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ABSTRACT

The school timetabling is a classic optimization problem that takes a large number of variables and
constraints into account. Due to the combinatorial nature of this problem, it is very difficult to
solve it manually and is often difficult to find a feasible solution when resources are tight. Among
the different requirements that are considered in Brazilian Schools, two compactness requirements
are essential on a teacher’s schedule: to minimize working days and to avoid idle times. In this
work we explore the influence of four different idle times constraint formulations: two of them
were previously proposed, and two are novel. Experimental results shown that a novel idle times
constraint formulation produces better results for classical instances of the literature. One of these
results is a new optimal solution and two of them are new best computed solutions. Finally, we also
study the impact of double lessons and the minimization of working days in these formulations.

KEYWORDS. School timetabling, Compactness Requirements, Mixed Integer Programming

Combinatorial Optimization, Mathematical Programming
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1 Introduction

A common task to all education institutions is the generation of a scheduling of classes that com-
bines teachers, students, rooms and periods (or timeslots) providing a feasible solution. Besides
feasible, the solution must be improved as much as possible, attending requirements of different
nature. This problem is often solved manually in small and medium sized institutions. However,
the automation of this task is becoming more and more common, and it is almost mandatory in
large institutions. The reason for that is not only the easiness of having a feasible solution automat-
icly generated, but the quality of that solution reflects in less time spent generating it, better use of
resources and economic gains. This combination results in a better quality of study for the students
and work for the teachers.

Requirements are separated into hard and soft ones. By hard requirements we consider those
ones that must be satisfied, whilst soft requirements are the ones that may be violeted, but should
be satisfied as much as possible. Soft requirements can have different levels of importance that are
expressed by a weighted objective function. In general, as many soft requirements are respected,
better is the evaluation of the solution.

The timetabling problem first appeared in scientific literature in the 60’s (Gotlieb, 1963) and
since them it has gaining increasing attention. The most basic problem is to schedule a set of
class-teacher events (or meetings) in such a way that no teacher (nor class) is required in more
than one lesson at a time. This basic problem can be solved in polynomial time by a min-cost
network flow algorithm (de Werra, 1971). However, in a minimal real-world application, teachers
can be unavailable in some periods. If this constraint is taken into account, the resulting timetabling
problem is NP-complete (Even et al., 1975).

In fact, this problem has several variants proposed in the literature that are NP-complete, and
the set of objectives and requirements depends mostly on the context of the application, the school
and the place where it is located (Post et al., 2011; Drexl & Salewski, 1997; Schaerf, 1999a). In
Brazil, for example, it is very common that a teacher works in more than one school. In order to
allow this possibility, it is important to compact the lessons in each school in the minimal number
of days. Furthermore, it is required to avoid free periods (idle times) between lessons in a teachers
schedule. In addition, due to pedagogical demands or personal preferences, a teacher can request an
amount of lessons in the same class conducted in two consecutive periods (double lessons). These
set of requirements defines a problem called Class-Teacher Timetabling Problem with Compactness
Requirements (CTTPCR). This variant was studied in Souza (2000); Souza et al. (2003); Santos &
Ochi (2005); Santos (2007); Bello et al. (2008); Santos et al. (2012).

Among the approaches used to successfully solve this kind of problem, we can highlight meta-
heuristics as Simulated Annealing (Colorni & Dorigo, 1998; Avella et al., 2007; Zhang et al., 2010),
Tabu Search (Schaerf, 1999b; Santos & Ochi, 2005) and Genetic Algorithms (Caldeira & Rosa,
1997). Other advanced techniques also used are Hyper-Heuristcs (Burke et al., 2003) and Constraint
Programming (Valouxis & Housos, 2003; Marte, 2007).

For a long time many variations of timetabling have been considered as intractable by exact
methods. However, in the last years several improvements have been made in Mixed Integer Pro-
gramming (MIP) solvers (Lodi, 2010), and therefore motivating studies through this approach (Bir-
bas et al., 2008).

This work extends previous studies in CTTPCR proposing new formulations for the idle times
requirement and providing extensive experiments to support conclusions about their impact in the
problem solving performance.

