same time, i.e. those that are waiting in the system queue, by determining their
execution order and resources allocation to the multi-cluster environment while minimizing
the overall makespan and avoiding inter-cluster link saturation.

3 Ordering & Allocation Scheduling Strategy

In general, the optimization-criteria extensively used in multi-cluster environments is fo-
cused on improving performance. Users would like to have the execution done in the min-
imum time, and resource administrators would like to make the maximum usage of the
processing resources. In an environment where parallel jobs arrive with a large inter-arrival
time, being the resources mainly free, the allocation mechanism is responsible of improving
the performance.

However, in situations with low inter-arrival time, jobs accumulate in the waiting queue
thus generating new scheduling opportunities. In these situations, both allocation strategy
and execution order are decisive for improving overall performance. In the present work, we
propose a new MIP model (OAS) which manages the packing of jobs in the waiting queue

3042



September 24-28, 2012
Rio de Janeiro, Brazil

to minimize their makespan, thus improving the system utilization and user satisfaction. In
order to do that, OAS must manage two main challenges: (i) resources can have different
capabilities and availabilities and (ii) different tasks in a job can be assigned to different
clusters in a co-allocation process. In these circumstances, the allocation mechanism not
only has to consider the processing time of the different resources, but also the commu-
nication capabilities in order to avoid inter-cluster link saturation, which could produce
unpredictable effects on job performance.

3.1 Problem Statement

Multi-cluster model A multicluster environment is assumed to be made up of a set of
α arbitrary sized clusters with heterogeneous resources. Let M = {C1, C2, . . . , Cα} denote
the set of Cluster sites; let R = {R1

1, R
1
2, . . . , R

α
n−1, R

α
n} be the set of processing resources

of the multi-cluster, being n the total number of nodes. Each cluster is connected to each
other by a dedicated link through a central switch. Let L = {L1..Lα} denote the set of
inter-cluster links and Lk be the link which connects the site Ck with the central switch.

In heterogeneous and non-dedicated environments, the processing resources capabilities
can be different. To measure these differences we use the Effective Power metric (Γ r) defined
in [LSG+08]. This normalized metric relates the processing power of each resource with its
availability. Thus, Γ r = 1 when processing resource r ∈ R has capacity to run tasks at full
speed, and otherwise Γ r < 1.

Parallel Application Job Model In this work, we consider parallel application jobs
with a fixed number of processing resources requirements that are also called rigid parallel
jobs [SF05]. A job j is composed of a fixed number of τj tasks that act in a collaborative
manner. Each task is comprised of various iterations in which processing alternates with
communication and synchronization phases. In our case, each job task was assumed to use an
all-to-all communication pattern with similar processing and communicating requirements,
following the widely used Bulk-Synchronous Parallel model [SHM97]. Job assignment is
static, that is, once the job is mapped into a particular set of nodes, no more re-allocations
are performed. Additionally, jobs can be co-allocated by using nodes from different cluster
sites in order to better meet the collective needs across the multi-cluster.

Taking this into account the performance of a parallel job in a multi-cluster environment
can be modeled by

Tej = Tbj · ctj, ∀j ∈ J (1)

where Tej denotes the estimated execution time for the parallel job j, Tbj denotes
the base time of j in dedicated resources and ctj be the time cost that modifies the base
time by the set of allocated resources S. The base-time of j in dedicated resources, Tbj, is
assumed to be known based on user-supplied information, experimental data, job profiling
or benchmarking techniques.

Time Cost Model In previous studies from literature, the time cost ctj is obtained from
the processing capabilities of the allocated resources without considering communications
[JLPS05], or considering a fixed communications penalty when co-allocation is applied
[EHS+02]. In contrast, we modeled the time cost of each job based on heterogeneity of the
selected processing resources and the availability of the inter-cluster links used, expressed
by

ctj = σj · SPj + (1− σj) · SCj , ∀j ∈ J (2)

3043



September 24-28, 2012
Rio de Janeiro, Brazil

where SPj denotes the processing slowdown of job j produced by the allocated resources,
SCj is the communication slowdown produced by the used inter-cluster links, and σj denotes
the relevance of the processing time with respect to the communication time for job j. The
σj value is obtained by characterizing the job along with the base-time Tbj . Assuming
similarity between the job tasks, SPj is obtained from the slowest processing resource, i.e.
that which provides the maximum processing slowdown, as expressed in

SPj = max
∀r∈S

{SP r
j }, ∀j ∈ J (3)

where SP r
j denotes the processing slowdown of j obtained from the effective power of

allocated resource r.

