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Abstract

We present the first linear formulation using distance variables (used previously for the
Linear Arrangement Problem) to solve the Quadratic Assignment Problem (QAP). The model
involves O(n2) variables. It has been stengthened by facets and valid inequalities, and numer-
ically tested with QAPLIB instances whose distance matrices are given by the shortest paths
in grid graphs. For all the instances, the formulation provides competitive lower bound, in
a fewer computational time, in comparison to other litterature techniques. For two of them,
our model outperforms the existing techniques both in lower bound quality as well as in CPU
time.

Keywords : Quadratic Assignment Problem, Integer Linear Programming.

1 Introduction

The Quadratic Assignment Problem (QAP) has been introduced by Koopmans and Beckmann [20]
in 1957. It consists in assigning n entities (plants) to n locations. Locations k and l are separated
by a distance of dkl , which might be different from dlk. On the other hand, entities i and j must
exchange quantities of a given product fi j and f ji respectively. The cost of assigning i to k is cik
but an assignment also induces a product routing cost which it is assumed to be proportional to the
quantities of product to be exchanged and to the distance that separates the entities. In its standard
form the mathematical formulation of the (QAP) is based on the binary variables xik:

xik = =

{
1 if entity i is assigned to location k
0 otherwise

With these variables, the (QAP) consists in solving:
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Min
n

∑
i=1

n

∑
k=1

cikxik +
n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

fi jdklxikx jl

s.t.: ∑
n
k=1 xik = 1 ∀i ∈ {1, ...,n}

∑
n
i=1 xik = 1 ∀k ∈ {1, ...,n}

xik ∈ {0,1} ∀i,k ∈ {1, ...,n}

Hence, the (QAP) belongs to the class of 0-1 Quadratic problems. QAP is NP-hard [12], and
particularly difficult to solve. The current state-of-the art contains a very large number of contri-
butions that may solve (QAP) optimally or sub-optimally using classical metaheuristic schemes.
The exact resolution methods may be classified into two groups. The approaches exploiting, or
deriving from, a linear reformulation of the problem, called linearization techniques, and those
using a trace reformulation of the problem.

One of the first approaches using the trace formulation of (QAP) is the projection method of
Hadley, Rendl and Wolkowitz [16]. Subsequently, this method has been exploited in the Trian-
gular Decomposition method of Karish and Rendl [17] where it is used for computing a lower
bound of the remaining part of a decomposition of the quadratic objective function into paths and
triangles. One may also consider that the Semi-Definite Programming (SDP) relaxations studied
in [18] [28] [29] are methods using the trace formulation of (QAP). The SDP bounds are very
competitive. However, due to high computation time requirements, the use of such approaches as
basic bounding procedures within branch-and-bound algorithms is up to now not feasible.
The main idea of the linearization techniques is to replace each, or several quadratic terms, by new
variables and then to add linear constraints to make the integer linear reformulation equivalent to
the original quadratic one. The first implementation of this idea is due to Fortet [9] [10] in the
context of pseudo-boolean minimization. It consists in introducing the variable zik jl = xikx jl and
additional associated constraints making this equality true for any integer solution. These variables
have been used by Lawler [21], and Frieze and Yadegar [11]. It has been also used by Adams and
Johnson [2] in applying the Reformulation Linearization Technique (RLT) of Adams and Sherali
[3] to (QAP). It was shown that the model resulting from the application of the RLT level 1 dom-
inates the Lawler and Frieze-Yadegar ones, as well as the Gilmore-Lawler bound [21][13]. RLT
level 1 involves O(n4) variables. However, its particular structure makes the use of a lagrangean
relaxation scheme very efficient. The numerical experiments for RLT show results for nugent in-
stances [23] up to size 20. Following the RLT level 1 algorithm, the level 2 of the same technique
has been applied [1]. It implies O(n6) variables at the benefit of a better lower bound, but at the
price of significantly increase the model size that remains difficult to solve for n > 20.