This paper is organized as follows. Section 2 formally presents the problem, a base formulation
of it and four alternative idle times constraint formulations that can be added to the base formulation.
Section 3 presents experimental results considering synthetic and real-world instances. Finally,
Section 4 presents conclusions and further work.
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2 Problem Description and Modeling

The goal of the CTTPCR, the school timetabling problem that we are considering, is to build a
weekly timetable. The week is organized into the set of days D, where each day is splitted in a
given set of periods P. We call a timeslot a tuple (d, p), with d ∈ D and p ∈ P, such that a lesson
can be given, assuming that each lesson has the same duration.

Let C be a set of classes and T be a set of teachers. A class c ∈ C is a group of students
that follow the same course and have full availability. Teachers t ∈ T may be unavailable in some
timeslots.

The problem also considers a set of events (or meetings) E such that to each event e ∈ E is
preassigned a class-teacher pair and a given number of lessons (workload) that must be scheduled.
In addition, each event defines how lessons are distributed in a week by requesting an amount of
double lessons and restricting the daily limit of lessons.

A feasible timetable has an assigned timeslot to each lesson satisfying the hard requirements
H1-H5 stated below:

H1 The workload defined in each event must be attended.
H2 A teacher cannot be scheduled to more than one lesson in a given period.
H3 Lessons cannot be taught to the same class in the same period.
H4 A teacher cannot be scheduled to a period in which he/she is unavailable.
H5 The maximum number of daily lessons of each event must be respected.

Besides feasibility, the number of violations of the soft requirements presented below is mini-
mized:

S1 Each teacher has a minimum number of idle times.
S2 Each teacher has a minimum number of working days.
S3 Each event has a minimum number of double lessons.

For each violation on the soft requeriments there is a cost that is embedded in the objective
function, weighted accordingly to their importance.

Given this problem, we present the set of additional parameters used by the model:

• S: set of tuples (d, p) for d ∈ D, p ∈ P.
• U : set of tuples (m,n) for m,n ∈ P : n > m+1.
• Q: set of tuples (m,n) for m,n ∈ P : n≥ m < |P|−1.
• Et : set of events a given teacher t is assigned.
• Ec: set of events a given class c is assigned.
• ωt : cost for each idle time of the teacher t.
• γt : cost for each working day of the teacher t. By working day we consider a day that the

teacher has at least one lesson assigned to him/her.
• δe: cost of each double lesson of event e not taught sequentially.
• Re: workload of event e
• Le: maximum daily number of lessons of event e

• Ved p =

{
1 : if the teacher assigned to event e is available in the timeslot (d, p),
0 : otherwise.

• SGe: set of periods on which event e can start a double lesson (SGe = {(d, p) ∈ S : p <
|P|,Ved p +Ved,p+1 = 2})

• MGe: minimum amount of double lessons required by event e

Next we present the base formulation of the problem.
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2.1 Base Formulation

In this section we present a base formulation for the CTTCPR adapted from Santos et al. (2012).
We modified this formulation to simplify its presentation replacing each pre-assigned encounters
between teacher/class by a set of events. Experimental evaluation demonstrated that to minimize
the number of idle times of teachers turns the resolution of the problem considerably more difficult.
Thus, we first explore the problem without the soft requirement S1. Later we explore the effect of
its inclusion in the formulation.

The objective function of the problem formulation consists of three weighted parts related to
the soft requirements S1, S2 and S3 respectively.

Decision Variables:

• xed p ∈ {0,1}=
{

1 : if the event e is scheduled to timeslot (d, p),
0 : otherwise.

Auxiliary Variables:

• ytd ∈ {0,1}=
{

1 : if at least one lesson is assigned to teacher t on day d,
0 : otherwise.

• ged p ∈ {0,1}=
{

1 : if event e has a double lesson starting at timeslot (d, p),
0 : otherwise.

• Ge ∈ Z+: count the number of double lessons remaining to reach MGe.
• Wt ∈ Z+: total of idle times of teacher t.