SCj evaluates the communication slowdown by inter-cluster link contention. The co-
allocation of a parallel job application consumes a certain amount of bandwidth in each
inter-cluster link Lk, denoted by BW k

j , and calculated by

BW k
j =

(

tkj · PTBWj

)

·

(

τj − tkj
τj − 1

)

, ∀k ∈ 1 . . . α, j ∈ J (4)

where PTBWj denotes the required per-task bandwidth, τj is the total number of tasks
of j and tkj is the number of those tasks allocated to cluster Ck. The first term in the
equation is the total bandwidth consumed by the tasks allocated inside cluster Ck, while
the second term represents the percentage of communication with other clusters.

When co-allocated jobs consume more bandwidth than the available in a communication
link, saturation occurs, and thus, all jobs sharing this link are penalized and then their
communication time increases. The degree of saturation of inter-cluster links relates the
maximum bandwidth of each link with the bandwidth requirements of the allocated parallel
jobs and is calculated by

SAT k =
MBW

∑

∀j(BW k
j )

, k ∈ 1 . . . α, j ∈ J (5)

where SAT k ≥ 1 when the link Lk is not saturated. Otherwise the link Lk is saturated,
delaying the jobs that use it, with a slowdown inversely proportional to the degree of
saturation as expressed by

SCk
j =

{

(SAT k)−1 when SAT k < 1
1 otherwise

(6)

where communication slowdown SCj for each parallel job j comes from the most satu-
rated link used, as expressed by

SCj = max
∀k

{SCk
j , ∀j ∈ J}, (7)

Fig. 1. Representation of job scheduling. (a) one-by-one allocation without considering in-
teractions. (b) allocation grouping tasks, considering interactions

3044



September 24-28, 2012
Rio de Janeiro, Brazil

Allocation & Scheduling Mechanism The most common scheduling techniques allocate
the jobs one-by-one from the waiting queue, without taking the requirements of further jobs
into account. Figure 1(a) represents a First Come First Served scheduling, which does not
take into account the requirements of further jobs. In situations with high arrival rates, this
allocation procedure can produce negative effects on performance by not considering the
resource requirements of further jobs. The resource sharing among jobs has a great impact
on system performance, especially when co-allocation is applied, since contention for the
inter-cluster links can significantly reduce the overall system performance. Several previous
studies [SF05][SKSS02] have shown that better performance results can be achieved by
allocating groups of jobs, as can be seen in Figure 1(b).

Our proposal treats a set of jobs in the waiting queue, minimizing the overall makespan.
The scheduling problem is modeled as a MIP model, considering the most suitable resources
and contention from the inter-cluster links.

3.2 The Mixed-Integer Programming model

Mixed-Integer Programming (MIP) is a technique to obtain those solutions that maximize
or minimize the value of an objective function subject to some constraints. In this paper,
we propose a model to achieve the scheduling that provides the minimum makespan for
a set of jobs. This model provides the execution order and resources allocation for each
job, minimizing the makespan and avoiding saturation of the inter-cluster links. Ernemann
et al. [EHS+02] determined that in some situations a certain threshold on the saturation
degree may be allowed. In the present study, for simplicity we restrict the model to those
solutions that avoid the saturation, although it could be possible to define a threshold. The
proposed MIP model, presented in Figure 2, is described as follows.