Very recently (2011) Fischetti et al [8] have proposed 3 powerful ideas by which 4 previously-
unsolved instances (one of them with a size of 128) among the B. Eschermann and H.J. Wunder-
lich [7] instances have been solved exactly. The first idea deals with symmetry properties deriving
from the concept of clone entities, that is a property in the flow matrix by which two variables
corresponding to clone entities may be swapped without changing the solution cost. The authors
then defined clone clusters and used them to reformulate the problem in a rectangular QAP where
the number of location (say m) is greater than the number of entities (say n). The Kaufman and
Broeckx linearization [19] is then applied to this reformulation. Notice that this linearization used
some kind of variables also proposed by Glover [15] for non-linear problems. It implies O(n2)
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variables, for square QAP, thus O(n ∗m) in the rectangular case. Finally some decomposition
strategies of the flow matrix have been applied for solving the instance of size 128.

The aim of this paper is to propose and study another linear formulation of the (QAP) inducing also
O(n2) additional variables and O(n4) additional constraints. The formulation is based on distance
variables previously used by Caprara and Salazar-Gonzalez [6], as well as Caprara, Letchford and
Salazar-González [5] for the Linear Arrangement Problem, a particular case of (QAP). In this lat-
ter problem, the distance matrix corresponds to node distances in a simple graph representing a
path with unitary edge weight, and the flow matrix is binary.

2 An O(n2)-Variables Linear Formulation

The basic idea of this formulation is to introduce variables Di j representing the distance between
entities i and j (which depends on the location of i and j). An alternative would be to introduce
variables Fk,l representing the quantity of products going from k to l, but we will present here only
the formulation with the ”distance” variables, the second one being analogous.

With these new variables, the (QAP) can be formulated as the following Mixed-Integer linear
Program:

(MIP) : Min
n

∑
i=1

n

∑
k=1

cikxik +
n

∑
i=1

n

∑
j=1
j 6=i

fi jDi j (1)

s.t.: ∑
n
i=1 xik = 1 ∀i ∈ {1, ...,n} (2)

∑
n
k=1 xik = 1 ∀k ∈ {1, ...,n} (3)

Di j ≥ dkl(xik + x jl−1) ∀i 6= j,k 6= l ∈ {1, ...,n}, (4)

xik ∈ {0,1} ∀i,k ∈ {1, ...,n} (5)

Di j ≥ 0 ∀i, j ∈ {1, ...,n} (6)

In the particular case of the Linear Arrangement Problem in which dkl = |k− l|, the formulation
corresponds to the one uses in Caprara, Letchford and Salazar-Gonzàlez [5]. Numerical experi-
ments for the Linear Arrangement Problem show a competitive lower bound.

Surprisingly, this linearization has never been used while it may be particulary interesting for
(QAP) instances whose distance graphs are given by shortest paths in a grid graph, since those
instances have a structure very close to linear arrangement problems. Our contribution is to study
this distance variables formulation for general (QAP).

It is easy to check that for any feasible solution, constraints (4) implies that Di j will be greater
than the distance between i and j so that, since we are minimizing and fi j ≥ 0, the above modeli-
sation is valid. Hence, this is a linear model for the Quadratic Assignment Problem with a rather
small number of variables. Unfortunately, as observed in Caprara, Letchford and Salazar-González
[5], the linear relaxation of this model provides a lower bound of poor quality:

Proposition 1. If cik = 0 for all i and k, then the linear relaxation of the above problem has an
optimal value equal to 0.
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Proof It is sufficient to observe that xik =
1
n , for all i and k, is feasible. Constraints 4 then re-

duce to Di j ≥ 2−n
n dkl , so that Di j = 0 because of (6). �

Remark 1. The Linear Relaxation bound can be slightly improved by substituting Di j ≥ 0 by
Di j ≥ d where d is the smallest distance between two locations.

It is therefore necessary to strengthen the model. It happens that, besides its low number of
variables, its very particular structure makes valid inequalities derivation an easy task.

3 Strengthening the Formulation

As emphasized in proposition 1, the weakness of the model is due to constraints 4 which are not
tight enough. In this section, we give one family of valid equalities and two families of facets,
linking variables D and x.