Objective function:

minimize ∑
t∈T

ωtWt + ∑
t∈T

∑
d∈D

γtytd + ∑
e∈E

δeGe (1)

subject to:

∑
(d,p)∈S

xed p = Re ∀e ∈ E (2)

∑
p∈P

xed p ≤ Le ∀e ∈ E,d ∈ D (3)

xed p ≤Ved p ∀e ∈ E,(d, p) ∈ S (4)

∑
e∈Et

xed p ≤ 1 ∀t ∈ T,(d, p) ∈ S (5)

∑
e∈Ec

xed p ≤ 1 ∀c ∈C,(d, p) ∈ S (6)

∑
e∈Et

xed p ≤ ytd ∀t ∈ T,(d, p) ∈ S (7)

ged p ≤ xed p ∀e ∈ E,(d, p) ∈ SGe (8)

ged p ≤ xe,d,p+1 ∀e ∈ E,(d, p) ∈ SGe (9)

Ge ≥MGe− ∑
(d,p)∈SGe

ged p ∀e ∈ E (10)

∑
d∈D

ytd ≥max
{⌈

∑e∈Et Re

|P|

⌉
,max

e∈Et

{⌈
Re

Le

⌉}}
∀t ∈ T (11)

xed p ∈ {0,1} ∀e ∈ E,(d, p) ∈ S (12)

ged p ≥ 0 ∀e ∈ E,(d, p) ∈ S (13)

Ge ≥ 0 ∀e ∈ E,(d, p) ∈ S (14)

ytd ≥ 0 ∀t ∈ T,d ∈ D (15)
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Constraint set (2) ensures that the workload of each event is fully scheduled. Constraint set (3)
provides a daily limit of lessons for each event. Constraint set (4) ensures that the lessons of an
event are scheduled in available periods. Constraints sets (5) and (6) ensure that both teacher’s
events and class’s events are scheduled to only one period at a time. Constraint set (7) identifies
the working days of teachers. Constraints sets (8) and (9) allow to create double lessons when the
variable ged p is activated. By constraint set (10) Ge stores the number of double lessons remaining
to reach MGe. Since Ge is considered into the objective function, the sum in the left side of the
inequality tends to increase, and thus double lessons are created.

Constraint set (11) is a cut proposed by Souza (2000) that defines a minimum number of work-
ing days to each teacher. This lower bound makes the formulation stronger.

In the next subsections 2.2, 2.5, 2.4 and 2.3 we present four different formulations that take into
account the idle times in the scheduling of teachers. Adding the respective constraints to the base
formulation, the first sum of the objective function can now assume non-zero values.

2.2 Idle times formulation β1

This formulation was first presented by Souza (2000) and improved by Santos et al. (2012). We
adapted the improved formulation to our problem by using events. The following variables were
used:

• ztd ∈ Z+: number of idle times of teacher t on day d
• A′td ∈ Z+: timeslot of the first lesson of teacher t on day d
• A′′td ∈ Z+: timeslot of the last lesson of teacher t on day d

A′td ≤ (|P|+1)− (|P|+1− p)∗ ∑
e∈Et

xed p ∀t ∈ T,(d, p) ∈ S (16)

A′′td ≥ p∗ ∑
e∈Et

xed p ∀t ∈ T,(d, p) ∈ S (17)

ztd ≥ A′′td−A′td + ytd− ∑
e∈Et

∑
p∈P

xed p ∀t ∈ T,d ∈ D (18)

A′td ,A
′′
td ,ztd ≥ 0 ∀t ∈ T,d ∈ D (19)

Constraint sets (16) and (17) force A′ and A′′ store, respectively, the first and the last teaching
periods of a teacher. In constraints (18), the expression A′′td−A′td + ytd defines the interval between
the first and the last teaching periods of a teacher in a day. When the teaching periods are subtracted
from this interval, ztd , the number of idle times is obtained.

Equation (20) defines the value of Wt used in the objective function.

Wt = ∑
d∈D

ztd (20)
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2.3 Idle times formulation β2

In this formulation, used in Avella et al. (2007), each idle time is identified individually by inclusion
of the variable ztd p into the base formulation.

