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ABSTRACT

We propose a model that optimizes asset portfolio and leverage level considering a convex
piecewise linear borrowing cost. This function represents cost of borrowing with finite
number of available lenders with different borrowing rates and credit limits. As opposed
to usual linear borrowing cost approximations, our model represents the actual situation
of a leveraged investment strategy since, one must choose among finite number lenders
and not only one with fixed rate. For comparison purposes, we consider a two-stage
optimization problem that maximizes expected portfolio return under a risk constraint
using a CVaR-based deviation measure. Then, we show using a numerical example that
the usual linear approximation leads to suboptimal solutions while our proposed cost
function leads to optimality if one considers multiple lenders. Furthermore, we develop
a multistage extension and show, for stagewise independent returns and proportional
credit limits, that the optimal policies are myopic and, consequently, easily computed.

KEYWORDS Leveraged Portfolio Selection, Stochastic Programming, Conditional
Value-at-Risk.

Main area: PM - Mathematical Programming.
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1 Introduction

The portfolio selection theory has an extensive literature exploring different objective
functions and constraints to represent the well known risk-return trade-off presented by
Markowitz in Markowitz (1952). In particular, many works has focused in studying risk
measures (see Artzner et al. (1999); Rockafellar and Uryasev (2000, 2002); Bion-Nadal
(2008); Detlefsen and Scandolo (2005); Riedel (2004); Cheridito et al. (2006); Roorda and
Schumacher (2007); Kovacevic and Pflug (2009)) and their consequences to the optimal
investment decisions (see Shapiro (2009); Rudloff et al. (2011)). However, little attention
is given to loans modeling, in particular to borrowing costs and credit limits. In practice,
there is a finite number of lenders and each one offers a limited amount of money for a
fixed borrowing rate greater than the risk free interest rate due to the credit risk involved.

In static models, it is common to assume a unique fixed borrowing rate such as in
the classical mean-variance approach. Indeed, Markowitz (1952) assumes an unbounded
credit limit and risk-free borrowing rate allowing a short selling position in the risk free
asset. A more complex, but still unrealistic, assumption is to define the borrowing rate
as the risk free one plus a fized positive risk premium, as we see in many dynamic models
for asset and liability management (see Ziemba and Mulvey (1998); Carino and Ziemba
(1998); Kouwenberg (2001); Mulvey and Shetty (2004); Hilli et al. (2007); Birge and
Louveaux (1997)) and debt management (see Balibek and Murat (2009); Consiglio and
Staino (2010); Date (2011)).

In this work, we propose a portfolio and leverage selection optimization model with
a piecewise linear borrowing cost function by virtue of representing multiple lenders as
it is in practice.

This paper is organized as follows: In section 2, we develop a two-stage stochastic
programming model with the proposed cost function. In section 3, we motivate our mod-
eling choice with a numerical example showing the practical consequences of sub-optimal
decisions obtained using the usual linear borrowing cost approximations. Moreover, we
develop in section 4 a multistage extension with a proportional credit limit and argue
that, for stagewise independent returns and proportional credit limits (see Blomvall and
Shapiro (2006) for details), the optimal policy is myopic and the first stage decision can
be obtained by solving the proposed two-stage model on section 2. Moreover, we show
that proportional credit limits are equivalent to upper bounds, imposed by each lender,
on the incremental leverage ratio of the borrower. Finally, in section 5 we conclude
summarizing the contributions of our work.

2 The optimization model

In this section, we describe a model that optimizes the expected portfolio return under a
risk constraint. At the beginning of the period (¢ = 0) an investor has an initial wealth W
and wants to determine his asset allocation, x = (z1,...,zy), and the amount borrowed,
d. Let us denote X (W)) the set of all feasible strategies, R(x,d) the stochastic portfolio
return, E[.] the unconditional expectation and D[.] a deviation measure. Then, we define
the following problem:

. d%?c}fwo){E [R(x,d)] | D[R(x,d)] < v} (1)

where v is a risk averse parameter.
The set of all feasible strategies depending on the initial wealth is defined as
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X(Wy) = {(x, d) € RYH

N
in—d:WO}.

i=1
In addition, we consider the probability space (2, F, P) and define the stochastic
portfolio return R(x,d) for each uncertainty realization w as

Wi (x, d)(w) = Wo

Wo ’
where Wi (x,d) is the stochastic terminal wealth depending on the asset and debt allo-
cation.