Theorem 1. Let dk =
n
∑

l=1
dkl , k = 1,2, ...,n. The following equalities are valid :

n

∑
j=1

Di j =
n

∑
k=1

dkxik , i = 1,2, ...,n.

Proof: Let us consider an integer feasible solution of (MIP). It verifies

Di j =
n

∑
k=1

n

∑
l=1

dklxikx jl, ∀ i, j

Thus
n

∑
j=1

Di j =
n

∑
k=1

[
n

∑
l=1

dkl

n

∑
j=1

x jl

]
xik

It follows with constraint (3) that

n

∑
j=1

Di j =
n

∑
k=1

[
n

∑
l=1

dkl

]
xik =

n

∑
k=1

dkxik.

�

The remainings two facets are based on the following lemma and some lifting procedures.

Lemma 1. Let P be the convex hull of the integer feasible subdomain of (MIP) where xik = 1 and
x jl = 1. We have : ∀ i 6= j, k 6= l, Di j ≥ dkl is a facet of P.

Proof: First, P ⊂ R(n−2)2+n(n−1) since the number of variables of the subproblem where xik = 1
and x jl = 1 is (n−2)2 +n(n−1).

Let A be the matrix corresponding to the assignment constraints (2) and (3). We know, apply-
ing polyhedral theory result (see Nemhauser and Wolsey [22]) to our model, that

dim(P)+ rank(A) = (n−2)2 +n(n−1)

where dim(P) stands for the dimension of P. This result being in fact valid for any polyhedra and
set of equality constraint represented by a matrix A. Then dim(P) = (n−2)2+n(n−1)−rank(A).
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Let F be the set of points of P verifying Di j = dkl and A
′

the extended matrix containing con-
straints (2), (3) and Di j = dkl . F is a face of P. Since any face is also a polyhedra the previous
equality remains valid for F and A

′
.

dim(F)+ rank(A
′
) = (n−2)2 +n(n−1)

But rank(A
′
) = rank(A)+1 since Di j are not included in constraints (2) nor in (3). It follows that

dim(F) = (n−2)2 +n(n−1)− rank(A)−1 = dim(P)−1

Hence, by definition, F is a facet of P. �

With this lemma the following theorem may be introduced.

Theorem 2. For given k and l, let :

• αkl = min{del | e = 1, ...,n ; e 6= k}

• βkl = min{dkm | m = 1, ...,n ; m 6= l}

• γkl = min{dem | e,m = 1, ...,n ; e 6= k ; m 6= l}}

• σ
(1)
kl = min{βkl−dkl,γkl−αkl}

• σ
(2)
kl = min{αkl−dkl,γkl−βkl}

The following inequalities are facets of the (QAP) feasible set for any i, j, k and l:

1. Di j ≥ αkl +σ
(1)
kl +(dkl−αkl)xik−σ

(1)
kl x jl

2. Di j ≥ βkl +σ
(2)
kl −σ

(2)
kl xik +(dkl−βkl)x jl

Proof: We know that Di j ≥ dkl is a facet. We can then process, thanks to the structure of the
problem, a lifting procedure. Thus, we are looking for M such that:

Di j ≥ dkl +M(1− xik)

is valid for any feasible solution verifying x jl = 1, that is, we are looking for the optimal value of
the problem:

Min{Di j−dkl/constraints(2,3,4,5,6),xik = 0,x jl = 1}

which is equal to αkl−dkl by enumeration on the possible assignments of i.