Parameters and variables Information about the multi-cluster status and jobs require-
ments is necessary to find the best allocation (lines 1-9). The multi-cluster structure is
described by the set of processing resources R and the set of inter-cluster links (L).The
multi-cluster status is represented by the effective CPU power of each resource r ∈ R (Γ r)
and the maximum available bandwidth for each inter-cluster link k ∈ L (MBWk). The
information for each job j corresponds to the number of tasks (τj), the job base-time (Tbj),
the required per-task bandwidth (PTBWj) and the weighting factor (σj), which measures
the relevance of the processing and communication time.

The decision variables of the model define the order and allocation of each job (lines
13-20). The allocation of a job task is expressed by a binary variable, being Z(j,r) = 1
(line 13) when the job j is assigned to the resource r and 0 otherwise. To obtain the job
execution order, the allocation domain of each resource is split into time-slots with equal
size (lines 14-17), being X(j,r,t) = 1 when job j is assigned to resource r in the time-slot

t. Let T = {T 1, · · · , T θ} denote the set of time-slots and θ be the total number of time-
slots used by the set of jobs. This value is provided by the scheduling system as a deadline
constraint. Variable Y(j,t) (line 15) is set if job j starts its execution in the time-slot t.

Based on this partition into time-slots, the execution time of job j is defined by the
time-slot in which job j starts running, denoted by sj, and the time-slot in which job j
is completed, denoted by fj. The time-slots occupied by j are calculated considering the
characterized job base-time (Tbj), the processing slowdown (SPj) produced by the allocated
resources (see section 3.1) and the time-slot size (η), as expressed by

fj = sj + (Tbj ∗ (SPj ∗ σj + (1− σj)))/η (8)

Processing slowdown SPj (line 18) is calculated as expressed by equation 3. The slow-
down of communication is not considered in this calculation because the model is limited

3045



September 24-28, 2012
Rio de Janeiro, Brazil

Input Parameters

1. R: Set of processing resources.
2. L: Set of inter-cluster links.
3. Γ r: Effective power for resource r, ∀r ∈ R
4. MBWk: Maximum Available bandwidth for each inter-cluster link k, ∀k ∈ L.
5. J : set of jobs to be allocated.
6. τj: number of tasks making up job j, ∀j ∈ J .
7. Tbj: execution base-time for the job j, ∀j ∈ J .
8. PTBWj: required bandwidth for each jobs task, ∀j ∈ J
9. σj: time-processing and -communication weighting factor, ∀j ∈ J .
10. T : Set of time-slots in which job can be assigned.
11. θ: total number of time-slots. Deadline for the set of jobs.
12. η: time-slot size.

Variables

13. Z(j,r) = 1 if j is assigned to resource r, ∀j ∈ J, r ∈ R
14. X(j,r,t) = 1 if j is assigned to resource r in slot t, ∀j ∈ J, r ∈ R, t ∈ T
15. Y(j,t) = 1 if j starts running in slot t, ∀j ∈ J, t ∈ T
16. sj: time-slot in which job j starts running, ∀j ∈ J
17. fj: time-slot in which job j is completed, ∀j ∈ J
18. SPj is the processing slowdown of job j, ∀j ∈ J
19. BWj,k,t: Bandwidth consumed by job j on link k in slot t. ∀j ∈ J, k ∈ L, t ∈ T
20. ABWk,t: Available bandwidth on link k, in slot t, ∀k ∈ L, t ∈ T

Objective function

21. Minimize the makespan of the set of jobs

Fig. 2. MIP model representation.

by constraints to those solutions that avoid the saturation of inter-cluster links. In order to
avoid a solution which produces saturation, this must be calculated (lines 19-20). Variable
BWj,k,t is the bandwidth consumed by job j on inter-cluster link k on time-slot t. and
ABWk,t is the available bandwidth on link k on time-slot t once all the jobs have been
allocated.

