
September 24-28, 2012
Rio de Janeiro, Brazil

Bilevel Optimization Model for Determining Highway Tolls 

  

José Luis González Velarde
1
, Gabriel Pinto

1 
and Fernando Camacho

2
 
 

 
1
Tecnológico de Monterrey 

Av. Eugenio Garza Sada 2501 Sur 

Monterrey, Nuevo León, 64849, México 

gonzalez.velarde@itesm.mx,  gabrielpinto_s@hotmail.com  

 
2
Facultad de Ciencias Físico-Matemáticas 

Universidad Autónoma de Nuevo León 

Pedro de Alba S/N, Ciudad Universitaria 

San Nicolás de los Garza, Nuevo León, 66450, México 

jose.camachovl@uanl.edu.mx   

 

 

 

ABSTRACT. The problem of determining an optimal set for the tolls for the arcs of a multiproduct 

transportation network is presented. The problem is formulated as a bilevel optimization 

problem, where the upper level consists of an administrator who establishes the tolls on the 

network, while the lower level is represented by a group of users who travel along the shortest 

paths with respect to a given travel cost. The objective is not only to increase tolls, but also to 

maintain an optimal flow on the arcs of the network in order to maximize benefits. A methodology 

to solve this problem using an optimization software at the lower level and the metaheuristic 

Scatter Search at the upper level is proposed.  
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1. Introduction.  

 

The importance of transportation for the economic and productive growth of any organization, 

including countries, is unquestionable and is indeed an area that has taken a great relevance 

within this subject is the one of the highway tolls. Tolls help to reduce congestion, and as well, 

they put the monetary load on the shoulders of the users of this infrastructure. 

 

Existing Literature about highway tolls is very extensive; nevertheless, the great majority focuses 

fundamentally in congestion reduction and demand regulation, leaving the studies on toll 

allocation for the maximization of benefits somewhat left behind. A level of the problem tackled 

in this work will be modeled as a problem of minimum cost flow, which, like the rest of the 

models for transportation problems, has been widely studied. 

 

As mentioned before, research about highway quotas are abundant, nevertheless the majority of 

these focuses in congestion reduction and other negative effects entailed by this (like 

contamination) by means of demand regulation (Cropper & Oates, 1992). Congestion is an 

important and increasingly common problem. The efforts made so far to solve this problem have 

not been successful mainly because once the solutions are constructed it has not been guaranteed 

that the new capacity be appropriately used. The efforts to attract people outside their vehicles 

have been equally ineffective (Button, 2004). 

 

Highway pricing is a very simple concept that extends the common practice of using prices to 

reflect shortage of a certain resource and to assign this resource for its more efficient use, and 

occurs in practically any sector of the economy. The concession of lines in Singapore in 1975 is 

the classic case of study of a pioneering application, but in spite of its success, it is not commonly 

seen as a good example for the cities of Western Europe Occidental and North America. 

Nevertheless the scheme of Singapore offers evidence of the effects of highway pricing. The 

initial policy, collect a fee from vehicles entering downtown between 7:30 and 9:30 a.m. 

demonstrated to be inadequate since the traffic simply moved outside the periods of concession. 

Just a short time later this period of extended until the 10:15 a.m. and a period in the afternoons 

was included. The impact of this new scheme was impressive from the beginning since it 

obtained a reduction of 24.700 automobiles during the rush hours. 

 

“Traffic Assignment Problem: Models and Methods” (Patriksson, 1994) reviews the evolution of 

the models and methods for the problem of estimating the flows of traffic balance in the urban 

zones and show the scope and limitations of the present traffic models. 

 

Focusing specifically in the subject of this work, which tries allocating highway tolls for transport 

networks aiming at maximizing benefits, Camacho Vallejo (2009), develops and compares three 

solution methods for this problem in order to determine which one obtains better results. Those 

methods are based on approximation by gradient, Quasi-Newton and a direct resolution method, 

respectively. In this work the optimization model presented by Camacho Vallejo is solved 

developing a metaheuristic procedure based on Scatter Search (Glover 1998) and on an 

implementation presented by Laguna and Marti (2003) interacting with CPLEX a commercial 

optimizer, reaching better results than those obtained by Camacho Vallejo. 