After that, let us denote r; to be the stochastic return of asset 4, Vi = 1,..., N and
then define the terminal wealth Wi (x,d) as

R(x,d)(w) =

Yw € Q. (2)

N
=> (1+riw)zi — f(d), YweQ,
=1

where f: R — R is the borrowing cost function.

Usually, past works have assumed a borrowing cost function with a fixed rate nonethe-
less in practice one has to choose among a finite number of lenders and each one of them
has a different borrowing rate and credit limit. This model approximate the actual
borrowing cost by a linear function such as f(d) = ( 1+ m) d, where rd would be a “rep-
resentative” borrowing rate. But how should we choose this rate? And given a certain
rate, how far are we from the actual optimal solution?

For the purpose of avoiding sub-optimality, we model the borrowing cost function
exactly how it is in practice. For a given amount d, a borrower minimizes his cost
considering all available lenders. Let us consider K lenders and denote J; the amount
borrowed from a lender k whose rate and credit limit are given rd, and dj, respectively.

Then, considering § = (61,...,0x) and § = (61,...,dxk), we define the cost function as
K K
— mi (1 §<dy.
f(d) = min {; +rdy) 0 ; < 5} (3)

The cost function f(d) proposed in (3) is convex and piecewise linear as illustrated
in Figure 2 for K = 3 and rd; < rdy < rds. Indeed, this problem can be interpreted as a
continuous knapsack problem where the solution of (3) has straightforward intuition of
borrowing as much as you can from the cheapest lender. For instance, let rd; < ... < rdg
and Ek 10k <d < Z’H S with 1 < i < K, the optimal solution is

' gk, Vk <14
=< d=> 10k k=i+1
0, Vk>i+1.

From this definition, one can see that the slopes and segment sizes can be respectively
interpreted as unit borrowing costs and credit limits of K different lenders.

By virtue of solving (1) efficiently using (3), we need to rewrite it as a linear stochastic
programming model. Then, we must redefine the feasible set, the terminal wealth and
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Figure 1: Borrowing cost function
the portfolio return as
N N B
(Wo) = {(X 0) e RYFEIN " =) "6 =Wo, 6 < 5} ;
i=1 k=1
N K
=> (Ltriw)mi— > (L+rde) 6, Yw e,
=1 k=1
o
Rix, 0)(w) = J106:0@) =Wo - g
Wo
Then, we can finally define the equivalent problem as
max {E [R(x,6)] | D (R(x,6)) <v}. (4)

(x,0)€X (W)

Now, to have a full description of our problem, we still need to choose a deviation
measure. In this paper, we choose a CVaR based deviation measure defined in Rockafellar
et al. (2006) and illustrate in Figure 2. We choose the CVaR deviation since it is a
coherent risk measure (see Artzner et al. (1999)) with a suitable economic interpretation
(see Street (2009); Ben-Tal and Teboulle (2007)) that can be written as a linear stochastic
programming problem as in Rockafellar and Uryasev (2000). Letting R = R(x,d) and
W1 = Wi(x,6), we define

D(R) = E[R] - $(R)

where ¢o(R) = ~CVaRa(R) =sup, {z — (1 —a) 'E[(R—z)"|} and « is the signifi-
cance level of the CVaR.

