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ABSTRACT
In the two-stage capacitated facility location problem a single product is produced at some plants 
in  order  to  satisfy customer  demands.  The product  is  transported from these  plants  to  some 
depots and then to the customers. The capacities of the plants and depots are limited. The aim is 
to select cost minimizing locations from a set of potential plants and depots. This cost includes 
fixed cost  associated with opening plants  and depots,  and variable cost  associated with both 
transportation stages. In this work, several Lagrangian relaxations are analyzed and compared, a 
Lagrangian heuristic producing feasible solutions is presented. The results of a computational 
study are reported.

KEYWORDS. Two stage facility location problem, Lagrangian Relaxation, Lagrangian Heuristic, 
Subgradient Technique. 
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1. Introduction

The two-stage capacitated facility location problem can be defined as follows: a single 
product is produced at plants and then transported to depots, both having limited capacities. From 
the  depots  the  product  is  transported  to  customers  to  satisfy their  demands.  The  use  of  the 
plants/depots incurs a fixed cost, while transportation from the plants to the customers through 
the depots results in a variable cost. We need to identify what plants and depots to use, as well as 
the product flows from the plants to the depots and then to the customers such that the demands 
are met at a minimal cost.

Facility location problems have numerous applications and have been widely studied in 
the  literature, see the review publications by Daskin, Snyder & Berger (2003), Klose & Drexl 
(2004)  and  Melo,  Mickel  &  Saldanha-da-Gama  (2009)  and  the  references  therein.  Various 
applications of the facility location in supply chain optimization and management are presented 
in Wang (2011) and Minis et al. (2011). 

Various exact approaches have been proposed for the location problems. For example, 
Avella & Boccia (2007) presented a family of minimum knapsack inequalities of a mixed type, 
containing  both  binary  and  continuous  (flow)  variables  for  the  capacitated  problem  and 
developed a branch and cut and price algorithm to deal with large scale instances. Klose & Drexl 
(2005) considered a  new lower bound for  the  capacitated facility location problem based on 
partitioning the plant set and employing column generation. 

Approximate approaches can be roughly divided into two large groups: metaheuristics 
and Lagrangian based techniques.  Metaheuristic  approaches  to  the  problem like  tabu search, 
GRASP, are discussed in Filho & Galvão (1998). An algorithm for large instances is presented in 
Barahona & Chudack (2005), they used a heuristic procedure  that produces a feasible integer 
solution and used a Lagrangian relaxation to obtain a lower bound on the optimal value.

A Lagrangian based heuristic for solving the capacitated plant location problem with side 
constraints  was  presented  in  Sridharan  (1991).  Approaches  and  relaxations  proposed  in  the 
literature for the capacitated facility location problem are compared in Cornuejols, Sridharan & 
Thizy (1991).  A linear programming based heuristic is considered in Klose (1999) for a two-
stage capacitated problem with single source constraints. Wollenweber (2008) proposed a greedy 
construction  heuristic  and  a  Variable  Neighborhood  Descent  and  a  Variable  Neighborhood 
Search  for  the  multi-stage  facility  location  problem  with  staircase  costs  and  splitting  of 
commodities. In Landete & Marín (2009) the asymmetry inherent to the problem in plants and 
depots  is  taking  into  account  to  strengthening  the  formulation.  Gendron  &  Semet  (2009) 
presented  two  formulations  for  the  problem  and  compared  the  linear  relaxation  of  each 
formulation and the binary relaxation of the model.

Several Lagrangian relaxation approaches have been proposed for the two stage facility 
location  problem.  For  the  uncapacitated  case  Chardaire,  Lutton  & Sutter  (1999)  studied  the 
effectiveness of the formulation for the two level simple plant location problem incorporating 
polyhedral  cuts  and proposed an approach combining  a  Lagrangian relaxation method and a 
simulated annealing algorithm. Lu & Bostel (2005) proposed an algorithm based on Lagrangian 
heuristics for a 0-1 mixed integer model  of a two level location problem with three types of 
facility  to  be  located.  In  Marín  (2007)  a  mixed  integer  formulation  and  several  Lagrangian 
relaxations to determine lower bounds for the two stage uncapacitated facility location problem 
are presented.