 

This work is divided into five sections: Section 1 is just introductory, with a literature review of 

the more relevant articles for this research topic. Section 2 shows the structure of a bilevel 

program and the problem to be solved is presented. In Section 3 the formulation used to solve the 

problem is presented. Section 4 gives a general description of the optimization tools used to solve 

the problem. In Section 5 the computational experiments and results are presented. And finally 

Section 6 shows the conclusions and recommendations for future work. 
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2. Bilevel Programming.  

 

Bilevel programming problems are problems of hierarchic optimization, where a decision maker 

may be able to influence in the behavior of another decision maker in a lower level without 

completely taking control on his actions. The importance of bilevel programming is based on the 

fact that decision making in any large organization rarely comes from a single point of view. 

 

Multilevel systems share the following characteristics (Bard, 1998):  

 Existence of interactive decision making between the different hierarchical levels. 

 Each subordinated level carries out its policies only after a superior level carries out 

its decisions. 

 Each unit optimizes its net benefits independently, but they are affected by the 

actions of other units. 

 The external effects on the problem of a decision maker are reflected in the 

objective function and in the feasible set of solutions. 

 

Multilevel programming was defined for the first time in the decade of 1970s by Chandler and 

Norton as a generalization of mathematical programming, in their work they illustrate how two 

levels of programming can be used to analyze the dynamics of a regulated economy, 

concentrating in the agricultural development of the north of Mexico. (Chandler & Norton, 

1977). 

 

In order to be able to mathematically formulate the problem, it is assumed that the leader has 

control on the vector 𝑥 ∈ 𝑋 ⊆ 𝑅𝑛, and as well, that the follower has control on the vector 

𝑥 ∈ 𝑋 ⊆ 𝑅𝑛. The leader starts selecting a vector x trying to minimize F(x, y(x)), which can be 

subject to certain constraints. The component y(x) indicates that the leader’s problem is implicit 

in the y variables. After observing the actions of the leader, the follower reacts selecting a y to 

minimize his objective function f(x, y), subject to a set of restrictions. 

 

This problem may be defined as follows: 

min       𝐹(𝑥, 𝑦) 

𝑥 ∈ 𝑋 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝐺(𝑥, 𝑦) ≦ 0 

 

                                                                      min       𝑓(𝑥, 𝑦) 

                                                                                                    𝑦 ∈ 𝑌 
                                                                                    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑔(𝑥, 𝑦) ≦ 0 

 

where 𝐹, 𝑓: 𝑅𝑛 × 𝑅𝑚  →  𝑅1,  𝐺: 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑝  and g:𝑅𝑛 × 𝑅𝑚 → 𝑅𝑞. The sets X and Y 

may have additional constraints on their variables, such as no negativity or integrity of his 

variables. This formulation may be handled to generate new forms for the problem, changing for 

example the “min” operator by “max” according to the specifications of the particular problem. 

 

The problem of highway toll allocation may be formulated as a bilevel optimization problem, 

where the upper level consists of an administration that establishes the tolls for the network 

aiming at maximizing the income, whereas the lower level is represented by a group of users who 

travel in the shortest paths with respect to a generalized cost. In order to be able to obtain a 

bilevel model a constraint of the type argmin has been added to the objective function of the 

follower that optimizes the flows in the arcs of the transportation network once tolls are allocated, 

in order to find in this way a balance between the established quotas and the number of users who 

use these roads. 
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3. Problem Formulation. 

 

As already mentioned, the problem of optimization of highway tolls can be approached from the 

point of view of a leader and his follower, which interact in a multiproduct network G = (K, N, A) 

defined by a product set (origin - destination) K, a set of nodes N and the set of arcs A. This last 

set is in turn partitioned in subset A1 that represents the arcs with tolls and its complementary 

subset A2, representing the toll free arcs. Each arc a   A is provided with a generalized cost Ca 

that represents the minimum cost to travel through each arc. One must also consider that each arc 

a   A in the network has a limit qa in its capacity. As well as there is a fixed capacity for each arc 

and a product set K, there is also a parameter nk that represents the existing demand for each 

product between the origin and destination nodes associated with product k   K. Finally, the 

parameter ta in the toll arcs a   A1 represents an extra cost to be determined to travel through these 

arcs. Leaving 𝑥𝑎
𝑘  to represent the flows between the arcs to fulfill the demands of each one of the 

existing products. 

