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ABSTRACT

In this paper, we develop an economic interpretation for the objective function of time
consistent risk-averse dynamic stochastic programming models with a recursive formu-
lation. We illustrate the developed concepts using the portfolio selection problem with
an widely-adopted risk measure, namely the Conditional Value-at-Risk, and show how
to solve it for stage-wise independent returns.
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1 Introduction

Dynamic decision models under uncertainty are very common in financial planning and
financial engineering problems. The major motivation on developing these models is the
fact that we can incorporate the flexibility of dynamic decisions to improve our objective
function. In other words, the possibility of changing a policy after the realization of some
random variables improves the objective function and allows the first stage decisions to
be less conservative than their counterpart in the static case. Hence, it doesn’t make
any sense to incorporate this flexibility if the future decisions are not actually going to
be implemented.

In an optimization context, a multistage model is defined for each state, i.e., for each
instant of time and uncertainty realization. Each model determines the current first-
stage decision, which is the one actually implemented, and the future planned policy
given by a sequence of decisions for each future state. As formally stated by Shapiro
(2009) in definition (A1), this policy is time consistent iff the planned solutions coincides
with the first-stage decisions of the future problems, for all states of the system. Thus,
we can give the following interpretation:

A policy is time consistent if, and only if, the future planned decisions
are actually going to be implemented.

Moreover, if this sequence of multistage problems can be written recursively as stated by
Shapiro (2009) in definition (A2), time consistency of the optimal policies is guaranteed
by the Bellman’s principle.

Note that Shapiro (2009) uses an indirect consequence of solving a sequence of re-
cursive problems to develop the following interpretation of time consistency (see Section
1 of Shapiro (2009)) :

“at every state of the system, our optimal decisions should not depend on
scenarios which we already know cannot happen in the future”

Note also that time consistency can refer to a property of dynamic risk measures,
as stated in Bion-Nadal (2008); Cheridito et al. (2006); Detlefsen and Scandolo (2005);
Kovacevic and Pflug (2009); Riedel (2004); Roorda and Schumacher (2007); Ruszczynski
(2010); Ruszczynski and Shapiro (2006). Indeed, this property is related to the definition
of Shapiro (2009) since time consistent optimal policies can be obtained by choosing
the objective functions of the multistage models to be time consistent dynamic risk
measures. This modeling choice leads to a sequence of recursive problems where the
Bellman’s principle guarantees time consistent optimal policies (see definition A2 of
Shapiro (2009) for details).

Furthermore, we argue that a time consistent policy is imperative since it is the
only way to guarantee optimality of the implemented decisions. Indeed, the current
implemented decision (first stage decision) is optimal if the future implemented ones are
exactly the same as the optimal planned policy. Hence, if one chooses the recursive for-
mulation for the objective functions then, time consistency and, consequently, optimality
are guaranteed.

This recursive formulation is not commonly used in practice as a result of a lack of
suitable economic interpretation for its objective function. Indeed, how can a decision
maker choose a policy if he / she does not know what is actually going to be optimized?

For this reason, we prove that a particular set of these recursive objective functions
can be interpreted as the certainty equivalent with respect to a time consistent dynamic
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utility defined as the recursive form of given (one-period) preference functionals. More-
over, recursive objective functions are the composed form of the certainty equivalents
with respect to those functionals. In order to illustrate it, we propose a time consistent
risk-averse dynamic stochastic programming model for the portfolio selection problem
and interpret the results for this application.

2 Economic interpretation

Let us assume a multistage setting with a finite planning horizon T , whereH = {0, . . . , T−
1}. We consider the stochastic process rt (ω) and the probability space (Ω,F ,P) with a
related filtration F0 ⊆ . . . ⊆ FT , where F0 = {∅,Ω} and F = FT .