The Lagrangian relaxation for the capacitated case was studied and numerically tested in 
Barros & Labbé (1994).  Bloemhof et al.  (1996) studied alternative model formulations of the 
capacitated problem obtaining lower bounds by Lagrangian relaxations of  the flow-balancing 
constraints. They also developed heuristic procedures to obtain feasible solutions. In Marín & 
Pelegrín (1999) several Lagrangian relaxations for two different formulations of the two-stage 
problem are computationally compared. Tragantalerngsak et al. (1999) proposed a Lagrangian 
relaxation-based  branch and bound algorithm for  the  two-echelon,  single  source,  capacitated 
problem. A Lagrangian heuristic is proposed in Klose (2000) using relaxation of the capacity 
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constraints for the problem with a fixed number of plants. Feasible solutions are constructed from 
those of the Lagrangian sub problems by applying simple reassignment procedures.

In many techniques Lagrangian relaxation is used in twofold: the optimal value of the 
Lagrangian (dual) problem is used as a dual bound, while the Lagrangian solution is used as a 
starting or  reference point  to  produce a  feasible  solution and a corresponding primal  bound. 
Frequently a relaxation is considered as good if it produces a tight dual bound. Meanwhile, the 
quality of the feasible Lagrangian based solution has also to be taken into account in evaluating 
the relaxation.  There are often different  ways  in which a given problem can be relaxed in a 
Lagrangian fashion. It is unlikely to highlight a single relaxation producing high quality bounds 
of both types, primal and dual. Moreover, if the quality of the dual bound is basically defined by 
the constraints relaxed, the quality of the primal bound depends also on the algorithm used to 
restore the feasibility of the Lagrangian solution.

In this paper we consider a simple decomposable relaxation and an algorithm to restore 
the feasibility of the corresponding Lagrangian solution. This relaxation produces a poor dual 
bound and never been considered before as a promising relaxation. Meanwhile, the relaxation 
results in a very tight feasible solution typically within 0.5-1.0% of the relative sub optimality.
The  rest  of  the  paper  is  organized  as  follows.  The  next  section  presents  a  mathematical 
formulation for the two-stage facility location problem and the Lagrangian bound. A heuristic 
procedure to get feasible solutions is presented in section 3. Computational results are reported in 
section 4, while section 5 concludes.

2. Problem formulation and Lagrangian bound

To formally describe the problem, let I = 1,…,n be the index set of potential plants, J = 
1,…,m the index set of potential depots and K=1,…,k the index set of clients. Then, the problem 
can be formulated as the following mixed integer linear program: 

( ) ( ), ,
i i j j ij ij jk jk

i I j J i I j J j J k K

w mín f y g z c x d s
∈ ∈ ∈ ∈ ∈ ∈

= + + +∑ ∑ ∑ ∑ (1)

. . :                 ; ,ij i
j J

s t x b i I
∈

≤ ∈∑ (2)

            ; ,ij j
i I

x p j J
∈

≤ ∈∑   (3)

            ; ,jk k
j J

s q k K
∈

≥ ∈∑  (4) 

        ; ,ij jk
i I k K

x s j J
∈ ∈

≥ ∈∑ ∑  (5)

               ; ,  ,ij ij ix m y i I j J≤ ∈ ∈              (6) 
               ; ,  ,jk jk js l z j J k K≤ ∈ ∈       (7)

{ }, , , 0,1  ij jk i jx s R y z+∈ ∈  (8)

Here if  and jg  are the fixed costs associated with the installation of plant i and depot j; 

ijc  and jkd  are the costs of transportation from plant  i to depot  j and from depot  j to client  k, 

respectively;  kq  is  the  demand  of  client  k;  while  ib  and  jp  are  the  capacities  of  the 

corresponding plant and depot. The variables in this formulation are 1iy =  if plant i is installed 

and  0iy =  otherwise,  1jz =  if  depot j is  installed  and  0jz =  otherwise,  ,ij jkx s  are  the 

transportation flows between the corresponding units.
Constraints (2) and (3) represent capacity limits for plants and depots, (4) is the demand 

constraint  (for  each  customer,  at  least  the  demand  must  be  met),  (5)  is  the  relaxed  flow 
conservation constraint (the product transported from the depot must at least be transported to it 
from the plants), constraints (6) and (7), together with (8), assure that there is a flow only from 

plants and depots installed. Constants ,ij jkm l represent the upper bounds for the respective flows, 
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we may set, e.g., { },ij i jm min b p=  ; { },jk j kl min p q=  . Note that by minimizing the objective 