• ztd p ∈ {0,1}=
{

1 if timeslot (d, p) is an idle time of teacher t
0 otherwise

ztd p ≥−1+ ∑
e∈Et

(
xedm + xedn− xed p

)
∀t ∈ T,(d, p) ∈ S,(m,n) ∈U : m < p < n (21)

ztd p ≤ ytd ∀t ∈ T,(d, p) ∈ S (22)

ztd p ≥ 0 ∀t ∈ T,(d, p) ∈ S (23)

In constraint set (21), when the variables xedm and xedn are activated and the period xed p is idle,
thus the variable ztd p is activated. Constraint set (22) disables all variables ztd p on day d according to
variable ytd . Although this constraint set is not required to ensure the correctness of the formulation,
in our experiments it has improved the performance of the solver.

Equation (24) allows us to calculate Wt in the objective function.

Wt = ∑
(d,p)∈S

ztd p (24)

2.4 Idle times formulation β3

This is a novel formulation that we are proposing by small changes in the formulation β2. The
variable ztdmn is added to the base formulation to store a count of idle times.

• ztdmn ∈ Z+: idle times of teacher t between timeslots m and n on day d.

ztdmn ≥ (n−m−1)∗

(
−1+ ∑

e∈Et

(
xedm + xedn− ∑

m<p<n
xed p

))
∀t ∈ T,d ∈ D,(m,n) ∈U (25)

ztdmn ≥ 0 ∀t ∈ T,d ∈ D,(m,n) ∈U (26)

In constraint set (25), when the variables xedm and xedn are activated and there is no teaching
periods between them, thus variable ztdmn assumes the value (n−m− 1) which is the number of
idle lessons between periods m and n.

Equation (27) defines the value of Wt used in the objective function.

Wt = ∑
d∈D

∑
(m,n)∈U

ztdmn (27)
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2.5 Idle times formulation β4

This is a novel formulation based in a network-flow that we are proposing in this work. The vertices
are the periods on a day and the activated arcs (m,n) ∈ Q are the number (n−m−1) of idle times.
The set Q contains a list of arcs that can be activated.

• ztdmn ∈ {0,1}=
{

1 : if exist an arc (m,n) on day d for the teacher t,
0 : otherwise.

∑
(m,n)∈Q

ztdmn = ytd ∀t ∈ T,(d,m) ∈ S : m≤ |P|−2 (28)

ztdmn ≤ 1+ ∑
e∈Et

(xedm+1− xedm) ∀t ∈ T,d ∈ D,(m,n) ∈ Q : m = n (29)

ztdmn ≤ 1− ∑
e∈Et

xed p ∀t ∈ T,(d, p) ∈ S,(m,n) ∈ Q : p > n = m+1 (30)

ztdmn ≤ ∑
e∈Et

xedn ∀t ∈ T,d ∈ D,(m,n) ∈U (31)

∑
(m,n)∈Q

ztdmn ≤ ytd ∀t ∈ T,(d,n) ∈ S : n≥ 3 (32)

ztdmn ∈ {0,1} ∀t ∈ T,d ∈ D,(m,n) ∈ Q (33)

Constraint set (28) ensures that there is exactly one arc leaving each period. Constraint set (29)
states that an arc (m,m) can exist when xedm = 0 or xedm + xedm+1 = 2. Constraint set (30) states
that an arc (m,m+1) can exist when xedm is the last lesson on day. Constraint set (31) states that an
arc (m,n) can exist when xedn = 1.

In a sub-optimal solution, this formulation without constraint set (32) can over-estimate the
number of idle times as showed in the Figure 1. The sub-optimal solution (a) has cost 4, while the
optimal solution (b) costs 2.

Figure 1: Cost differences between optimal and sub-optimal solutions.

By adding constraint set (32) we exclude sub-optimal solutions of type (a). This constraint set
states that there exists at most one arc incoming in each period.

Equation (34) defines the value of Wt used in the objective function.

Wt = ∑
d∈D

∑
(m,n)∈U

(n−m−1)∗ ztdmn (34)
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3 Computational Experiments

In this section we present experimental evaluation for the mathematical models presented in the
previous section, using different schemes built over a different combination of requirements. The
scheme µ0 represents the base model presented at Section 2.1 and it covers all requirements with
exception of S1. The scheme µ1 is equal to µ0 without S2. The scheme µ2 is equal to µ0 without S3.
To evaluate the models we used the set of instances available from the repository of Laboratório de
Inteligência Computacional da Universidade Federal Fluminense (LABIC, 2008). These instances
were used by Souza (2000); Souza et al. (2003); Santos & Ochi (2005); Santos (2007); Bello et al.
(2008); Santos et al. (2012). Table 1 presents the main characteristics of the instances. In this
table, the first column presents the instance identificator, columns 2-4 show the number of days,
periods and timeslots, respectively, while that Columns 5-7 present the number of teachers, classes
and events, respectively. Finally, the last two columns present the total required double lessons and
workload, respectively.

