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Resumo

O problema de recobrimento elipsoidal consiste em cobrir um elipsóide com esferas
cujos raios pertencem a um conjunto discreto. A natureza discreta dos raios das esferas
é uma das dificuldades inerentes a este problema quando tentamos resolvê-lo e outra
dificuldade é garantir que cada ponto do elipsóide seja coberto por pelo menos uma
esfera. Apesar destas dificuldades, uma boa razão para o estudo deste problema é a sua
aplicação na configuração de máquinas de raios gama, que são utilizadas em tratamentos
de tumores cerebrais. Este é um problema semi-infinito linear discreto e apresentamos
uma versão fraca do mesmo que usa a idéia do Problema de Localização de Facilidades
para determinar uma posição mais provável para os centros das esferas de forma que
cubram todo o elipsóide.

Palavras Chave: Otimização Discreta,Otimização Global, Gamma Knife

Abstract

The ellipsoidal covering problem consists in covering an ellipsoid with spheres whose
radii belongs to a discrete set. The discrete nature of the radii of the spheres is one of
the difficulties inherent to this problem when one tries to solve it and another dificulty
is ensuring that every point of the ellipsoid is covered by at least one sphere. Despite
these difficulties, a good reason to study this problem is its application in configuring
gamma ray machines, used in brain tumors treatments. This problem is a semi-infinite
nonlinear discrete one and we present a weak version that uses the idea of the Facility
Location Problem to determine a likely location for the center of the spheres in such a
way that the ellipsoid must be covered by them.

Keywords: Discrete Optimization, Global Optimization, Gamma Knife
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1 Introduction

The discrete problem of ellipsoidal covering has an application in configuring Gamma ray
machines. These machines are used in stereotactic radiation therapy to brain tumors treat-
ments. It delivers ”shots” that are extremely precise, reaching the tumor area in a shape
of spheres. Due to the use of multiple shots centered at the disease area, the healthy tissue
receives minimal dose of radiation. In the other hand, the use of multiple shots can result
in exposing the tumor to a higher dose of radiation which happens when the spheres are
superimposed, and such action must not happen. All the tumor area should be covered
homogeneously by the treatment. In order to achieve this goal we must define the number
of shots that have to be done as well as its positions and dosages (see [1] and [3]). This
task nowadays demands time and a lot of experience and knowledge from the person that
is planning the treatment and it makes the treatment very expensive. By automating the
treatments planning these costs may decrease and more people can access it.

We present in this work a new model for the discrete problem of ellipsoidal covering that
uses the idea of the Facility Location Problem [4] to determine the probable positions for
the centers of the spheres in such a way that each sphere is like a facility that attends parts
of the ellipsoid. Given an ellipsoid with (x0, y0, z0) as center coordinates and Rx, Ry, Rz

as its radii and a set of radii of spheres, r ∈ {r1, r2, r3..., rM} , r < min {Rx, Ry, Rz}, the
problem is to cover the ellipsoid with spheres. There are two peculiarities that makes this
problem a discrete one: the radii of the spheres belongs to the set above and the number
of spheres that must be integer. For this reason, most of the existent approaches to solve
this problem are based in discrete optimization techniques. We want to emphasize that our
goal is to solve the ellipsoidal covering problem, which differs from the complete solution
for the configuration of Gamma ray machines in the sense that it is not in our scope the
determination of the dosage of each shot (see [1] and [3]).

In this work, the model proposed is totally integer, but differs from the integer models
presented in [1]. One of the differences is that in [1], a fixed cubic lattice of m3 points
in R3 is used to discretize the entire ellipsoid and here a mesh is placed on the border of
the ellipsoid and the points that are inside of the ellipsoid are points of Weber, which are
calculated using the coordinates of the points that are on the mesh. This work also differs
from [2] because the model is totally different and we do not use Geometric Programming
to solve it.

The text is organized like that: in section 2 we present in detail the Discret Ellipsoidal
Covering Problem (DECP) and the Weak Discret Ellipsoidal Covering Problem (WDECP)
and a theoretical basis to solve the first (DECP) using the second one (WDECP). Besides
that, we present a model for the Discret Ellipsoidal Covering Problem (DECP). In section
3 the computational results are presented.
Terminology:
c = (x0, y0, z0) is the center of the ellipsoid;
C(w, r) is the cube of center w and inscribed in the sphere of radius r;
D(w, r) is the dodecahedron of center w and inscribed in the sphere of radii r;
E(c, R) is the ellipsoid of center c and radii (Rx, Ry, Rz), where R = diag(Rx, Ry, Rz);
γ is the level of intersection between two different spheres;
ri is the radius of the i-sphere, i = 1, . . . , n;
R is the matrix which diagonal are the radii of the ellipsoid;
{Rx, Ry, Rz} are the radii of the ellipsoid;
S(w, r) is the sphere of center w and radius r;
θ is the ratio between the volume of a sphere and the volume of the inscribed cube or
dodecahedron;
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‖v‖ is the euclidean norm;
√∑n

i=1 v
2
i ;

