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ABSTRACT 

Modified lagrangian bounds are proposed for the generalized assignment problem and 

combined with greedy heuristics to get lagrangian based feasible solutions. Numerical results 
for problem instances with number of agents close to number of tasks are provided. 
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1. Introduction 

Most large scale optimization problems exhibit a structure that can be exploited to 

construct efficient solution techniques. In one of the most general and common forms of the 

structure the constraints set of the problem can be divided into “easy” and “complicating”. In 
other words, the problem would be an “easy” problem if the complicating constraints could be 

removed. One typical example is a block-separable problem decomposing into a number of 

smaller independent subproblems if the binding constraints could be relaxed, see Lasdon (2002). 

A well-known way to exploit this structure is to form the Lagrangian relaxation with 

respect to complicating constraints, see Lasdon (2002), Lemaréchal (2001), and Lemaréchal 

(2007). That is, the complicating constraints are relaxed and a penalty term is added to the 
objective function to discourage their violation. The optimal value of the Lagrangian problem, 

considered for fixed multipliers, provides a lower bound (for minimization problem) for the 

original optimal objective. The problem of finding the best, i.e. bound minimizing Lagrangian 
multipliers, is called the Lagrangian dual. Lagrangian bounds are widely used as a core of many 

numerical techniques, e.g. in branch-and-bounds schemes for integer and combinatorial 

problems. Lagrangian solution is also used as a starting or reference point for heuristic 
techniques, see Boschetti and Maniezzo (2009). 

There are often different ways in which a given problem can be relaxed in a 

Lagrangian fashion. Suppose, for example, that the set of original constraints can be divided 

into two subsets and, when considered separately, both have “easy” structures. That is, dualizing 

either the first subset of constraints, or the second, we get two attractive while different 

Lagrangian relaxations. Such a structure can be found in the generalized assignment problem, 

the multiple knapsack problem, the facility location problem, to mention a few. In what follows 

we will refer to this property as a double decomposable structure. 

In this paper we apply to the generalized assignment problem the approach to tighten 
the Lagrangian bounds proposed in Litvinchev (2007), Litvinchev (2010), for problems with 

double decomposable structure. The approach can be interpreted in two ways. First, it can be 

seen as a reformulation of the original problem aimed to split the resulting Lagrangian problem 

into two subproblems. Second, it can be interpreted as a search for tighter estimation of the 

penalty term arising in the Lagrangian problem. Lagrangian based greedy techniques are used to 

get feasible solutions to the problem. Numerical results are presented to demonstrate the quality 

of primal and dual bounds. 

 

2. Deriving the modified bound 

The generalized assignment problem (GAP) is a well known NP-hard combinatorial 
optimization problem, see Burkard (2009), Pentico (2007). It considers a situation in which n 

jobs have to be processed by m agents. The agents have capacities expressed in terms of a 

resource which is consumed by job processing. The objective is to minimize cost of assignment 
the jobs to agents such that each job is assigned to exactly one agent subject to the agents 

available capacity. 

Let � � ���� ��� be the set of agents and 	 � ���� � 
� the set of the jobs. A standard 

integer programming formulation for the GAP is the following: 
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���
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where ��� is the assignment cost of job j to agent i, ��� the resource required for processing job j 

by agent i, and #� is the available capacity of agent i. Decision variables ��� are set to 1 if job j is 

assigned to agent i, 0 otherwise. Constraints (2) together with the integrality conditions on the 

variables, state that each job is assigned to exactly one agent. Constraints (3) insure that the 

resources of the agents are not exceeded. 

The problem (1)-(4) has a double decomposable structure. Relaxing assignment 

constraints (2) results in independent subproblems for each agent i, while relaxing resource 

constraints (3) gives independent subproblems for each job j. 
To use the double decomposable structure of GAP consider the modified problem: 

 

 
 

 

 

 

 

 

 

 

 

A feasible solution x to (1)-(4) is feasible to (5)-(11) with % � �, while x-part of a 

feasible solution ��� %� to (5)-(11) is feasible to (1)-(4) by (7) and (8). Hence ��
 � �&. 