Table 1: Instance characteristics

Inst. |D| |P| |S| |T | |C| |E| ∑e∈E MGe ∑e∈E Re

1 5 5 25 8 3 21 21 75
2 5 5 25 14 6 63 29 150
3 5 5 25 16 8 69 4 200
4 5 5 25 23 12 127 66 300
5 5 5 25 31 13 119 71 325
6 5 5 25 30 14 140 63 350
7 5 5 25 33 20 205 84 500

To solve the CTTPCR problem instances, we used the mixed integer programming solver
CPLEX 12.1 with default settings. The reported results were computed in a Desktop-PC equipped
with an Intel Core i5-2300 processor clocked at 2.8GHz, 4GB of RAM, over a 64 bits Linux oper-
ation system. The parameters γt ,ωt and δe were set to 9, 3 and 1, respectively. These values are the
same used by previous works in this problem.

Results presented in tables 2, 3, 4 and 5 were reported with a time limit of 60 minutes. Col-
umn time shows the running time of the solver in minutes. Column ob j shows the value of
the objective function. Column LB shows the lower bound found by the solver. Column gap
presents the percentual deviation between the best found solution and the lower bound computed
as (ob j−LB)/(ob j ∗100). Columns rows and cols present, respectively, the number of constraints
and variables after pre-processing phase of the solver. Column nodes shows the number of ex-
plored nodes through the whole search. Finally, column root shows the time in seconds for solving
the linear relaxation at the root node. Best results are showed in bold.

The goal of the first experiment was to solve the CTTPCR without taking into account the idle
times (S1). Table 2 presents results for model µ0. As expected, running time increases with the
instance size. Nevertheless, all instances were solved optimally in at most 60 minutes.

In the second experiment we inserted the idle times formulations into the model µ0 obtaining a
full model to solve the CTTPCR. In Table 3 are the reported results. Unlike the previous experiment,
it was not possible to find optimality for any instance. Formulation β4 produces better solutions for
most of the instances.
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Table 2: Results for Formulation µ0

inst time (min) obj LB gap(%) rows cols nodes root(s)

1 0.0 189 189 0.00 831 715 236 0.0
2 0.1 333 333 0.00 1853 2109 0 0.2
3 0.1 414 414 0.00 961 1528 88 0.1
4 1.9 643 643 0.00 1983 2984 531 0.5
5 13.4 756 756 0.00 4139 4417 1297 1.6
6 13.9 738 738 0.00 4173 4928 866 1.9
7 54.6 999 999 0.00 5527 7054 926 4.4

Avg. 12.0 582 582 0.00 2781 3390 563 1.3

The goal of the third experiment is to solve the problem without taking into account the mini-
mization of working days (S2). In Table 4, independently of which idle time formulation is used,
some instances could be solved optimally. Again, the formulation β4 produced better solutions than
the others.

The fourth experiment evaluates the problem without taking into account the double lessons (S3).
In Table 5, almost all final solutions are sub-optimal. The results show that among the soft require-
ments, double lessons requirement leads to less influence on the resolution process. However, when
dismissing it, we found better solutions for the idle times formulation β2, instead of β4.

Figure 2 presents a graphical comparison of idles time formulations considered in this work.
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Figure 2: Number of instances with best objective value for µi∪β j

The best known results for the same instance set evaluated in this work are presented in Santos
et al. (2012). These results were reached by very long runs of a set of heuristic methods and there
is no precise information about the time spent. In Table 6 we present a comparison of the results
between the proposed model µ0∪β4 against results reproduced from Santos et al. (2012). Column
LB presents the best known lower bounds computed by a column generation algorithm in a separated
experiment performed by Santos et al. (2012). These values are used to calculate the column gap
of both solutions. Columns CLB, cgap, last and time present the lower bound and gap found by
CPLEX, the time which the last solution was found and the solver runtime. t.l. indicates that the