 

Considering that the quotas ta cannot exceed a pre-established maximum value of 𝑡𝑎
𝑚𝑎𝑥 and that 

the flows 𝑥𝑎
𝑘 must be part of the optimal solution of the lower level which in turn is 

parameterized by the toll vector decided at the upper level, this problem can be formulated as a 

bilevel program with linear constraints as follows:  

 

 max𝑡,𝑥 ∑ ∑ 𝑡𝑎𝑎∈𝐴1
𝑥𝑎

𝑘
𝑘∈𝐾                      (1)                     

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     𝑡𝑎 ≤ 𝑡𝑎
𝑚𝑎𝑥                  ∀𝑎 ∈ 𝐴1                         (2)  

           𝑡𝑎 ≥ 0                         ∀𝑎 ∈ 𝐴1                        (3) 

 

𝑥𝑘 ∈ min𝑥 ∑ (𝑐𝑎 + 𝑡𝑎)𝑥𝑎 + ∑ 𝑐𝑎𝑎∈𝐴2
𝑥𝑎𝑎∈𝐴1

          

         𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: − ∑ 𝑥𝑎𝑎∈𝑖− + ∑ 𝑥𝑎𝑎∈𝑖+ = 𝑏𝑖
𝑘            ∀𝑖 ∈ 𝑁

                                         𝑥𝑎 ≥ 0                                            ∀𝑎 ∈ 𝐴

} ∀𝑘 ∈ 𝐾 (4)          

  ∑ 𝑥𝑎
𝑘 ≤ 𝑞𝑎                                         ∀𝑎 ∈ 𝐴 𝑘∈𝐾      (5) 

 

Family of equations 4: 

𝑥𝑘 ∈ min𝑥 ∑ (𝑐𝑎 + 𝑡𝑎)𝑥𝑎 + ∑ 𝑐𝑎𝑎∈𝐴2
𝑥𝑎𝑎∈𝐴1

       (4.1) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: − ∑ 𝑥𝑎𝑎∈𝑖− + ∑ 𝑥𝑎𝑎∈𝑖+ = 𝑏𝑖
𝑘                 ∀𝑖 ∈ 𝑁    (4.2) 

𝑥𝑎 ≥ 0                                       ∀𝑎 ∈ 𝐴      (4.3) 

 

The objective of the leader is to maximize total benefits, which are the sum of the product of the 

tolls 𝑡𝑎 and the users flow through the arc a (equation 1). However the set of lower constraints 

(family of equations 4) enforce the follower to assign flows to the shortest paths with respect to 

the present tolls, that is, the objective of the lower level is to minimize the total cost of the routes 

selected by the users (equation 4.1). The constraints at the lower level are in charge of the flow 

conservation (equation 4,2) and the nonnegativity in the flows (equation 4,3). Finally a constraint 

is added to prevent exceeding the capacities on the arcs with the assigned flows (equation 5). 

 

 

4. Scatter Search.  

 

Scatter Search is an evolutionary metaheuristic that has been successfully applied to solve hard 

optimization problems. It is based on formulations and strategies developed in 60s, but it was not 

but until 1977 that was officially proposed by Glover as a method by itself. In this year Glover 

described Scatter Search as “a method that uses a succession of coordinated initializations to 

generate solutions” (Glover, 1977). 
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As described in several articles in the literature (Glover, 1998; Laguna & Martí, 2003) and other 

implementations based on this framework, the methodology includes the following basic 

elements: 

 Generation of a population P 

 Extraction of a reference set R 

 Combination of elements from R and update of R 

The dimension and structure of the solution set in different evolutionary algorithms may vary. 