Note that maximizing the expected portfolio return is equivalent to maximizing the
expected terminal wealth since Wy is a constant and E[R] = (E[W;] — Wy)/Wy. Note
also that D(R) = D(W;)/Wy since E[.] and ¢(.) are both positively homogeneous and
translation invariant, see Street (2009) for details. Then, we can write the following
equivalent stochastic programming model
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Figure 2: CVaR based deviation measure

maximize E[W;]
W1,x,0,2

subject to ZZ]L Ti— Zle o0 = W
Wy =SSN 4 r) a4+ S5 (14 7dy) 0 =0
EWi—(z=(1—a) ' (W —2)7)] <vW
§<6
x,0 > 0.

Usually in a continuous distribution case, one would use Monte Carlo simulation
to approximate the true problem by its sample average approximation (SAA), see for
instance Pagnoncelli et al. (2009) and Kleywegt et al. (2002). It is well known that the
optimal value of the SAA problem is a consistent estimator of the “true problem”. Said
S0, let us solve the proposed model for a numerical example and show how bad it would
be the possible fixed borrowing rate approximations.

For a discrete distribution, which embodies the SAA problem, we can write the
deterministic equivalent linear program as follows:

maximize Y o poWi(w)
Wl 7x757z7q

subject to Zf;l T — Zgzl o = Wy

Wi(w) = SN 4 rw)zi + S (L4 7rdy) 6, =0, VYw e Q
>wenPu [Wi(w) = (2 = (1 = a)q(w))] < vWo (6)
4w) > 2 - Wi(w), YweQ
q(w) >0, Ywe
§<6
x,6 > 0,

where p,, is the probability of scenario w € €.

Note that the linear approximation approach solves problem (6) for K = 1 using
rdy = rd which is a “representative” borrowing rate and for a certain credit limit. The
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approximated problem is defined as

iy o
WG Seeara )

subject to ZZ]L ;i — 01 =Wy
Wi(w) =N (L4 ri(w) o+ (1+7d) 6 =0, YweQ
e W) — (2 = (1 - a) lg(w))] < oWy -
¢(w) > z—Wi(w), Ywe
g(w) >0, Vwe
61 <6
x,0 > 0.

The model proposed in (6) reflects the actual situation of leveraged investment deci-
sion process while (7) is only a approximation that leads to a suboptimal strategy. Even
though (7) is smaller optimization problem than (6), we argue that the complexity of
problems (6) and (7) are almost the same since, for practical applications, K is much
smaller than the usual number of scenarios S. Thus, our model generates the actual op-
timal solution with very low extra computational cost when compared to the pre-existing
alternatives. We illustrate this advantage through a numerical example.

3 Numerical example

Let us consider N = 4 assets, where the first one is risk free with r;(w) = 0, Vw € Q.
In addition, we assume that the remaining assets have log excess returns that follow
a multivariate normal with mean and covariance matrix estimated with historical data.
The three risky assets are investments in large, medium and small companies represented
by the indexes S&P 500, S&P Midcap 400 and S&P Smallcap 600, respectively. We used
a monthly database starting from February 1990 until December 2010, summing up 251
samples. The mean and covariance matrix estimates are

0.003334853
w= | 0.007157464
0.006317372

and
0.001899971 0.001980483 0.001900386

¥ = | 0.001980483 0.002552800 0.002563507
0.001900386 0.002563507 0.002993681

Let us assume K = 3 lenders and their monthly borrowing rates and credit limits are
given by Table 1.

Borrowing Rate | Credit Limit
Lender 1 0.10% 25% of Wy
Lender 2 0.25% 25% of Wy
Lender 3 0.50% 50% of Wy

Table 1: Borrowing Rates and Credit Lines
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To solve the numerical example, we sample S = 1000 scenario via Monte Carlo
simulation and formulate (6) with = {1,...,S}. Table 2 gives the descriptive statistics
for the simulated (arithmetic) returns.

Asset 1 2 3 4
Mean 0.00% 0.93% 0.79% | 0.56%
StdDev | 0.00% 7.64% 3.50% | 2.02%
V@R, 0.00% | 11.11% 4.96% | 2.68%
CV@R, | 0.00% | 14.74% 6.35% | 3.59%
Max 0.00% | 23.04% | 12.04% | 6.98%
Min 0.00% | -27.29% | -10.53% | -5.29%

Table 2: Asset returns - Descriptive Statistics for a = 95%.