Dualizing constraints (7), (9) and (10) with multipliers, ' ( )� *� + respectively we get the 

Lagrangian bound: 

 

Rearranging the terms in the function objective (12) we get: 
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The Lagrangian problem (15)-(17) can be reduced to two independent problems in x 

and in y. Moreover, the problem in x decomposes into J independent subroblems, while the 

problem in y decomposes into I independent subproblems. Note also that the problem in x has 

constraints  ∑ ��� � �� � ��  	 which are totally unimodular, so we can relax integrality 

conditions on x without loosing the optimal solution. 

Denote: 

Then we get 

where  

The corresponding dual bound be 

It was shown in Litvinchev et al. (2010) that in (19) is at least as good as any of two 
standard Lagrangian bounds obtained by dualizing either constraints (2) or (3). 

The value of the modified dual bound ��2� can be calculated using constraints 
generation scheme (Benders technique), see Lasdon (2012) and Martin (1999). 

 

3. Getting feasible solutions 

Various heuristic approaches were proposed for GAP to get feasible solutions (see, 

e.g, Jeet (2007), Laguna et al. (1995), Romeijn (2000), Yaguira (2007) and others the references 
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trerein). We used a simple greedy approach similar to Romeijn (2000) and adjusted in a 
Lagrangian manner. The method starts from an empty assignment and then proceeds by 

incorporating the most promising element according to a certain evaluation function. This 

function reflects the intention to get a feasible solution "close" to the Lagrangian one. The 
generic algorithm can be presented as follows: 

Step 0: Set ���\ � )� ���� �. Set 	Z � 	 and ]� � #� � ���. 
Step 1: Let �� � ���|���� " ]��� ��. If �� � _ for some j, STOP, The method can´t construct a 

feasible solution. 

Step 2: Set �� � KJ`:a<�b��� ��|��  ��� � ��  	Z, and c� � :a<4b��� �� 5 b7�� � �8d��  �� � � e��� � ��  	Z. 

Step 3: Let �f � KJ`:gh4c� �d��  	Z� and set:���Qf�f\ � ����]�Qf i ]�Qf 5���Qf�f ���	Z � 	Z 5 ��f���
Step 4: If 	Z � _, STOP, �\ being a feasible solution. Otherwise, return to Step 1.�

Eight evaluation functions b��� �� were used in Step 2. The first four functions are as 

follows: 

where j��  be a Lagrangian solution to problem (12). The next four functions �bk��� ���� � bl��� �� 
defined similarly for j��  be a Lagrangian solution to problem (13). 

The use of the factor 7m5j���8� for m n �, is intended to force the greedy technique to 

select variables with larger values of Lagrangian solutions. We used m � ��-. 

 

4. Numerical Results 

To test the quality of primal and dual bounds, we used three types of benchmark GAP 

instances, see Chu and Beasley (1997) and Laguna et. Al. (1995) called types C, D, and E, 

generally in increasing order of difficulty: 

• Type C: aij,�are random integers from�op-�!-q, ��� are random integers from op�)�-)q 
and #� are 0.8 ∑ rTQ�� . 

• Type D: aij,� are random integers from�op���))q, ��� � ��� 5 ��� 6 s� where s� is a 

random integers from op5�)��)q� and #� are 0.8 ∑ rTQ�� . 

• Type E:���� � � 5 �)t
su, where su� is a random number from�op)��q,                      
��� � �))) ���v 5 �)sw where sw is a random integers from op)��q� and #�  are 0.8 

∑ rTQ�� . 