Genetic Algorithms, for example, work with the whole created population (typically 100 

solutions), Memetic Algorithms work with small (and sometimes structured) population 

(Moscato, 2000), while SS works with a subset of 10 to 20 solutions from the set of created 

solution. This subset called reference set R is built from the population P (generated by the 

diversification generation method) with only a few solutions from P. The way the reference set is 

initialized, updated and rebuilt is a crucial aspect in Scatter Search performance. If the 

construction of a reference set was made only based on the solution quality, the reference set 

would be formed by selecting the best b solutions in P. Nevertheless, a desired characteristic in 

general search procedures, and particularly in SS, is an adequate balance between intensification 

and diversification.  

Next step in the Scatter Search methodology is the combination of elements in the reference set. 

To accomplish this, two or more elements from R are chosen in a systematic way with the 

purpose of creating new solutions. This is achieved by the construction of certain subsets of 

solutions from R and by applying the combination method to solutions in each one of these 

subsets. This combination is intended to be intelligent so a better solution than those in the subset 

may be created. At this point, it is possible that as a result of the combination method an 

infeasible solution be created. In this case, the combination method must have a procedure to 

restore feasibility. As new solutions are being created, these will gain membership to the 

reference set not only by their quality, but by their degree of diversity. The general procedure may 

iterate several times to achieve a better quality in the created solutions. The way SS combines 

solutions and updates the set of reference solutions used for combination sets this methodology 

apart from other population-based approaches. 

 

In order to solve the problem presented in this article, the implementation developed by the 

authors (Laguna & Martí, 2003) of the metaheuristic Scatter Search in their book “Scatter Search: 

Methodology and Implementations in C” was taken as a basis to solve the upper level problem 

where it seeks to determine the optimum toll combination to maximize the benefits in the 

transport network. The optimizer CPLEX was used to solve the problem at the lower level, where 

the optimal flows in the transport network is determine with the objective of minimizing the costs 

of traveling through the network. 

 

The developed model starts generating P, an initial set of diverse solutions for the toll variables 

of the upper level in a random but controlled form to guarantee that the generated initial solutions 

are within the pre-established ranks (in this case between 0 and 𝑡𝑎
𝑚𝑎𝑥). In order to generate these 

solutions one starts dividing the ranks of each variable (between 0 and 0 and 𝑡𝑎
𝑚𝑎𝑥) in 4 sub ranks 

of same size. Next one of these sub ranks is randomly selected and a solution within the selected 

sub rank is generated. 

 

Once the set initial of solutions has been generated, the method proceeds to improve these 

solutions, and given that the solution generation step constructs only solutions that are within the 

allowed ranks, the improvement method will always start to work with a feasible solution. The 

improvement procedure consists of the Nelder and Mead Simplex Method (Nelder & Mead, 

1965) which is a classic optimizer for unconstrained nonlinear problems. This method requires of 

2938



September 24-28, 2012
Rio de Janeiro, Brazil

an input parameter that specifies the number of evaluations of the objective function, naturally, as 

the number of evaluations increases so does the quality of the solutions. 

 

The next step consists of extracting the best generated solutions to form the reference set. This set 

must be formed 50% by solutions selected attending to their quality with respect to the objective 

function and 50% by its diversity. In order to obtain this solutions are sorted in decreasing order 

and the first 50% of the amount which is desired for the reference set are selected (for example, if 

it is desired to form a subgroup of reference of size 10, the top 5 solutions of the list are selected) 

and they are deleted from the initial set P. Next, the minimum Euclidean distance between the 

remaining solutions in the initial set P and the solutions selected for the reference set is 

computed. The solution with the maximum of the minimum computed distance is selected and is 

added to the reference set and deleted from the initial set P. Once this is done the process of is 

repeated until completing the desired size of the reference set, which as a result of this 

construction will contain the solutions with the greater quality and diversity. 

 

Once this has been done, subsets of the reference set are generated to apply them a combination 

method. This combination method consists of creating 3 test solutions for each pair of solutions 

of the reference set.  