Let us consider a generic one-period preference functional ψt : L∞ (Ft+1)→ L∞ (Ft)
and, conditioned on a particular realization of the stochastic process r̄[t] = [r0 (ω) , . . . , rt (ω)],
the related real valued function ψt

(
· | r̄[t]

)
: L∞(Ft+1) → R. Let us denote (Ut)t∈H as

the time consistent dynamic utility function generated by ψt (see Cheridito and Kupper
(2009) for details). Formally speaking, Ut : L∞ (FT )→ L∞ (Ft) is defined as follows:

Ut (WT ) = ψt (Ut+1 (WT )) , ∀t ∈ H,

where UT (WT ) = WT and WT ∈ L∞ (FT ).
Now, let us define the following dynamic stochastic programming model where the

value function at time t depends on the decisions at t− 1 and on the realization of the
stochastic process until t.

Thus, for t = T we define the value function

VT
(
xT−1, r̄[T]

)
= WT

(
xT−1, r̄[T]

)
,

where WT = WT

(
xT−1, r̄[T]

)
is a real valued function.

For t ∈ H \ {0}, we define the value function Vt
(
xt−1, r̄[t]

)
as

sup
xt∈Xt

ψt
(
Vt+1

(
xt, r[t+1]

) ∣∣ r̄[t]

)
, (1)

where Xt = Xt
(
xt−1, r̄[t]

)
.

For t = 0, we define the value function V0 as (1), where X0 = X0. Then, we develop
the following results.

Proposition 1. If ψt is a translation invariant, monotone functional normalized to
zero, then for t ∈ H the value function can be written as

Vt
(
xt−1, r̄[t]

)
= sup

xτ∈Xτ ,∀τ=t,...,T−1
Ct
(
WT

∣∣ , r̄[t]

)
,

where Ct
(
WT

∣∣ r̄[t]

)
is the certainty equivalent of WT w.r.t. Ut conditioned on the real-

ization sequence , r̄[t]. See proof in A.

Corollary 2. If ψt is a translation invariant, monotone functional normalized to zero,
then for t ∈ H the value function Vt

(
xt−1, r̄[t]

)
can be written as

sup
xτ∈Xτ , ∀τ=t,...,T−1

C̃t

(
. . . C̃T−1 (WT )

∣∣∣ r̄[t]

)
,

where C̃t and C̃t(· | r̄[1,t]) are the certainty equivalent w.r.t. ψt and ψt(· | r̄[t]), respec-
tively. See proof in B.
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For sake of simplicity, we decided not to include intermediate “costs” as in Ruszczyn-
ski and Shapiro (2006), however we argue that our results would still hold true for that
extension. It is worth mentioning that we define the feasible sets, Xt, and the terminal
function, WT

(
xT−1, r[T ]

)
generically depending on the application. On the next section

we define them to fit the portfolio selection problem.

3 A portfolio selection example

LetA = {1, . . . , A} be the set of assets, Xt the set of feasible strategies andWT

(
xT−1, r̄[T]

)
the terminal wealth where rt (ω) = (r1,t (ω) , . . . , rA,t (ω)) and xt = (x1,t, . . . , xA,t) are
asset returns and allocations, respectively.

Then, for t > 0 we define

Xt
(
xt−1, r̄[t]

)
=

{
xt ∈ RA :

∑
i∈A

xi,t =
∑
i∈A

(1 + r̄i,t)xi,t−1

}

and X0 =
{
x0 ∈ RA :

∑
i∈A xi,0 = W0

}
, where W0 is the initial wealth.

Moreover, we define the terminal wealth as

WT (xT−1, r̄[T]) =
∑
i∈A

(1 + r̄i,T )xi,T−1

and choose the (one-period) translation invariant, monotone and normalized utility func-
tional ψt to be the convex combination of the expected value and the CVaR based
acceptability measure, formally defined as

ψt (Vt+1) = (1− λ)E
[
Vt+1 | r[t]

]
+ λφαt

(
Vt+1, r[t]

)
, (2)

where λ ∈ [0, 1], Vt+1 = Vt+1

(
xt, r[t+1]

)
and

φαt
(
Vt+1, r[t]

)
= sup

z∈R

{
z −

E
[
(Vt+1 − z)−

∣∣ r[t]

]
1− α

}
.