We focused on instances with � relatively close to 
 which are known to be hard to 

solve Martello and Toth (1990) since the linear relaxation provides a poor lower bound. For 

each combination of � x 
, 20 instances were generated for each of three classes C, D, and E. 
The average results are presented in Tables 1-3 for the following indicators: 

y�z{Wr| � ��
 5U&V��
 �))}� y�z|
 � ��
 5 �|
��
 �))} y�z
~�� � ��r�� 5 ��
��
 �))} 

where �|
 is the lower bound obtained by the linear programming relaxation and ��r�� is the 

original objective function value corresponding the best feasible solution found.  
The modified dual problem was solved by Benders constraint generation scheme. In 

each iteration of this technique eight greedy methods were applied simultaneously to the current 

b���� �� � 7m 5�j��8��� � bu��� �� � 7m5j��8��� �� 

bw��� �� � 7m5j�� �8 ���#� � ������b���� �� � 7j�� 5 m�8 ������  
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Lagrangian solution ��� %� and the best feasible solution was stored. The last two columns in the 

Tables indicate how frequently (in }) a feasible solution was improved by greedy techniques 

with evaluation functions b� and bu. We present these indicators only for these two functions 

since they were the most frequently used.  

 
 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

Table 1. Results for class C 

� x 
 y�z|
 y�z{Wr| y�z
~�� b� bk 

1 x �) �$�10 )�-$ )�)) ,1 !$ 

�1 x !) �$�/, )�/$ )�)$ /) $0 

!- x $) �)�!� )�/, )��/ ,/ -� 

!- x -) $�$$ )�/- ��)) -� ,0 

$- x ,) 0�/1 )�0$ )��! -$ ,, 

,) x -) -�2! )�/- )�-- -$ ,0 

-) x /) -�// )�// )�22 -- ,, 

As we can see from the Tables, the modified bound is tight enough resulting in 

relative dual gap less than �} for all classes of instances and all combination of � x 
. 

Concerning the quality of the primal bound, the relative gap is less than �} for class C, less 

than !} for class D, and around - 5 0} for class E. For the class C the greedy algorithm with b� slightly outperforms that with bu, but for classes D and E, bu,performs much better. 

Table 2. Results for class D. 

� x 
 y�z|
 y�z{Wr| y�z
~�� b� bk 

1 x �) �1�)2 )�2/ )�)1 !) /� 

�1 x !) �0�2� )�/, )�$� $! -2 

!- x $) �$�)- )�-/ ��$� $$ -/ 

!- x -) ,�10 ��)) ��)) , �$ 

$- x ,) �$�)! )�/2 ��), $, /! 

,) x -) �)��) )�0$ ��// !� /, 
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To solve the modified dual problem we used the constraint generation technique 

(Benders scheme) which allows to calculate the value of the bound U&V with prescribed 

precision. From practical point of view Benders scheme is slow, such that using another 

technique to solve the dual, e.g., bundle or volume methods, may be an interesting direction for 

future research. 

Table 3. Results for class E. 

� x 
 y�z|
 y�z{Wr| y�z
~�� b� bk 

1 x �) !$�2� )�,) )��, !, // 

�1 x !) �1��, )�11 )�0/ �0 1! 

!- x $) �/��1 )�20 ,�)1 / 2� 

!- x -) /�0/ )�2- 0�)) $ -� 

$- x ,) �-�)) )�0/ $�/, , 2� 

,) x -) �,�)- )�1) -�1� � 1� 

-) x /) �$�0� )�0/ /�!$ � 1! 

 

5. Conclusion 

The modified Lagrangian bound was proposed for the generalized assignment 

problem. The approach was tested for problem instances where the number of jobs is relatively 

close to the number of agents. These instances are known to be difficult to solve due to the poor 

quality of the linear programming bound. Our computational study demonstrates that the 

modified dual bound is very tight for all types of benchmark GAP instances considered in the 

numerical experiment. Various heuristic techniques can be used to restore the feasibility of the 

Lagrangian solution. Usually a feasible solution is obtained only once in the course of the main 
algorithm, based on the optimal solution to the Lagrangian dual problem. Then a rather 

sophisticated and high-cost heuristic is implemented without raising significantly the overall 

cost of the solution technique. On the contrary, in our approach feasible solutions are obtained 

frequently, in all iterations of the technique used to solve the modified dual problem. The main 

idea is to move from a single use of a costly and hopefully more efficient technique to a 

multiple use of a low cost and maybe less efficient heuristic. Hence a low cost and simple 

technique is necessary to restore the feasibility. The proposed family of greedy heuristics meets 

these criteria and our computational experiment demonstrates that high quality feasible 

solutions can be generated this way. 
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