Objective Function When there are many possible solutions, the objective function de-
fines the quality of each feasible solution. In our model we are interested on minimizing the
global makespan. In consequence, makespan optimization can be described in function of
the latest completed job expressed by

minimize{ max
∀j∈J

(fj) } (9)

Constraints The constraints contribute to defining the correct solutions to the problem.
In our case, we must ensure that all tasks from a parallel application are allocated and
start at the same time, by avoiding the saturation of the inter-cluster links. To this end, we
define the following set of constraints:

∑

∀j∈J

X(j,r,t) ≤ 1, ∀r, t (10)

Z(j,r) = max
t∈T

(Xj,r,t), ∀j, r (11)

∑

∀r∈R

Z(j,r) = τj, ∀j (12)

∑

∀r′∈R

(Xj,r′,t) ≥ (τj ·Xj,r,t), ∀j, r, t (13)

3046



September 24-28, 2012
Rio de Janeiro, Brazil

X(j,r,t′) ≤ 1− Y(j,t) ∀j, r ∧ t′ ∈ 1..(t− 1) (14)

∑

∀t∈T

Y(j,t) = 1 ∀j (15)

sj =
∑

∀t∈T

(Yj,t · t)− 1 ∀j (16)

fj = max
∀r∈R,t∈T

(X(j,r,t) · t) ∀j (17)

ctj = σj · SPj + (1− σj) ∀j (18)

(fj − sj) · η ≤ (Tbj · ctj) ∀j (19)

(
∑

∀r∈R,t∈T

Xj,r,t · η) ≥ (Tbj · ctj · τj) ∀j (20)

ABWk,t = MBWk −
∑

∀j∈J

BWj,k,t ∀j, k, t (21)

ABWk,t ≥ 0 ∀k, t (22)

Z(j,r) ∈ {0, 1}, Xj,r,t ∈ {0, 1}, Y(j,t) ∈ {0, 1},

sj ≥ 0, fj ≥ 0, ctj ≥ 0 (23)

Constraint set (10) ensures that a resource can only be allocated to one parallel job task
simultaneously. Constraint set (11) defines the variable Z(j,r). This variable equals 1 when
job j is allocated to resource r and equals 0 otherwise. Constraint set (12) ensures that all
tasks, τj, for the parallel job j are allocated. Constraint set (13) guarantees that all the tasks
of a job are executed at the same time but in different resources. Constraint sets (14) and
(15) define the variable Y(j,t), which equals 1 when the jth job initiates its execution in the
tth time-slot. Otherwise it equals 0. Constraint sets (16) and (17) define the variables sj and
fj as the time-slot in which the jth job starts running and finishes, respectively. Variable
sj is obtained from variable Y(j,t), while variable fj is calculated considering the slowest
allocated resource. Constraint set (18) defines the execution cost ctj of each job based on
the processing slowdown obtained from the slowest allocated resource. Constraint sets (19)
and (20) ensure that the time-slots used by a job are contiguous and in accordance with
the time spent on the slowest allocated resource. Constraint set (21) defines the available
bandwidth of the kth inter-cluster link in the tth time-slot, ABWk,t. Constraint set (22)
guarantees non-saturation of the inter-cluster links in every time-slot.

4 Experimentation

The experimental study was carried out in order to: (1) evaluate the influence of the time-
slot duration size on the scheduling solutions and (2) determine the effectiveness of the
scheduling solutions provided by OAS. The first study was based on a synthetic workload
varying the size of the time-slot. For the second study, OAS was compared with other
heuristics present from the literature.

OAS was implemented by using the CPLEX linear mixed integer programming solver
package, and the scheduling provided by OAS was used on the GridSim simulation frame-
work, characterized as a heterogeneous multi-cluster system. Due to the complexity of the
MIP model the environment was limited to 3 clusters, with 2 nodes per cluster and inter-
connected by a Gigabit network. The heterogeneity characteristic was defined by assigning
a different effective power computation capability to each individual cluster with values of
Γk = {1.0, 0.75, 0.5} respectively, from greater to lesser computation capability.

3047



September 24-28, 2012
Rio de Janeiro, Brazil

4.1 Time-Slot Size Analysis

In order to determine the order in which jobs must be executed, OAS includes the concept
of time-slot. The time-slot size could limit the quality of the scheduling solution, so an
experimental study was performed to evaluate the impact of varying the time-slot size
on the results. We defined a workload composed by 8 jobs with different computation
and communication requirements, which are representative of parallel applications with
very large computational requirements as could be weather prediction, fluid or material
simulation, etc.