Hence, Di j ≥ dkl + (αkl − dkl)(1− xik) is valid for any feasible solution such that x jl = 1, and
we are now looking for another M such that

Di j ≥ dkl +(αkl−dkl)(1− xik)+M(1− x jl)
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is valid for any feasible solution. It corresponds to the optimal value of the problem:

Min{Di j−dkl− (αkl−dkl)(1− xik)/constraints(2,3,4,5,6),x jl = 0}

In order to solve the problem, its feasible set is partitioned into two subsets, according to the
possible values of xik. If xik = 1, the objective function is Di j−dkl and the value on this particular
subset can be found by enumerating the possible assignments for j. Thus, on this subset, the
optimal value is βkl−dkl . On the subset where xik = 0, the objective function is Di j−dkl− (αkl−
dkl) = Di j−αkl and the optimal value can be found by enumerating all the possible assignment
for i and j, yielding a value of γkl−αkl . Thus M = σ

(1)
kl , so that the inequality

Di j ≥ αkl +σ
(1)
kl +(dkl−αkl)xik−σ

(1)
kl x jl

is valid and is even a facet since it has been obtained by a lifting process from a facet of the re-
duced polytope.

The second inequality is symetric and obtained by lifting first x jl = 1. �

Remark 2. It is important to note that the coefficients in these inequalities are independent of i
and j.

The above inequalities have been found by lifting on xik = 1 and x jl = 1. However, there exist
other possibilities for lifting.

Theorem 3. For given k, k′, l, l′, let :

• δ
(1)
l′l = min{del′−del/e = 1...n}

• δ
(2)
k′k = min{dk′m−dkm/m = 1...n}

The following inequalities are facets of the (QAP) feasible set for any i, j, k and l:

1. Di j ≥ dkl +∑
n
e=1(del−dkl)xie +∑

n
l′=1 δ

(1)
l′l x jl′

2. Di j ≥ dkl +∑
n
m=1(dkm−dkl)x jm +∑

n
k′=1 δ

(2)
k′k xik′

Proof: As in the previous proof, the facets are found by lifting. Let us note that Di j ≥ dkl is a
facet whenever xie = 0, ∀e 6= k and x jm = 0, ∀m 6= l. We are going to successively lift the inequality
with respect to xie, e = 1, ...,n. Let us first start with xi1. We are then looking for M such that

Di j ≥ dkl +Mxi1

is valid for any solution verifying xie = 0, ∀e,e 6= k,e 6= 1 and x jm = 0, ∀m 6= l. Therefore M is the
optimal value of the problem :

Min Di j−dkl
s-t : (2),(3),(4),(5),(6)

x jm = 0,∀m 6= l,xie = 0,∀e 6= k,e 6= 1,xi1 = 1
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Since x jm = 0, ∀m 6= l⇒ x jl = 1, the optimal value of the above problem is d1l−dkl and then

Di j ≥ dkl +(d1l−dkl)xi1

is valid for any solution such that xie = 0, ∀e,e 6= k,e 6= 1 and x jm = 0, ∀m 6= l. We can then iterate
and lift with respect to xi2 to find an inequality:

Di j ≥ dkl +(d1l−dkl)xi1 +Mxi2

with

M = Min Di j−dkl
s-t : (2),(3),(4),(5),(6)

x jm = 0,∀m 6= l,xie = 0,∀e 6= k,e 6= 2,xi2 = 1

Since xi2 = 1⇒ xie = 0∀e 6= 2, the expression is the same as in the lifting process of xi1 and
then

Di j ≥ dkl +(d1l−dkl)xi1 +(d2l−dkl)xi2

is valid for any solution such that xie = 0, ∀e,e 6= k,e≥ 3 and x jm = 0, ∀m 6= l.

By iterating this process, it happens that:

Di j ≥ dkl +
n

∑
e=1

(del−dkl)xie

is valid for any solution verifying x jm = 0, ∀m 6= l. We now have to lift with respect to j, that is we
first look for M such that

Di j ≥ dkl +
n

∑
e=1

(del−dkl)xie +Mx j1

is valid forx jm = 0, ∀m 6= l,m≥ 2. Hence

M = Min Di j−dkl−∑
n
e=1(del−dkl)xie

s-t : (2),(3),(4),(5),(6)
x jm = 0,∀m 6= l,m≥ 2,x j1 = 1

This problem can be solved by enumeration of the possible assignments of i. If i is assigned to
k′, then the expression of the objective function reduces to dk′1− dkl − dk′l + dkl = dk′1− dk′l , so
that M = δ

(1)
1l . once again, the process can be iterated to find out the first inequality of the theorem.