For comparison purposes, let us solve 4 models where the first three are fixed-rate
approximations and the forth is our modeling choice with a piecewise linear cost function.
The first approximation is to assume the borrowing rate as the cheapest one. The second
approximation is to assume an weighted average based on the credit limits. Finally, the
third one is to assume the most expensive rate. For all these approximations, we assume
a 100% leverage limit which means a credit limit equal to Wy. The initial wealth is
assumed to be Wy = 1 without loss of generality.

Formally speaking, to obtain the optimal solution of model 1, 2 and 3 we solve (7)
for 6 = Wpy. In particular, we have for model 1: rd = 0.0010, for model 2: rd =
0.25 - 0.001 + 0.25 - 0.0025 + 0.5 - 0.005 and for model 3: rd = 0.005.

Moreover, for model 4 we solve (6) for K = 3 and

025 0.0010
§=|025 | Wy, rd=| 00025 |. (8)
0.50 0.0050

where rd = (rdy, rda, rds).

We obtain the optimal solution of each model and for different values of the risk
parameter v. Then, given the optimal strategies we evaluate the portfolio return R =
R(x,d) considering the cost function described by (3) for the actual parameters as in
(8). We compare the risk-return trade-off (D[R] vs E[R]) of each approximation to the
efficient frontier given by our model. This comparison is given by Figure 3.

We can see that all approximations are equally good when the agent is too risk averse
(small v) or almost risk neutral (large v). However, for the central region (4% < D(R) <
15%), the approximations are worse than the piecewise linear model. This means that,
for the same level of risk, choosing any approximation for the borrowing cost function
would give a lower expected return of the portfolio in comparison to our model. Moreover,
none of the approximations perform better than the others for all values of v.

For instance, the optimal strategies for v = 5% are given by in Table 3. We argue,
using Figure 3 and Table 3, that the cheapest approximation is the best proxy and it
has the same solution as the piecewise linear as opposed to the weighted average and
the most expensive ones. This happens because for this value of v we have a high risk
aversion and it is only worthwhile to borrow with a cheap rate, e.g., the cheapest proxy
and the first segment of the piecewise linear. So, one could conclude that the cheapest
approximation is a good choice and our model does not have a significant improvement
in comparison to the existent literature.

However, note in Table 4 that we have completely different solutions for v = 10%.
In this case, we argue that the weighted average and the most expensive are better
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Model 1 - Cheapest: rd = 0.0010; Model 2 - W. Average: rd = 0.25 - 0.001 + 0.25 -

0.0025 + 0.5 - 0.005; Model 3 - Most exp.: rd = 0.005; Model 4 - PW linear: ¢
Wo - (0.25,0.25,0.50)" and rd = (0.0010,0.0025, 0.0050)’.

Model x(1) [ x(2) | x(3) | x(4) | d

Cheapest 0.00 | 0.00 | 0.10 | 1.06 | 0.16
Weighted Average | 0.00 | 0.00 | 0.36 | 0.64 | 0.00
Most expensive 0.00 | 0.00 | 0.36 | 0.64 | 0.00
Piecewise linear 0.00 | 0.00 | 0.10 | 1.06 | 0.16

Table 3: Optimal Solutions for v = 5%

approximations, see Figure 3, than the cheapest one whose strategies are completely

different in comparison to our model.