The time-slot values were in the range {15%, . . . , 250%} times the average of the base-
time of the jobs from the workload. Figure 3 shows the makespan obtained for each case of
the study. As can be observed, when the slot size increases, the makespan increases. This
is because a big slot reduces the available resources during long periods of time even if
the allocated jobs have finished. Thus, the start time of the next jobs is delayed until the
time-slot finishes.

The shortest the time-slot is, the better makespan is obtained. However, the model has
to do more evaluations, and the solving time increases as shown in Figure 3. It shows that
from sizes lower than 50%, makespan values become stable, which are identified with the
optimum makespan possible for this experiment. In the other way the solving time grows
up exponentially as the problem size increases. By this, we can conclude that OAS is able
to reach a near-optimal makespan in a feasible solving time without using the minimum
time-slot.

4.2 OAS Performance Evaluation

To evaluate the goodness of OAS, we compare the results with other techniques present
in the literature: First Come First Served (FCFS), Short Jobs First (SJF), Big Jobs First
(BJF), Fit Processors First Served (FPFS), Short Processing Time (SPT) and Long Pro-
cessing Time (LPT).

In this experimental study we defined a set of six synthetic workloads composed by 8 jobs
with similar characteristics of computational requirements as in the previous experimental
study. We defined two of them in order to fit well an specific scheduling technique and then
limiting any solver advantage. Thus, the first workload WL-1 was designed to perform
well with the techniques that try to match the available resources with the processing
requirements from the jobs in the waiting queue. WL-2 workload was designed to perform
well with the techniques that prioritize smaller jobs. Finally, we also use randomly generated
workloads WL-3 toWL-6, designed without taking any particular criteria into account. The

Fig. 3. Comparison for the model slot size.

3048



September 24-28, 2012
Rio de Janeiro, Brazil

metric used in the comparison was the makespan, which measures the total time to execute
the complete workload and also is able to show the behavior of the selected heuristics
when the treated set of jobs has a limited size. The time-slot size was defined to obtain a
near-optimal makespan.

The results of this comparison are shown in Figure 4. It can be observed that each
technique has a different behavior. The technique that in some workload performs well in
another obtains a low makespan. It is important to take into account that OAS always
obtained good results irrespectively of the workload nature. The reason comes from its
ability to have a global vision of the requirements of the whole set of jobs and the available
resources. Thus, we can conclude that by defining the correct job execution order it is
possible to obtain the scheduling that reduces the final makespan.

Fig. 4. Comparison of six kinds of workloads.

Finally, analyzing the solver decisions we identified a scheduling pattern. The set of
jobs were allocated in a balanced way being the jobs with heavier processing requirements
allocated to the most powerful nodes, and those with lower requirements to the nodes with
less processing capacity. This knowledge provide us the seed to develop a heuristic able to
be used on a real platform.

5 Conclusions

In the present work, we focused on the scheduling process on heterogeneous multi-cluster
environments, by applying multiple job allocation and co-allocation when it is necessary.
The goal is to determine the goodness of the job execution order and the multiple-job alloca-
tion with processing and communication resource considerations, and thus, a Mixed-Integer
Programming model had been developed. The results were compared with other scheduling
techniques from the literature confirming that, both execution order and multiple-allocation
provide better makespan results. However, the presented MIP model has a large computa-
tional complexity, by this we are developing a feasible scheduling heuristic that could be
executed in realistic multi-cluster environments obtaining solutions in practical times and
treating bigger sets of jobs.

3049



September 24-28, 2012
Rio de Janeiro, Brazil

References

[BE07] A.I.D. Bucur and D.H.J. Epema. Schedulling policies for processor coallocation
in multicluster systems. IEEE TPDS, 18(7):958–972, 2007.