3344



September 24-28, 2012
Rio de Janeiro, Brazil

T a
bl

e
3:

C
om

pa
ri

so
n

re
su

lts
fo

rm
od

el
µ

0

µ
0
∪

β
1

µ
0
∪

β
2

µ
0
∪

β
3

µ
0
∪

β
4

in
st

tim
e

ga
p

ob
j

ro
w

s
co

ls
no

de
s

ro
ot

tim
e

ga
p

ob
j

ro
w

s
co

ls
no

de
s

ro
ot

tim
e

ga
p

ob
j

ro
w

s
co

ls
no

de
s

ro
ot

tim
e

ga
p

ob
j

ro
w

s
co

ls
no

de
s

ro
ot

1
60

.0
6.

44
20

2
11

91
81

1
31

32
63

0.
1

60
.0

6.
44

20
2

11
83

81
1

19
35

90
0.

1
60

.0
6.

44
20

2
10

23
81

1
53

70
49

0.
1

60
.0

6.
40

20
2

14
91

10
99

27
37

44
0.

1
2

60
.0

2.
06

34
0

27
00

23
04

90
89

0
0.

8
60

.0
1.

77
33

9
25

68
23

04
73

31
2

0.
5

60
.0

2.
06

34
0

22
43

23
04

13
00

49
0.

5
41
.0

0.
00

33
3

32
10

28
89

36
61

4
0.

6
3

60
.0

2.
82

42
6

16
65

17
20

93
51

6
0.

5
60

.0
2.

82
42

6
16

65
17

20
10

26
30

0.
3

60
.0

3.
50

42
9

13
45

17
20

14
48

10
0.

3
60
.0

2.
82

42
6

22
29

22
96

12
50

94
0.

3
4

60
.0

1.
68

65
4

30
75

32
50

24
69

7
1.

6
60

.0
1.

83
65

5
28

15
32

15
19

49
2

1.
2

60
.0

2.
72

66
1

24
39

32
15

30
76

7
1.

0
60
.0

1.
38

65
2

34
91

39
06

20
59

9
1.

1
5

60
.0

4.
67

79
3

59
79

48
82

52
27

4.
1

60
.0

2.
45

77
5

57
89

48
67

58
58

3.
0

60
.0

2.
33

77
4

50
39

48
67

12
13

1
2.

7
60
.0

5.
62

80
1

72
99

62
77

80
99

3.
4

6
60

.0
8.

55
80

7
61

96
53

72
14

07
5.

5
60

.0
6.

58
79

0
58

01
53

72
34

72
3.

8
60

.0
6.

58
79

0
50

61
53

72
84

16
3.

0
60
.0

5.
14

77
8

73
00

67
04

41
70

3.
6

7
60

.0
13

.5
1

11
55

79
37

75
49

51
4

12
.6

60
.0

21
.5

9
12

74
73

42
75

49
52

5
7.

7
60

.0
15

.7
0

11
85

65
17

75
49

59
3

7.
4

60
.0

20
.6

5
12

59
89

62
90

34
52

4
8.

8

A
vg

.
60

.0
5.

68
62

5
41

06
36

98
75

64
4

3.
6

60
.0

6.
21

63
7

38
80

36
91

56
98

2
2.

4
60

.0
5.

62
62

6
33

81
36

91
12

34
02

2.
1

57
.3

6.
00

63
6

48
54

46
00

66
97

7
2.

6
B

es
t

6
2

3
0

5
0

1
6

1
2

0
7

0
3

6
1

2
7

7
7

7
7

5
5

0
0

0
2

Ta
bl

e
4:

C
om

pa
ri

so
n

re
su

lts
fo

rm
od

el
w

ith
ou

tr
eq

ui
re

m
en

tS
2

µ
1
∪

β
1

µ
1
∪

β
2

µ
1
∪

β
3

µ
1
∪

β
4

in
st

tim
e

ga
p

ob
j

ro
w

s
co

ls
no

de
s

ro
ot

tim
e

ga
p

ob
j

ro
w

s
co

ls
no

de
s

ro
ot

tim
e

ga
p

ob
j

ro
w

s
co

ls
no

de
s

ro
ot

tim
e

ga
p

ob
j

ro
w

s
co

ls
no

de
s

ro
ot

1
1.