‖v‖∞ is the maximum norm; ‖v‖∞ = max{|v1| , . . . , |vn|};
V ol(S) is the volume of solid S;
wi = (wx

i , w
y
i , w

z
i ) is the center of the ith-sphere;

ℵ0(C) is the cardinality of the set C;
R = max{Rx, Ry, Rz}.

2 The discrete ellipsoidal covering problem - DECP

The goal of this section is to detail the DECP. This problem consists in covering an ellipsoid
with spheres. It is more specifically defined below:

Given (Rx, Ry, Rz) ∈ R3
++, c ∈ R3, n ∈ N , the ellipsoid of center c and radii (Rx, Ry, Rz)

is defined by the following set:

E(c, R) =
{
w ∈ R3; (w − c)tR−2(w − c) ≤ 1

}
, (1)

where R = diag(Rx, Ry, Rz).
We can define DECP as:

Definition 1. Given an ellipsoid E(c,R) a discrete ellipsoidal covering (DEC) is a
structure of the form:

Pell(E) = {C, r}, (2)

where C = {w1, w2, . . . , wn}, r = {ri ∈ {r1, r2, . . . , rM}, i = 1, . . . , n}, wi and ri satisfy the
following conditions:

1. wi ∈ E(c, R) for all n;

2. if w ∈ E(c, R) then ‖w − wi‖ ≤ ri for some i = 1, . . . , n;

3. the number of spheres n must be as small as possible.

C and r are respectively the set of the centers of the spheres and the set of the discrete radii.
If r = {r ∈ [a, b]} the covering is said to be continuous. The discrete ellipsoidal covering
problem (DECP) can be seen as determining a pair P = {C, r}.

The Definition 1 suggests that we treat the (DECP) as a viability problem with semi
infinite restrictions. To avoid this semi infinite characteristic, we propose a formulation
named Weak Discrete Ellipsoidal Covering (WDEC ), presented in Definition 2.

Definition 2. Given an ellipsoid E(c,R) a weak discrete ellipsoidal covering(WDEC)
is a structure of the form:

Pell(E(c, R)) = {C, r},
where C = {w1, w2, . . . , wn} e r = {ri ∈ {r1, r2, . . . , rM}, i = 1, . . . , n}, wi, ri and rj satisfy
the following conditions:

1. wi ∈ E(c, R) for all n;

2. ‖wi − wj‖ ≥ γ(ri + rj) for all i = 1, . . . , n, j = i+ 1, . . . , n,
ri, rj ∈ {r1, r2, . . . , rM} ;

3. The number of spheres n must be as small as possible.
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C and r are respectively the set of the centers of the spheres and the set of the discrete
radii, the parameter γ is such that γr is the radius of the sphere that is inscribed in the

cube (γ = 1√
3
) or in the dodecahedron (γ =

√
10(25+11

√
5)

5
√
3(1+

√
5)

) that is inscribed in S(w, r).

Mathematically we have: S(w, γr) ⊂ C(w, r) ⊂ S(w, r)

Both of the above structures differ only with respect to item 2. In Definitions 1 and 2 at
(WDEC) we relax the condition of total covering given by item 2 of Definition 1 and obtain
a weaker condition that is given by item 2 of Definition 2 and aiming to solve the viability
problem in Definition 1 we propose to solve a maximization problem whose constraints
satisfies items 1,2 and 3 of Definition 2 besides some aditional constraint that ensures the
condition of total covering given by item 2 of Definition 1.

Hereafter, our work will be about finding a weak ellipsoidal covering for a given ellipsoid
Eseg such that E(c, R) ⊂ Eseg with Eseg = E(c, Rseg), whose radii of the spheres are as big
as possible and impose the following condition:

Condition 1. If S(wi, ri) is the i-sphere with center wi and radius ri then S(wi, ri) ⊂ Eseg.

Eseg, will be called security ellipsoid and is defined as:

Definition 3. Given an ellipsoid E(c, R) and ǫ > 0 we define the security ellipsoid Eseg

as:

Eseg =
{
w ∈ R3; (w − c)tR−2

seg(w − c) ≤ 1
}
,

where Rseg = (1 + ǫ)diag (Rx, Ry, Rz).