[BLG11] H. Blanco, J.L Lérida, and F. Guirado. Multiple job co-allocation strategy for
heterogeneous multi-cluster systems based on linear programming. Journal of
Supercomputing, 58(3):394–402, 2011.

[BMAV05] R. Buyya, M. Murshed, D. Abramson, and S. Venugopal. Scheduling parameter
sweep applications on global grids: a deadline and budget constrained cost-time
optimization algorithm. Software Practice and Experience, 35(5):491–512, 2005.

[EHS+02] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R. Yahyapour, and A. Streit.
On advantages of grid computing for parallel job scheduling. In IEEE/ACM
International Conference CCGRID’02, 2002.

[FRS05] D.G. Feitelson, L. Rudolph, and U. Schiwiegelshohn. Parallel job scheduling -
a status report. In LNCS, volume 3277, pages 1–16, 2005.

[FSZX03] H. Feng, G. Song, Y. Zheng, and J. Xia. A deadline and budget constrained cost-
time optimization algorithm for scheduling dependent tasks in grid computing.
In Grid and Cooperative Computing, pages 113–120, 2003.

[GBS10] S. K. Garg, R. Buyya, and H. J. Siegel. Time and cost trade-off management for
scheduling parallel applications on utility grids. Future Generation Computer
Systems, 26:1344–1355, 2010.

[HFH08] E.M. Heien, N. Fujimoto, and K. Hagihara. Static load distribution for commu-
nicative intensive parallel computing in multiclusters. In IEEE PDP’08, pages
321–328, 2008.

[JAA07] B. Javadi, M.K. Akbari, and J.H. Abawajy. A performance model for analysis
of heterogeneous multi-cluster systems. Parallel Computing, 32(11-12):831–851,
2007.

[JLPS05] W. Jones, W. Ligon, L. Pang, and D. Stanzione. Characterization of bandwidth-
aware meta-schedulers for co-allocating jobs across multiple clusters. Journal
of Supercomputing, 34(2):135–163, 2005.

[LSG+08] J.L. Lérida, F. Solsona, F. Giné, J.R. Garćıa, and P. Hernández. Resource
matching in non-dedicated multicluster environments. In VECPAR 2008, pages
160–173, 2008.

[MLS07] E. U. Munir, J. Li, and S. Shi. Qos sufferage heuristic for independent task
scheduling in grid. Information Technology Journal, 6(8):1166–1170, 2007.

[NLYW05] V.K. Naik, C. Liu, L. Yang, and J. Wagner. Online resource matching for het-
erogeneous grid environments. In IEEE/ACM International Conference CC-
GRID’05, volume 2, pages 607–614, 2005.

[SF05] E. Shmueli and D.G. Feitelson. Backfilling with lookahead to optimize the pack-
ing of parallel jobs. Journal of Parallel & Distributed Computing, 65(9):1090–
1107, 2005.

[SHM97] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about
BSP. Oxford University Computing Laboratory, 1997.

[SKSS02] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Selective
reservation strategies for backfill job scheduling. In Job Scheduling Strategies
for Parallel Proc. JSSPP’02, pages 55–71, 2002.

[SQR10] S.M. Hussain Shah, K. Qureshi, and H. Rasheed. Optimal job packing, a backfill
scheduling optimization for a cluster of workstations. Journal of Supercomput-
ing, 54(3):381–399, 2010.

3050



September 24-28, 2012
Rio de Janeiro, Brazil

[TEF07] D. Tsafrir, Y. Etsion, and D.G. Feitelson. Backfilling using system-generated
predictions rather than user runtime estimates. In IEEE Transaction on Parallel
and Distributed Systems, volume 18(6), pages 789–803, 2007.

[YTCC08] C. Yang, H. Tung, K. Chou, and W. Chu. Well-balanced allocation strategy
for multiple-cluster computing. In IEEE International Conference. FTDCS’08,
pages 178–184, 2008.

[ZCmH06] W. Zhang, A.M.K. Cheng, and m. Hu. Multisite co-allocation algorithms for
computational grid. In International Parallel and Distributed Processing Sym-
posium, IPDPS’06, 2006.

3051