The first test solution is computed as: 𝐶1. 𝑥 = 𝑥´ − 𝑑 

The second test solution is computed as: 𝐶2. 𝑥 = 𝑥´ + 𝑑 

The third test solution is computed as: 𝐶3. 𝑥 = 𝑥´´ + 𝑑 

Where d is equal to:  𝑑 = 𝑟
𝑥´´−𝑥´

2
 

And r is a random number from the interval (0, 1). 

 

After the solutions have been generated with the combination method, they are processed by the 

improvement method and the best resulting solution is selected. This solution will replace the 

worst in the reference set, given that it is better. This cycle is repeated until the reference set no 

longer changes and all the solutions in the reference set have been processed by the combination 

method. At this point the diversification method is used to reconstruct half of the reference set 

and the search continues.  This procedure is repeated for a pre established number of iterations, 

once this number is reached the method stops. 

 

It should be mentioned that each time a new set of solutions is generated for the variables at the 

upper level, there are passed to the lower level and the flows are computed using these values as 

the costs of the arcs in the network, these new flows are used to measure the quality of the 

generated solutions when the objective value is computed. 

 

5. Computational Results 

 

In order to evaluate the bilevel model considered in this work, 3 different multicommodity 

transportation networks were considered. For the numerical experimentation 8 examples for the 

first network and 6 examples for the second and third network, respectively, were solved. The 

graphs and the parameters are the same as the data shown in the doctoral thesis “Comparing 

various algorithm’s performance; application to bilevel toll setting problem” (Camacho Vallejo, 

2009). Finally, attempting to show that the methodology proposed is able to solve larger instances 

for the problem without any complications, the last example consisted in solving a variation from 

the second network where an additional commodity was considered. 

 

The first graph consists in a transportation network with 7 nodes and 12 arcs (7 toll arcs and 5 

toll-free arcs). The second graph is composed by 20 nodes and 35 arcs (15 toll arcs and 20 toll-

free arcs). The third graph is formed by 25 nodes and 40 arcs (20 toll arcs and 20 toll-free arcs). 

The parameters considered in each example are presented in the work done by (Camacho, 2009).  
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The developed program to solve this problem was coded in C language and compiled with 

Microsoft Visual C++ 6.0. All the examples were executed in a personal computer Dell OptiPlex 

960 with a processor Intel Core 2 Quad with 2.66 GHz and 3.21 GB of RAM, under the operating 

system Microsoft Windows XP Professional with Service Pack 3. 

 

As mentioned in the previous section, the methodology designed to solve the upper level 

problem is the metaheuristic Scatter Search. Martí and Laguna (2003) (Martí & Laguna, 2003) 

developed a C implementation for this methodology, taking advantage of this, we considered it 

for this research. The CPLEX 11.1’s software optimization libraries from ILOG were used in 

order to solve the lower level problem.   

 

Through this research 21 instances were solved in order to validate the proposed 

methodology. To simplify the analysis we can divide the examples as follows: 

- Graph 1: Conformed by 12 arcs. 8 instances. 

- Graph 2. Conformed by 35 arcs. 6 instances. 

- Graph 3. Conformed by 40 arcs. 6 instances. 

- Variation of graph 2 considering 4 commodities. 1 instance. 

The purpose of considering the first three sets of instances (not the last case) is to directly 

compare the results against the ones obtained by Camacho-Vallejo (Camacho Vallejo, 2009) in 

which the performance of four different algorithms were measured and the corresponding results 

are presented. The four algorithms are: a penalization method, an algorithm based in the 

gradient’s approximation, a Quasi-Newton algorithm and a direct algorithm based in the Nelder-

Mead’s optimization method (Nelder and Mead, 1965). The results obtained in that work as well 

as the obtained in this research are shown in the next three tables. 

 

- Results obtained from the instances considered for Graph 1: 

Instance Gradient approx Quasi-Newton Direct SS/CPLEX 

1 162.850 162.880 162.360 180.990 

2 274.890 274.890 274.340 274.950 

3 109.850 109.850 108.870 199.990 

4 150.860 150.840 150.320 146.550 

5 112.860 112.860 112.040 133.840 

6 203.950 203.960 202.820 199.973 

7 41.970 41.960 41.650 41.976 

8 104.950 104.950 104.110 125.990 

Table 1. Objective function value for each method for instances of Graph 1. 