The Condition 1 is not essential because it can be obtained in an indirect way as
Proposition 1 shows.

Proposition 1. Given ǫ > 0, r > 0, c ∈ R3 and (Rx, Ry, Rz) ∈ R3
++. Let

Rmin = min{Rx, Ry, Rz}, rmax = max{r1, r2, . . . , rM}, ǫ̃ = (1−ǫRmin

rmax
) and Rǫ̃ = diag(Rx−

ǫ̃r, Ry − ǫ̃r, Rz − ǫ̃r). If r ≤ rmax ≤ Rmin and w ∈ E(c, Rǫ̃) then S(w, r) ⊂ Eseg.

Proof 1. Given p ∈ S(w, r),

(p− c)tR−2
seg(p− c) ≤ R+(1−ǫ̃)r

R(1+ǫ)
=

R+ǫr
Rmin
rmax

R(1+ǫ)
≤ 1.

Let B∞[0, 1] = {v ∈ R3| ‖v‖∞ = 1} and Z = {x1, x2, . . . , xn} ⊂ B∞[0, 1]. If

‖xi − xj‖ ≤ 2(r−1)

R

for some i, j, where r is the radius of the largest sphere contained in E(c, R) then we have
the following results.

Proposition 2. If x ∈ B∞[0, 1], then

w ∈ ∂E(0, R) = {x ∈ R3|xtR−2x = 1, R = diag(Rx, Ry, Rz)}.

Proof 2. xR
‖x‖R

−2 Rx
‖x‖ = 1.

Proposition 3. If ‖xi − xj‖ ≥ 2(r−1)

R
then ‖wi − wj‖ ≤ 2(r − 1).

Proof 3. ‖wi − wj‖ =
∥∥∥ Rxi

‖xi‖ − Rxj

‖xj‖

∥∥∥ ≤ R
∥∥∥ xi

‖xi‖ − xj

‖xj‖

∥∥∥.
But
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∥∥∥ xi

‖xi‖ − xj

‖xj‖

∥∥∥ ≤ r
r
‖xi − xj‖ ≤ ‖xi − xj‖,

where

r = ‖w‖ − r with wi = xi and wj =
xj

‖xi‖ if ‖xi‖ ≤ ‖xj‖
or

wi =
xi

‖xj‖ and wj = xj if ‖xj‖ ≤ ‖xi‖.

As we have seen before, ‖xi − xj‖ ≤ 2(r−1)

R
and therefore

‖wi − wj‖ ≤ R
2(r−1)

R
= 2(r − 1).

This proposition means that given two points inside the ellipsoid, there exists at least
one that satisfies ‖wi − wj‖ ≤ 2(r − 1).

Definition 4. For each i = 1, . . . , N where N = ℵ0(Z), Z = {x1, x2, . . . , xn} ⊂ B∞[0, 1],
let

Wi = {wj ; ‖wi − wj‖ ≤ 2(r − 1)}, Ni = ℵ0(zi),

wi =
1
Ni

(∑Ni

j=1w
1
j ,

∑Ni

j=1w
2
j ,

∑Ni

j=1w
3
j

)t

.

The points wi are called barycentre or Weber points of Wi. The center of the ellipsoid also
belongs to this set so it has N + 1 points.

Definition 5. Let wi be the facility i, wj be the location j,
δij = 1, if wi attends wj or δij = 0, otherwise;
zij = 1, if S(wi, ri) and S(wj , rj) intercept each other or zij = 0, otherwise.
yi = 1, if wi is the center of the ith sphere or yi = 0 otherwise;
λi = 1, if the sphere S(wi, ri) has center wi and radi ri or λi = 0, otherwise.
The optimization problem associated to Pell(E(c,R)) that uses the idea of the Facility Lo-
cation problem is given by:

Minimize
N+1∑

i=1

N∑

j=1

Di(j+N+1)δij −
N+1∑

i=1

N+1∑

j=1

Dijzij +
N+1∑

i=1

ri +M

N+1∑

i=1

yi

Subject to :
N∑

j=1

δij +
N+1∑

j=1

zij − (N + 1)yi ≤ 0, (3)

N+1∑

i=1

δij ≥ 1, (4)

P1
N+1∑

i=1

zij ≥ 1, (5)

2δijrmax − ri ≤ 2rmax −Di(j+N+1) (6)

2Rzij − ri − rj ≤ 2R−Dij , (7)

4rmaxzij + 2(ri + rj) ≤ 3Dij + 4rmax, (8)

ri ≤ rmaxyi (9)

ri − 2λ2 + 4λ3 + 7λ4 + 9λ5 = 0, (10)