6
0.

00
0

11
11

77
1

14
50

0
0.

1
0.

1
0.

00
0

11
43

77
1

68
1

0.
0

0.
8

0.
00

0
10

15
77

1
86

05
0.

0
0.

1
0.

00
0

13
03

10
59

44
7

0.
1

2
5.

5
0.

00
0

24
24

22
36

11
21

1
0.

6
0.

1
0.

00
0

24
89

22
36

0
0.

4
2.

0
0.

00
0

22
29

22
36

19
54

0.
3

0.
1

0.
00

0
28

14
28

21
0

0.
4

3
26

.5
0.

00
0

15
21

16
40

58
24

7
0.

3
2.

0
0.

00
0

15
85

16
40

79
5

0.
2

60
.0

10
0.

00
3

13
29

16
40

20
33

65
0.

1
0.

5
0.

00
0

19
05

22
16

52
8

0.
2

4
30

.2
0.

00
4

27
05

31
74

10
71

6
1.

1
5.

8
0.

00
4

27
27

31
49

62
0

0.
9

5.
2

0.
00

4
24

27
31

49
10

85
0.

9
4.

4
0.

00
4

31
33

38
38

90
9

0.
9

5
60

.0
10

0.
00

12
53

71
47

42
30

61
3.

4
1.

7
0.

00
0

54
36

47
27

17
2.

1
27

.6
0.

00
0

48
36

47
27

33
52

2.
1

10
.9

0.
00

0
63

66
61

37
77

1
2.

4
6

60
.0

10
0.

00
21

54
75

52
22

37
35

4.
0

0.
3

0.
00

0
56

23
52

22
0

3.
1

53
.4

0.
00

0
50

31
52

22
80

07
2.

2
2.

1
0.

00
0

63
63

65
54

24
2.

6
7

60
.0

10
0.

00
99

69
79

73
84

54
0

8.
4

60
.0

10
0.

00
34

71
44

73
84

55
0

6.
8

60
.0

10
0.

00
15

6
64

84
73

84
62

6
6.

8
60
.0

10
0.

00
33

79
69

88
69

60
6

5.
4

A
vg

.
34

.8
42

.8
6

19
36

55
35

95
14

57
2

2.
5

10
.0

14
.2

9
5

37
35

35
89

38
0

1.
9

29
.8

28
.5

7
23

33
35

35
89

32
42

7
1.

8
11

.1
14
.2

9
5

42
64

44
99

46
9

1.
7

B
es

t
1

5
4

0
5

3
0

5
7

6
0

7
0

3
1

6
5

7
7

4
6

5
7

7
0

0
0

2

Ta
bl

e
5:

C
om

pa
ri

so
n

re
su

lts
fo

rm
od

el
w

ith
ou

tr
eq

ui
re

m
en

tS
3

µ
2
∪

β
1

µ
2
∪

β
2

µ
2
∪

β
3

µ
2
∪

β
4

in
st

tim
e

ga
p

ob
j

ro
w

s
co

ls
no

de
s

ro
ot

tim
e

ga
p

ob
j

ro
w

s
co

ls
no

de
s

ro
ot

tim
e

ga
p

ob
j

ro
w

s
co

ls
no

de
s

ro
ot

tim
e

ga
p

ob
j

ro
w

s
co

ls
no

de
s

ro
ot

1
60

.0
5.

97
20

1
69

6
55

6
39

19
89

3
0.

0
60

.0
5.

97
20

1
68

8
55

6
21

67
41

7
0.

0
60

.0
5.

97
20

1
52

8
55

6
19

29
40

7
0.

0
60
.0

5.
97

20
1

99
6

84
4

38
20

81
8

0.
0

2
45

.1
0.

00
33

3
15

67
17

23
12

75
21

0.
3

1.
0

0.
00

33
3

14
35

17
23

10
04

0.
2

3.
9

0.
00

33
3

11
10

17
23

10
73

3
0.

2
6.

7
0.

00
33

3
20

77
23

08
26

92
4

0.
2

3
60

.0
3.