Model x(1) [ x(2) | x(3) | x(4) | d

Cheapest 0.00 | 0.00 | 0.73 | 1.27 | 1.00
Weighted Average | 0.00 | 0.00 | 1.26 | 0.29 | 0.55
Most expensive 0.00 | 0.00 | 1.40 | 0.00 | 0.40
Piecewise linear 0.00 | 0.00 | 1.31 | 0.19 | 0.50

Table 4: Optimal Solutions for v = 10%

Hence, using a linear borrowing cost approximation is not sufficient to represent the
complexity of the borrowing cost function in a leveraged investment decision process.
Indeed, it is not possible to choose a “representative” borrowing rate that consistently
approximates the optimal strategy. For this reason we argue that our model must be
used instead of these proxies because it is still tractable and guarantees optimality of the

decisions.
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4 Multistage extension

Let us assume a multistage setting with a finite planning horizon 7', where H = {0, ...,T—
1}. We also consider the stochastic process r¢ (w) and the probability space (92, F,P)
with a related filtration Fy C ... C Fp, where Fy = {(),Q} and F = Fp. Then, we
denote by r;; the Fi-adapted stochastic process for the return of asset i € {1,...,N}.
Moreover, we also develop the following notation extension:

o W;: wealth at time t.
e 1, amount invested in asset i € {1,..., N} at time ¢.
e 0+ amount borrowed from lender k£ € {1,..., K} at time ¢.

e O credit limit of lender k € {1,..., K} at time ¢.

)

For the multistage extension, we assume that the credit limit of each lender is a
proportion of the current wealth, i.e.,

5k,t:’7kWt, VEe{l,...,K}, te{1,...,T}.

Note that this assumption is equivalent to a fixed upper bound, given by each lender,
on the leverage ratio increment. Let the leverage ratio increment of lender k£ be v, =
Ok /Wyi. Then, v4 < A is equivalent to 0y, < Y, Wy, since Wy > 0. We argue that it is
a reasonable assumption since, in practice, credit limit do depend on the current wealth
of the borrower.

Then, we define a dynamic stochastic programming model where the value function
Vi(Wy) for t =T — 1 is defined as follows:

maximize E {ZZ]\LI I+ ri7)xir—1 — Zszl (1 + rdy) o ‘ fT—l}

XT_1,0T—1,%
. N K _

subject to Zz‘:l TiT-1— Zk:l 6k,T—1 = Wr_1
E [WT — (Z — (1 — 05)71 (WT — Z)_)] < vWpr_1
or—1 <yWr
X, 0p > 0.

For t € H, V;(Wy) is defined as
maximize [E [V;H-l <sz\i1 (1 =+ T'i,t—&-l) Tit — Zle (1 + Tdk) (5]@715) ‘ft}

Xt,0T,2
subject to Zf\;l Tit — Zszl Okt = We
E[Wig1—(z— (1 —a) ™ (W1 —2)7)] <vW; (%)
o < AWy
Xt, 0t > 0,

For a stagewise independent returns and homogeneous feasible sets, we argue that
this dynamic problem is easily solved since it has a myopic optimal policy as described
in Blomvall and Shapiro (2006). Indeed, the optimal solution of the two-stage problem
(5) is also the optimal for its multistage extension (9). It is worth mentioning that,
even though we use the CVaR in a dynamic setting, our model generates time consistent
optimal policies, see Rudloff et al. (2011); Shapiro (2009) for details.
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5 Conclusions

We proposed optimization model for portfolio and leverage selection considering the ac-
tual borrowing cost function faced by investors. Indeed, we considered a convex piecewise
linear function whose slopes and segment sizes can be interpreted as the borrowing rates
and credit limit of each available lender. We showed with a numerical example that the
usual linear approximation for the borrowing cost function leads to suboptimal solution
with a significant gap when compared to our proposed model. Moreover, we developed a
multistage extension whose policy, for stage-wise independent returns and proportional
credit limits, is myopic and can be easily obtained by solving a two-stage model.

References

Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., 1999. Coherent measures of risk. Math-
ematical Finance 9 (3), 203-228.

Balibek, E., Murat, K., 2009. A multi-objective multi-period stochastic programming
model for public debt management. European Journal of Operational Research.

Ben-Tal, A., Teboulle, M., 2007. An old-new concept of convex risk measures: The
optimized certainty equivalent. Mathematical Finance 17 (3), 449-476.
URL http://dx.doi.org/10.1111/j.1467-9965.2007.00311.x

Bion-Nadal, J., 2008. Dynamic risk measures: Time consistency and risk measures from
BMO martingales. Finance and Stochastics 12 (2), 219-244.