The second is symetric and has been obtained bu lifting firs the variables related to j.�

4 Application to Grid Instances of the QAPLIB

To evaluate the quality of the model, some preliminary numerical tests have been performed on
some QAPLIB instances [4]. We are particularly interested in problems for which the distance
matrix is given by shortest paths in a grid graph because of the numerical challenge that they rep-
resent. Their particular structure also allows to generate other valid inequalities presented below
(theorems 5 and 6). The corresponding problems are the instances of Nugent et al [23], of Scri-
abin et Vergin [24], Skorin-Kapov [25], Thonemann et Bölte [26], and of Wilhelm et Ward [27].
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Actually no instance of Skorin-Kapov [25] and Wilhelm et Ward [27], had been solved optimally.
Only one instance among the 3 of Thonemann et Bölte [26] had been solved exactly. For all
unsolved problems an upper bound is known as well as the relative gap between the best lower
bound of the litterature. During many years the best lower bounds was provided by the Triangu-
lar Decomposition Technique (T DM) of Karish et Rendl [17]. The recent applications of RLT
(Reformulation-Linearization-Technique) have significanlty improved these bounds. In this pa-
per, we present a comparison of the various existing bounds to the lower bound derived from our
formulation, strengthened by the following additional valid inequalities.

Theorem 4. Let i, j,h verify 1≤ i < j < h≤ n. The following triangular inequalities are valid.

Di j ≤ Dih +D jh
Dih ≤ Di j +D jh
D jh ≤ Di j +Dih

Proof: Notice first that in the case of grid graphs the distance matrix d = {dkl} is symetric. Hence
we just need the upper triangular part of the matrix variable D. This explains the inequalities
1≤ i < j < h≤ n.

Since d derives from a grid graph, it is a metric. Thus D must verify the triangular inequalities of
any metric. �

Moreover the grid structure allows to add the following valid inequalities.

Theorem 5. Let i, j,h verifying 1≤ i < j < h≤ m. The following inequalities are valid :

Di j +Dih +D jh ≥ 4

Proof: Suppose, by contradiction, that Di j +Dih +D jh ≤ 3 then, as Di j ≥ 1, we have i, j di j =
dih = d jh = 1. It follows that the three entities are located in nodes of a cycle of size 3. This is
impossible since a grid graph do not contain any cycle of size 3. �

Notice that these inequalities correspond to a particular case of clique inequalities proposed
for the Linear Arrangement Problem (see Caprara et al [5]). Now, by considering four indices
instead of three, a similar valid inequality can be derived.

Theorem 6. Let i, j,h,r verifying 1≤ i < j < h < r ≤ m. The following inequalities are valid :

Di j +Dih +Dir +D jh +D jr +Dhr ≥ 8

We report in table 1 numerical results obtained by solving the linear relaxation of (MIP)
strengthened by the valid inequalities above (the facets of the previous section have not been incor-
prated in our model yet). Ilog Cplex 12.2 has been used. In the table,“Prob“ denotes the instance
name, “m“ the number of nodes of the grid, “Dens“ the density of the flow matrix, V (MIP) the op-
timal value of the (MIP) linear relaxation, GLB the Gilmore et Lawler [14] [21] bound, “PB“ the
projection method bound [16], “T D“ the triangular decomposition bound, “RLT1“ (resp. “RLT2“)
the Reformulation Linearization Technique level 1 (resp. 2) bound, UB the best upper bound of
the litterature, and CPU(sec.) the computational time of V (MIP). The articles from which these
bounds have been extracted do not necessarily contain experiments for all the instances considered
here. Each time the experiment has not been conducted we indicate it by “− “. ∞ stands for the
impossibility to solve the problem because of unsufficient computer memory.

For the instances nug12, nug15 and nug20, our approach provides the third lower bound, be-
hind RLT2, and the Triangular Decomposition method. Notice that for the instance nug20, RLT2
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furnishes the best value (2508) around 7 hours. In comparison, our model provide in 0.8 sec. a
worse bound but which is still very close to the best upper bound.