50
42

9
15

33
16

52
71

63
4

0.
5

60
.0

2.
13

42
3

15
33

16
52

89
08

6
0.

2
60

.0
2.

13
42

3
12

13
16

52
20

41
79

0.
2

60
.0

2.
82

42
6

20
97

22
28

12
92

22
0.

2
4

60
.0

1.
39

64
8

22
03

28
02

59
83

1
0.

8
60

.0
1.

39
64

8
19

43
27

67
52

61
1

0.
5

60
.0

1.
39

64
8

15
67

27
67

81
55

1
0.

5
60
.0

1.
39

64
8

26
19

34
58

74
64

4
0.

6
5

60
.0

1.
95

77
1

34
37

35
80

23
89

3
1.

8
60

.0
0.

79
76

2
32

47
35

65
25

22
4

1.
0

60
.0

2.
33

77
4

24
97

35
65

48
36

8
0.

8
60
.0

0.
79

76
2

47
57

49
75

28
11

1
1.

2
6

60
.0

3.
91

76
8

36
13

40
49

11
93

4
2.

2
60

.0
3.

15
76

2
32

18
40

49
16

26
8

1.
2

60
.0

5.
02

77
7

24
78

40
49

19
31

9
1.

0
60
.0

3.
53

76
5

47
17

53
81

21
33

2
1.

2
7

60
.0

4.
03

10
41

44
93

57
85

24
31

4.
7

60
.0

2.
06

10
20

38
98

57
85

35
20

3.
0

60
.0

2.
63

10
26

30
73

57
85

61
78

2.
6

60
.0

4.
03

10
41

55
18

72
70

38
87

2.
4

A
vg

.
57

.9
2.

96
59

9
25

06
28

78
60

24
48

1.
5

51
.6

2.
21

59
3

22
80

28
71

33
64

47
0.

9
52

.0
2.

78
59

7
17

80
28

71
32

85
33

0.
8

52
.4

2.
65

59
7

32
54

37
80

58
64

19
0.

8
B

es
t

6
3

3
0

5
2

1
7

7
7

0
7

0
4

6
4

4
7

7
4

6
6

4
4

0
0

1
4

3345



September 24-28, 2012
Rio de Janeiro, Brazil

time limit has been reached.
Results found by CPLEX with model µ0∪β4, with time limit of 10 hours, are equal or slightly

better than the best known results, except for instance 6. The solution found to instance 4 is a new
known optimal solution. We also found new best known solutions for instances 5 and 7. Although
the solver has found the optimal solutions for instances 1-4 in less than 5000 seconds, it proves the
optimality only for the instance 3. In fact, the instance 3 is the only one that has the lower bound
provided by CPLEX equal to optimal objective value.

Table 6: Comparison of model µ0∪β4 against best known results

best known µ0∪β4

Inst. LB obj gap obj CLB gap cgap last time

1 202 202 0.0 202 189 0.0 6.4 2390 t.l.
2 333 333 0.0 333 333 0.0 0.0 2457 2457
3 423 423 0.0 423 414 0.0 2.1 4817 t.l.
4 652 653 0.2 652 643 0.0 1.4 1753 t.l.
5 762 766 0.5 764 756 0.3 1.1 33147 t.l.
6 756 760 0.5 765 738 1.2 3.5 33431 t.l.
7 1017 1029 1.2 1028 999 1.1 2.8 33992 t.l.

4 Conclusion

In this work we present model formulations for the Class-Teacher Timetabling Problem with Com-
pactness Requirements considering four different idle times formulations. Additionally we per-
formed computational experiments to evaluate the impact of soft requirements in the resolution
process. Experimental results show that the idle times requirement is the compactness requirement
that most aggregates complexity to the resolution of problem by CPLEX. The requirement of dou-
ble lessons is the one that influences less in the resolution process. The main contribution of this
paper is the novel formulation model µ0∪β4 that outperforms the previously proposed ones when
solving CTTPCR. As it could provide good solutions within 60 minutes, it is reasonable to state that
this approach of mixed integer programming can be used to build school timetables in practice. As
additional contribution, we compared the experimental results with previous studies and we found
one new optimal solution and two new best computed solutions for the instance set evaluated.
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