- Results obtained from the instances considered for Graph 2: 

Instance Gradient approx Quasi-Newton Direct SS/CPLEX 

1 1,342.235 1,342.763 1,341.835 1,328.983 

2 7,184.852 7,184.804 7,184.422 7,112.128 

3 1,577.953 1,577.911 1,577.661 1,686.028 

4 420.701 420.772 420.257 1,022.000 

5 764.931 764.961 763.890 1,514.000 

6 2,350.855 2,350.875 2,350.356 3,004.492 

Table 2. Objective function value for each method for instances of Graph 2. 
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- Results obtained from the instances considered for Graph 3: 

Instance Gradient approx Quasi-Newton Direct SS/CPLEX 

1 1,456.802 1,456.833 1,456.034 1,631.644 

2 2,247.873 2,247.851 2,246.889 2,611.994 

3 3,891.831 3,891.873 3,891.445 3,263.977 

4 5,621.804 5,621.820 5,621.109 11,339.610 

5 3,433.720 3,433.794 3,432.771 3,419.900 

6 544.871 544.893 543.908 868.594 

Table 3. Objective function value for each method for instances of Graph 3. 

- Results obtained from the variation considered in Graph 2: 

Instance SS/CPLEX 

1 1,368.657 

Table 4. Objective function value in variation of Graph 2. 

As can be seen from the tables presented above, the leader’s objective function value 

were improved in most of the cases; and in cases in which the algorithm proposed did not 

improve the result, anyways obtained a close leader’s objective function value compared with the 

results obtained in (Camacho Vallejo, 2009). 

 

Now are listed the tables showing the percentages increase obtained by the bilevel 

method based in Scatter Search and CPLEX (for each of the different examples considered) with 

respect to the best result obtained in the previous work. 

 

- Percentage increase for the instances considered for Graph 1: 

Instance Increase 

1 11.12% 

2 0.02% 

3 82.06% 

4 -2.86% 

5 18.59% 

6 -1.95% 

7 0.01% 

8 20.05% 

Table 5.  Percentage increase for the examples considered for Graph 1. 

- Percentage increase for the instances considered for Graph 2: 

Instance Increase 

1 -1.03% 

2 -1.01% 

3 6.85% 

4 142.89% 

5 97.92% 

6 27.80% 

Table 6.  Percentage increase for the examples considered for Graph 2. 
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- Percentage increase for the instances considered for Graph 3: 

Instance Increase 

1 12.00% 

2 16.20% 

3 -16.13% 

4 101.71% 

5 -0.40% 

6 59.41% 

Table 7.  Percentage increase for the examples considered for Graph 3. 

 

The mean obtained for the objective function value increase is 28.66% for the examples 

tested in this work with respect to the previous work. 

 

As is mentioned at the beginning of this section, also were measured the times required 

for obtain the objective function value reached for each of the considered examples. The results 

obtained are shown in the following tables, also are presented the times required by the methods 

proposed in (Camacho Vallejo, 2009). 

 

- Time required to solve the instances considered for the Graph 1: 

Instance Gradient approx Quasi-Newton Direct SS/CPLEX 

1 2.107 2.023 2.950 1,680.000 

2 2.449 2.433 3.235 1,320.000 

3 1.573 1.426 2.035 1,503.000 

4 3.414 3.173 3.415 1,527.000 

5 2.006 1.940 2.002 1,461.000 

6 2.178 2.156 3.782 1,442.000 

7 1.308 1.277 1.259 1,449.000 

8 3.065 2.899 1.959 1,620.000 

Table 8. Time required (in seconds) for solve the examples considered for Graph 1. 