Following Rockafellar and Uryasev (2000), we rewrite (1) as the following dynamic
stochastic programming problem:

maximize
xt

E
[
(1− λ)Vt+1 + λ

(
z − (Vt+1 − z)−

1− α

) ∣∣∣∣ r̄[t]

]
subject to

∑
i∈A xi,t =

∑
i∈A (1 + ri,t)xi,t−1

xt ≥ 0,

where Vt+1 stands for Vt+1

(
xt, r[t+1]

)
.

The objective function of the proposed model at t is the certainty equivalent with
respect to the time consistent dynamic utility function generated by the one-period
preference functionals of the investor. This recursive formulation ensures time consistent
optimal policies and it is motivated by Corollary 2. The objective at t = T − 1 is to
maximize the certainty equivalent (CE) of terminal wealth with respect to the one-period
preference functional ψT−1. Indeed, we can interpret the optimal CE as the portfolio
value since it is the deterministic amount of money the investor would accept instead
of the (random) terminal wealth obtained by his / her optimal trading strategy. At
t = T − 2, . . . , 0, the preference functional ψt is applied to the (random) portfolio value
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whose realizations are given by all possible optimal CE’s at t+ 1. Thus, the objective at
time t is to maximize the CE of the future (random) portfolio value and, consequently,
the value function at t is the current portfolio value for that particular investor.

In order to have an illustrative example, let us assume a probability space to be
represented by a discrete event tree, where the scenarios ω ∈ Ω are numbered by the
terminal nodes. Let us denote an intermediate node N as a subset of Ω and Nt as
the set of all nodes at stage t, i.e., the unique partition that generates the σ-algebra
Ft, ∀t ∈ H∪{T}. For sake of simplicity, consider the event tree represented in Figure 1,
where Ω = {1, 2, 3, 4}. In our notation, the root node is defined as Ω = {1, 2, 3, 4}, the
intermediate nodes as {1, 2} and {3, 4} and the terminal nodes as {1}, {2}, {3}, {4}. In
addition, we have that N1 = {Ω}, N2 = {{1, 2}, {3, 4}} and N3 = {{1}, {2}, {3}, {4}}.

t

v
{1,2}

v
Ω

ω = 1

ω = 2

ω = 3

ω = 4

v
{3,4}

Figure 1: Event tree

Considering Figure 1, the current portfolio value is given by vΩ = V0 and the (ran-
dom) portfolio value at t = 1 is given by the realizations

v{1,2} = V1

(
x0, r̄

{1,2}
[1]

)
and v{3,4} = V1

(
x0, r̄

{3,4}
[1]

)
,

where r̄N[1] = r[1](ω), such that ω ∈ N .
From Corollary 2, the current portfolio value vΩ is the optimal certainty equivalent of

the (random) portfolio value at t = 1. Moreover, from Proposition 1, vΩ is the optimal
certainty equivalent for an investor with the time consistent dynamic utility function
generated by (2).

In particular, one can easily solve this problem for stagewise independent returns.
To do so, let us define the intermediate wealth Wt+1 =

∑
i∈A (1 + ri,t+1)xi,t, ∀t ∈ H,

and an equivalent value function Vt(Wt) as

maximize
Wt+1,xt,z

E
[
(1− λ)Vt+1 + λ

(
z − (Vt+1 − z)−

1− α

)]
subject to Wt+1 =

∑
i∈A (1 + ri,t+1)xi,t∑

i∈A xi,t = Wt

xt ≥ 0,

(3)
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where Vt+1 stands for Vt+1(Wt+1) and all constraints represented are defined for almost
every ω ∈ Ω, i.e., in the P a.s. sense.

Following Blomvall and Shapiro (2006), problem (3) has a myopic optimal policy
which can be obtained as the solution sequence (∀t ∈ H) of the following two-stage
problem:

maximize
Wt+1,xt,z

E
[
(1− λ)Wt+1 + λ

(
z − (Wt+1 − z)−

1− α

)]
subject to Wt+1 =

∑
i∈A (1 + ri,t+1)xi,t∑

i∈A xi,t = Wt

xt ≥ 0.