(1), constraints (5) are fulfilled as equalities for an optimal solution of (1)-(8).
Constraints  (6),  (7)  can  be  stated  in  a  more  compact  form  yielding  an  equivalent 

formulation of the two stage location problem (formulation B):

( ) ( ), ,
i i j j ij ij jk jk

i I j J i I j J j J k K

w mín f y g z c x d s
∈ ∈ ∈ ∈ ∈ ∈

= + + +∑ ∑ ∑ ∑ (9)

 . . :                 ; ,jk k
j J

s t s q k K
∈

≥ ∈∑ (10)

        ; ,ij jk
i I k K

x s j J
∈ ∈

≥ ∈∑ ∑ (11)

           ; ,ij i i
j J

x b y i I
∈

≤ ∈∑          (12)

          ; ,ij j j
i I

x p z j J
∈

≤ ∈∑ (13)

{ }, , , 0,1  ij jk i jx s R y z+∈ ∈ (14)
Constraints (12) together with (14) assure the outflows only from plants opened, while 

constraints (13) together with (11) assure the flows only from and to depots opened. 
Formulations A and B are equivalent in the sense that both result in the same optimal 

solution. However, they have different polyhedral structure of the feasible sets and thus we may 
expect that relaxing the same constraints may result  in different values for the corresponding 
Lagrangian bounds. 
 Lagrangian bounds are widely used as a core of many numerical techniques, e.g. in 
branch and bound schemes for integer and combinatorial problems. Most Lagrangian relaxation 
approaches for the capacitated facility location problem are based either on dualizing the demand 
constraints or the depot capacity constraints (Klose, 1999). 

For the formulation A defined by (1)-(8) five “decomposable” Lagrangian relaxations are 
considered, denoted as follows (all Lagrangian multipliers are assumed to be nonnegative):
RA1: constraints (5), representing interconnections between the two stages, are dualized giving a 
Lagrangian problem that can be decomposed into a sub problem for the first stage (plants) in 
variables ,x y and a sub problem corresponding to the second stage (depots) in ,s z .

RA2: constraints (6) are dualized giving the Lagrangian problem that can be decomposed into I

subproblems of the form RA2
1 { ( ), {0,1}}i i i ij ij iw mín y f u m y= − ∈ , which can be analyzed analytically 

and a sub problem in variables , ,x s z .

RA3: constraints (7) are dualized. Similar to RA2 we get J  sub problems in variables z and a 

sub problem in (x,s,y).
RA4: constraints  (2) and (4),  binding with respect  to index  j,  are dualized.   The Lagrangian 

problem then decomposes into J  independent sub problems.

RA5: constraints (3) and (5) are dualized. Similar to RA1 this Lagrangian problem decomposes 
into a sub problem corresponding to the first stage (plants), and a sub problem corresponding to 
the second stage (depots).

The Lagrangian relaxations for the formulation B defined by (9)-(14) are as follows:
RB1: constraints (11) are dualized giving two Lagrangian sub problems: a sub problem in (x,y,z), 

and a sub problem in s. The latter problem is decomposed into K  independent continuous one-

dimensional knapsack problems which can be analyzed analytically.

RB2: constraints  (12)  are  dualized,  resulting  in  I  independent  sub  problems  of  the  form 
RB2
1 { ( ), {0,1}}i i i i i iw mín y f u b y= − ∈ with only one binary variable  and a sub problem in (x; s; z). 

RB3: constraints (13) are relaxed giving similar to RB2 J  independent sub problems in z and a 

sub problem in (x; s; y).

3643



September 24-28, 2012
Rio de Janeiro, Brazil

RB4: constraints (10) and (12) are dualized. The Lagrangian problem then decomposes into I

independent  sub  problems  of  the  form RB4
1 { ( ), {0,1}}i i i i i iw mín y f v b y= − ∈ ,  that  can  be  analyzed 

analytically, and a  sub  problem in  (x;  s;  z).  The latter  decomposes  into J  independent  sub 

problems  with only one binary variable  and can be solved by inspection (see,  e.g.,  Wolsey, 
1999), fixing z to 0 or 1 and then solving the remaining problem with continuous variables (x,s).
RB5: constraints (11) and (13) are dualized, the Lagrangian problem decomposes into three types 

of  sub  problems.  We  have  J  independent  sub  problems  in  z of  the  form 
RB5 { ( ), {0,1}}j j j j j jw mín z g v p z= − ∈ .  We also have  K  independent continuous one-dimensional 