Birge, J., Louveaux, F., 1997. Introduction to Stochastic Programming. Springer-Verlag.

Blomvall, J., Shapiro, A., 2006. Solving multistage asset investment problems by the
sample average approximation method. Mathematical Programming 108 (2), 571-595.

Carino, D. R., Ziemba, W. T., Jul. 1998. Formulation of the Russell-Yasuda kasai financial
planning model. Operations Research 46 (4), 433-449.

Cheridito, P., Delbaen, F., Kupper, M., 2006. Dynamic monetary risk measures for
bounded discrete-time processes. Electronic Journal of Probability 11 (3), 57-106.

Consiglio, A., Staino, A., 2010. A stochastic programming model for the optimal issuance
of government bonds. Annals of Operations Research.

Date, P., e. a., 2011. A mixed integer linear programming model for optimal sovereign
debt issuance. European Journal of Operational Research.

Detlefsen, K., Scandolo, G., 2005. Conditional and dynamic convex risk measures. Fi-
nance and Stochastics 9 (4), 539-561.

Hilli, P., Koivu, M., Pennanen, T., Ranne, A., Jul. 2007. A stochastic programming model
for asset liability management of a finnish pension company. Annals of Operations
Research 152 (1), 115-139.

Kleywegt, A., Shapiro, A., Homem-de Mello, T., 2002. The sample average approximation
method for stochastic discrete optimization. STAM Journal on Optimization 12 (2),
479-502.

3502



Rio de Janeiro
Brasil - 2012

D Congreso Latino-lberoamericano
C LAI O de Investigacion Operativa 24 a 28/09

Kouwenberg, R., Oct. 2001. Scenario generation and stochastic programming models
for asset liability management. European Journal of Operational Research 134 (2),
279-292.

Kovacevic, R., Pflug, G., 2009. Time consistency and information monotonicity of mul-
tiperiod acceptability functionals. Radon Series Comp. Appl. Math 8, 1-24.

Markowitz, H., 1952. Portfolio selection. The Journal of Finance 7 (1), 77-91.

Mulvey, J., Shetty, B., 2004. Financial planning via multi-stage stochastic optimization.
Computers and Operations Research 31, 1-20.

Pagnoncelli, B., Ahmed, S., Shapiro, A., 2009. Sample average approximation method
for chance constrained programming: theory and applications. Journal of optimization
theory and applications 142 (2), 399-416.

Riedel, F., 2004. Dynamic coherent risk measures. Stochastic Processes and their Appli-
cations 112 (2), 185-200.

Rockafellar, R., Uryasev, S., 2002. Conditional value-at-risk for general loss distributions.
Journal of Banking and Finance 26 (7), 1443-1471.

Rockafellar, R., Uryasev, S., Zabarankin, M., 2006. Generalized deviations in risk anal-
ysis. Finance and Stochastics 10 (1), 51-74.

Rockafellar, R. T., Uryasev, S., 2000. Optimization of conditional value-at-risk. Journal
of risk 2, 21-42.

Roorda, B., Schumacher, J., 2007. Time consistency conditions for acceptability mea-
sures, with an application to tail value at risk. Insurance: Mathematics and Economics
40 (2), 209-230.

Rudloff, B., Street, A., Valladao, D., 2011. Time consistency and risk averse dynamic
decision models: Interpretation and practical consequences. Optimization Online.

Shapiro, A., 2009. On a time consistency concept in risk averse multistage stochastic
programming. Operations Research Letters 37 (3), 143-147.

Street, A., 2009. On the conditional value-at-risk probability-dependent utility function.
Theory and Decision 68 (1-2), 49-68.

Ziemba, W., Mulvey, J. (Eds.), 1998. Worldwide asset and liability modeling. Cambridge
University Press.

3503