 

- Time required to solve the instances considered for the Graph 2: 

Instance Gradient approx Quasi-Newton Direct SS/CPLEX 

1 601.000 517.000 723.000 1,710.000 

2 781.000 748.000 917.000 5,007.000 

3 492.000 437.000 714.000 2,656.000 

4 278.000 220.000 439.000 1,853.000 

5 644.000 591.000 835.000 2,095.000 

6 831.000 806.000 980.000 2,593.000 

Table 9. Time required (in seconds) for solve the examples considered for Graph 2. 
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- Time required to solve the instances considered for Graph 3: 

Instance Gradient approx Quasi-Newton Direct SS/CPLEX 

1 1,004.000 985.000 1,054.000 4,175.000 

2 525.000 498.000 893.000 2,820.000 

3 439.000 421.000 922.000 3,480.000 

4 1,723.000 1,755.000 1,480.000 2,778.000 

5 764.000 785.000 761.000 3,030.000 

6 89.000 84.000 835.000 3,520.000 

Table 10. Time required (in seconds) for solve the examples considered for Graph 3. 

 

- Time required to solve the variation of Graph 2: 

Instance  SS/CPLEX 

1 3,281.000 

Table 11. Time required (in seconds) to solve the variation considered for Graph 2. 

 

The notorious increase in the time required for solve the examples by the methodology 

proposed based in Scatter Search and CPLEX is expected due to the nature of the metaheuristic. 

In order to make an equable analysis the difference obtained from the times required with this 

methodology and the best result obtained in the previous work, are presented the next tables: 

 

- Differences between the times for the instances considered for the Graph 1: 

Instance Difference 

1 1,677.977 

2 1,317.567 

3 1,501.574 

4 1,523.827 

5 1,459.060 

6 1,439.844 

7 1,447.741 

8 1,618.041 

Table 12. Differences (in seconds) between the time required and the best value obtained 

before. 

 

- Differences between the times for the instances considered for the Graph 2: 

Example Difference 

1 1,193.000 

2 4,259.000 

3 2,219.000 

4 1,633.000 

5 1,504.000 

6 1,787.000 

Table 23. Differences (in seconds) between the time required and the best value obtained 

before. 
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- Differences between the times for the instances considered for the Graph 3: 

Example Difference 

1 3,190.000 

2 2,322.000 

3 3,059.000 

4 1,298.000 

5 2,269.000 

6 3,436.000 

Table 34. Differences (in seconds) between the time required and the best value obtained 

before. 

The obtained mean of difference between the times required for the tested examples 

using the methodology here proposed against the results obtained in (Camacho Vallejo, 2009) is 

2,007.732 seconds (33.462 minutes). 

 

6. Conclusions and future work. 

 

Upon completion of this research we can conclude that it is possible to maintain a profitable 

toll road system against competition from toll-free roads, as long as the right tools and a good 

planning are used. Since as we saw, although for each origin-destination pair there exist at least 

one that had at least one toll-free path benefits were always obtained, indicating that users are 

motivated to use this infrastructure. 

 

It was also noted that the resolution’s method (based on the metaheuristic Scatter Search and 

the optimizer CPLEX) that is proposed in this work to solve the problem of determining tolls for 

the roads gave significant improvements over the methods proposed in previous research which 

was taken as the basis for this research (an increase of 28.56% to be precise among all examples 

tested).  

 

An important point to consider is the determination of the upper bound for rates in the toll 

arcs, because if this value is established in the wrong way could exists the case in which the 

model is too restricted and does not get the maximum benefit from the network (in the case when 

set a very low toll) or that the network is underutilized forcing customers to go through the toll 

free roads (in the case when set a very high toll).  

 

On the other hand, if it is true that the benefits (in terms of value achieved in the objective 

function) when using this methodology are significantly higher, must be considered the increase 

in the time to obtain the results (33.5 minutes in average for each example), it is recommended to 

do a cost/benefit analysis in the particular situation which might be needed to solve this problem. 

Sacrifice some benefits in favor of achieving results in a more immediate form or sacrifice time 

for greater benefits in the results. 

 

For further research, some improvements and recommendations are presented below: 

- Use data from real cases to observe the behavior of the model proposed in this paper. 

- Use another metaheuristic to compare their performance against Scatter Search. 

- Reduce the time required by this method. Try to streamline the code or use other 

programming languages.  

- Develop new models to solve the problem of assigning toll roads to compare it with 

the model considered in this research and in the previous works. 
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