(4)

For an discrete distribution, we obtain the optimal policy, i.e, the optimal solution for
each time step t ∈ H and for each node N ∈ Nt, by solving the deterministic equivalent
linear program

maximize
q,Wt+1,xt,z

∑
ω∈N

P(ω)

[
(1− λ)Wt+1 (ω) + λ

(
z − q (ω)

1− α

)]
subject to Wt+1 (ω) =

∑
i∈A (1 + ri,t+1 (ω))xi,t, ∀ω ∈ Ω∑

i∈A xi,t = Wt(N)

q (ω) ≥ z −Wt+1 (ω) , ∀ω ∈ Ω

q (ω) ≥ 0, ∀ω ∈ Ω

xt ≥ 0.

Hence, the proposed model is easily solved and strongly motivated by the economic
interpretation developed in Proposition 1 and Corollary 2.

4 Conclusions

In this paper, we develop a suitable economic interpretation for a particular set of time
consistent risk-averse dynamic problems based on a recursive objective function. We
prove that the objective function is the certainty equivalent with respect to the time con-
sistent dynamic utility function defined as the composed form of one-period preference
functionals. We prove that this objective is the composed form of certainty equivalents
with respect to these one-period preference functionals. These results motivate time
consistent models as long as they are the only choice that guarantees optimality of the
implemented decisions.

In addition, we develop a time consistent dynamic stochastic programming model
for portfolio selection in which the objective function is a recursive setting of a convex
combination between expectation and (negative of) CVaR applied to terminal wealth.
The developed economic interpretation gives us the intuition that at stage t the agent
is maximizing the certainty equivalent of the portfolio value with respect to his / her
one-period preference functional and that the value function at t is the portfolio value for
that investor. We use an example to illustrate the developed concepts and to motivate
future applications of this recursive formulation.
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A Proof of Proposition 1

Proof. By definition we have

Vt
(
xt−1, r̄[t]

)
= sup

xt∈Xt
ψt
(
Vt+1

(
xt, r̄[t+1]

) ∣∣ r̄[t]

)
= sup

xt∈Xt
ψt

(
. . . sup

xT−1∈XT−1

ψT−1 (WT )

∣∣∣∣∣ r̄[t]

)
.

Using the monotonicity of ψt and the definition of Ut we have the following:

Vt
(
xt−1, r̄[t]

)
(5)

= sup
xτ∈Xτ , ∀τ=t,...,T−1

ψt
(
. . . ψT−1 (WT )

∣∣ r̄[t]

)
= sup

xτ∈Xτ , ∀τ=t,...,T−1
Ut
(
WT

∣∣ r̄[t]

)
.

By the certainty equivalent definition we have that Ct
(
WT | r̄[t]

)
satisfies Ut

(
Ct
(
WT | r̄[t]

)
| r̄[t]

)
=

Ut
(
WT | r̄[t]

)
. It is easy to show that Ut

(
· | r̄[t]

)
is translation invariant and normalized

to zero, since its generators ψt have the same properties. Then, Ut
(
Ct
(
WT | r̄[t]

)
| r̄[t]

)
=

Ct
(
WT | r̄[t]

)
and consequently, Ut

(
WT | r̄[t]

)
= Ct

(
WT | r̄[t]

)
.

Finally we have that

Vt
(
xt−1, r̄[t]

)
= sup

xτ∈Xτ , ∀τ=t,...,T−1
Ct
(
WT

∣∣ r̄[t]

)
.

B Proof of Corollary 2

Proof. By the certainty equivalent definition we have that C̃t
(
· | r̄[t]

)
satisfies ψt

(
C̃t
(
· | r̄[t]

)
| r̄[t]

)
=

ψt
(
· | r̄[1,t]

)
and using the assumption that ψt is translation invariant and normalized to

zero, we have ψt = C̃t. Note that this property holds true for the conditional version.
Then, from equation (6) we have the following:

Vt
(
xt−1, r̄[t]

)
= sup

xτ∈Xτ , ∀τ=t,...,T−1
ψt
(
. . . ψT−1 (WT )

∣∣ r̄[t]

)
= sup

xτ∈Xτ , ∀τ=t,...,T−1
C̃t

(
. . . C̃T−1 (WT )

∣∣∣ r̄[t]

)
.
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