For Skorin-Kapov [25] (sko∗) instances, until sko56 our bound is in second position, and for
larger instances in third. The running times of the other methods are only known for “T D“: sko56
(600 sec.), sko72 (1800 sec.) and sko90 (2400 sec.). However, in this comparison, we must take
into account the fact that they had been obtained on an old computing environment, a Personal
Computer 486 at 66 Mhz, thus with a performance much lower than our current one, a Dell laptop
with 3456 MBits RAM at 2.40 GHz. For the instances scr20, ste36a our bound is better both in
values and computational times.

5 Conclusion

We have presented and tested the first formulation using distance variables for general (QAP)
problems. The original linear formulation, has a poor bound. It has been improved by some facets
linking distance variables D and assignment ones x. The model has been applied in the particu-
lar case of QAP problems on grid graphs. In these cases, the model has been strengthened with
valid inequalities that take into account the metric property of the distance variables, as well as
the grid structure. The numerical experiments to evaluate the quality of the lower bound show that
the model is very competitive. It allows to compute lower bounds very close to the best known
upper bounds in a reduced time. The quadratic number of variables makes possible to solve large
size instances at the opposed, for instance, of the RLT techniques which cannot solve dimension
greater than 20 without considerably increasing the computation time.

The future research directions will deal with solving exactly the grid instances with a Branch-
and-Cut framework using our lower bound. We also aim before to enforce the formulation by
extending the lifting procedures and valid inequalities of theorem 5 and 6, and taking advantage
on similar studies for the Linear Arrangement Problem.
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Prob m Dens(%) V (MIP) GLB PB T D RLT1 RLT2 UB CPU(sec.)
nug12 12 68 540.3 493 − − 523 578 578.0 0.1
nug15 15 71 1083.1 963 − 1083 1041 1150 1150.0 0.1
nug16b 16 70 1153.8 − − − − − 1240.0 0.2
nug20 20 74 2387.6 2057 2196 2394 2182 2508 2570.0 0.8
nug25 25 66 3475.0 − − − − − 3744.0 2.3
nug30 30 67 5687.4 4539 5266 5772 − − 6124.0 4.8
sko42 42 70 14592.9 11311 13830 14934 − − 15812.0 29.8
sko49 49 68 21145.6 16161 20715 22004 − − 23386.0 47.7
sko56 56 68 30882.7 23321 30701 32610 − − 34458.0 95.5
sko64 64 68 42770.6 32522 43890 45536 − − 48498.0 203.7
sko72 72 69 58194.7 44280 60402 62691 − − 66256.0 414.6
sko81 81 70 79362.3 60283 82277 86072 − − 90998.0 1142.6
sko90 90 69 100068.6 75531 105983 108493 − − 115534.0 2233.6
sko100a 100 69 130662.4 98953 139365 142668 − − 152002.0 3695.2
sko100b 100 68 131767.3 99028 141251 143872 − − 153890.0 4540.1
sko100c 100 68 126655.6 95979 135011 139402 − − 147862.0 3922.7
sko100d 100 68 127248.7 95921 136979 139898 − − 149576.0 3837.7
sko100e 100 68 127574.9 95551 136996 140105 − − 149150.0 3870.7
sko100 f 100 68 127186.1 96016 136860 139452 − − 149036.0 3968.8
scr12 12 42 30334.3 − − − − − 31410.0 0.1
scr20 20 32 96018.0 86766 16113 87968 − − 110030 0.4
ste36a 36 27 8243.1 7124 −11770 6997 − − 9526 10.6
tho30 30 49 136296.4 90578 119255 136447 − − 149936.0 4.9
tho40 40 40 205950.0 143804 191042 214218 − − 240516.0 14.7
tho150 150 ∞ 4123652 7350920 7620628 − − 8133398 ∞

wil50 50 89 44784.4 38069 45731 47098 − − 48816.0 38.8
wil100 100 90 242973.6 210299 260827 263909 − − 273038.0 2868.9

Table 1: Lower bounds
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