λ1 + λ2 + λ3 + λ4 + λ5 = 1, (11)

δij ∈ {0, 1}, zij ∈ {0, 1}, yi ∈ {0, 1}, λi ∈ {0, 1}. (12)
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In the objective function, Dij is the distance between the barycentre and the points at
the border and M is a big constant. In the constraints, Rx is the larger radi of the ellipsoid
and rmax is the bigger possible value for a radii of a sphere in a given ellipsoid. This
model is divided in three groups of constraints: the first group comprises the constraints
(3) and (4) that are related to covering, the ones from (5) to (9) are on the second group
and are related to the intersections between the spheres and the last group is formed by
constraints (10) and (11) that sets the radi of each sphere. The constraint (3) means that
it is possible that each barycentre cover all border points and have intersections with other
barycenters. The constraint (4) assures that each border point will be covered by at least
one barycentre. Constraint (5) estabilishes that one barycenter has to intercept at least one
other. Constraint (7) makes the spheres cover the point(s) of the border that are closer.
Constraints (8) and (9) estabilishes that two spheres can have just one point of intersection
or have some intersection without being superimposed or they do not have any intersection.
Constraint (10) together with (11) and (12) estabilishes one radii among {0, 2, 4, 7, 9} for
each sphere. If the sphere is not selected its radi is 0. It is noteworthy that this model is
convex.

2.1 Evaluation of the level of covering in a weak discrete ellipsoidal cov-
ering (WDEC)

Here we try to evaluate if the (WDEC) can provide a good covering and give a simple con-
dition to have Pell(E(c, R)) = Pell(E(c, R)), that is, the weak discrete ellipsoidal covering
equals to the discrete ellipsoidal covering. Aiming at this purpose we build the results and
definitions that are in this section.

Definition 6. Given d > 0, an ellipsoid E(c, R) and Pell(E(c, R)) = (C,r) and a (WDEC)
for E(c, R) we define:

• A mesh for E(c, R) is the intersection: E(c, R) ∩M(d) where:

M(d) = {w ∈ R3;w = c+ (−Rx : d : Rx,−Ry : d : Ry,−Rz : d : Rz)}.

This means that the mesh is generated accordingly to each (Rx, Ry, Rz) of the ellipsoid
and the distance d between its points will determine if there will be more or less points
at the mesh.

• The level of covering of a (WDEC) Pell(E(c, R)) = (C,r) is defined by:

IP (Pell(E(c, R))) = ℵ0(Pell(E(c,R)∩M(d)))
ℵ0(M(d)) ,

where: Pell(E(c, R) ∩M(d)) = {w ∈ M(d) ∩ S(w̃, r̃)} for some pair (w̃, r̃) ∈ (C,r).

• We say that a (WDEC) Pell(E(c, R)) = (C,r) of (E(c, R)) is total or perfect if
IP (Pell(E(c, R))) = 1.

Proposition 5 gives us a characterization between the ellipsoidal covering and the
weak ellipsoidal covering.

Proposition 4. Given d > 0, a mesh M(d), a (WDEC) Pell(E(c, R)) = (C,r) for E(c, R)
and set Pelld(E(c, R)) = (C, rd) where rd(i) = r(i)− d

√
3, i = 1, . . . , n, then

Pelld(E(c, R)) = Pelld(E(c, R)) if and only if IP (Pelld(E(c, R))) = 1.
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Proof 4. If Pelld(E(c, R)) = Pelld(E(c, R)) then for all v ∈ E(c, R), ∃S(w, r) so that
‖v − w‖ ≤ r. If it happens, particularly, the points that belong to the mesh are covered by
at least one sphere, so we have

ℵ0(Pell(E(c,R)∩M(d)))
ℵ0(M(d)) = ℵ0(Pell(E(c,R)∩M(d)))

ℵ0(Pell(E(c,R)∩M(d))) = 1.

Given v ∈ E(c, R), ∃ w ∈ M(d) so that ‖v − w‖ ≤ d
√
3. If IP (Pelld(E(c, R))) = 1, ∃ wi ∈

Pelld(E(c, R)) so that ‖w − wi‖ ≤ d(i)− d
√
3. So we have

‖v − wi‖ ≤ ‖v − w‖+ ‖w − wi‖ ≤ d
√
3 + ri − d

√
3.

So there exists wi ∈ c and ri ∈ R so that ‖v − wi‖ ≤ ri.

At this point of the work we are implementing a GRASP metaheuristic and after finish-
ing this, we intend to use CPLEX in order to solve this problem and compare results.

The reduced number of references is due to the lack of published works about this prob-
lem in the literature.
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