knapsack sub problems in s , and I independent sub problems in ,x y . The latter problem has 

only one binary variable and can be solved by inspection.
The problem of finding the best,  i.e.  bound maximizing Lagrange multipliers, is called 

the Lagrangian dual. To solve the Lagrangian dual problem one can apply a constraint generation 
scheme (Benders method) transforming the dual problem into a large-scale linear programming 
problem.  The  main  advantage  of  using  Benders  technique  is  that  it  generates  two-sided 
estimations for the dual bound in each iteration thus producing near-optimal dual bound with 
guaranteed quality. Meanwhile, the computational cost of this scheme is typically high. Another 
popular approach to solve the dual problem is by subgradient optimization. In contrast to the 
Benders method, the subgradient technique does not provide the value of the bounds with the 
prescribed  accuracy.  That  is,  terminating  iterations  of  the  subgradient  method  using  some 
stopping criteria we can expect only approximate values of the bound. We do not consider here 
these  two  well-known approaches  in  details,  referring  the  reader  to  Lasdon(1970)  ,  Wolsey 
(1999)  and Conejo (2000)   for  the  constraint  generation (Benders)  technique,  and to  Martin 
(1999) and Guignard (2003) for the subgradient scheme.

4. Getting feasible solutions

To get a feasible solution from the Lagrangian one we use a simple algorithm to recover 
feasibility. In fact, this approach can be applied to any nonfeasible solution.

Let ,ij jkx s  be a nonfeasible solution

Do 1 00, , ,iy i I I I= ∀ = ∅ = ; 

      1 00, , ,jz j J J J= ∀ = ∅ = .

Step 0: Do ,
ij jk

j J k K
i j

i j

x s
y z

b p
∈ ∈← ←
∑ ∑

.

Step 1: { }*
0arg ii max y i I= ∈ .                  

Step 2: { } { }*

* *
1 1 0 01, ,

i
y I I i I I i← ← ∪ ← − .                    

Step 3: If 
1

i k
i I k K

b q
∈ ∈

≥∑ ∑  go to step 4 and do 00,iy i I= ∀ ∈ , otherwise, return to step 1.

Step 4: { }*
0arg jj max z j J= ∈ .

Step 5: { } { }*

* *
1 1 0 01, ,

j
z J J j J J j← ← ∪ ← − .

Step 6: If 
1

j k
j J k K

p q
∈ ∈

≥∑ ∑  go to step 7 and do 00,jz j J= ∀ ∈ , otherwise, return to step 4.
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Step 7: Fix iy and jz  in the original problem and solve the corresponding linear problem to obtain 

the flows.
In this algorithm we calculate for each plant a “saturation” indicator representing the 

relative usage of its capacity (step 0). Then the plant having the highest saturation is opened (step 
1). If the capacity is sufficient to satisfy the total customers' demand, the rest of the plants are 
closed, otherwise the plant having the next highest indicator is opened too (steps 2 and 3). The 
depots are opened in a similar way (steps 3, 5 and 6). Fixing the binary variables obtained by this 
procedure, the flows are determined from the corresponding linear problem. 

5. Computational results

A numerical study for the two-stage capacitated facility location problem was conducted 
to compare the bounds. The following sets of instances were generated according to the values (I; 
J;  K):  A(3;  5;  9);  B(5;  7;  30);  C(7;  10;  50);  D(10;  10;  100);  E(10;16;30);  F(30;30;30); 
G(30;36;120); H(30;30;100); I (50;50;200). Every set contains 20 problem instances. The data 
were random integers generated as follows:

[ ] [ ]

[ ] [ ]

, 10, 20 ,  q 1,10 ,

10 0,10 ,  10 0,10

ij jk k

i j

c d U U

J K K
b U p U

I J

∈ ∈

+   ∈ + ∈ +      
Two different  ways  to  generate  the  fixed  costs  were  implemented.  For  the  first  ten 

instances in each class the fixed costs fi,gj were random integers generated independently on the 
number clients, plants and depots: [ ] , 100, 200i jf g U∈ .  For the remaining ten instances the fixed 
costs fi for plants were proportional to the number of depots and clients, while the fixed costs gj  
for depots were proportional to the number of clients:

[ ] [ ]100 0,100 ; 100 0,100i j

K J K
f U g U

I J

+   ∈ + ∈ +      
The  dual  bound  corresponding  to  the  Lagrangian  relaxation  was  calculated  by  the 

subgradient technique. In each iteration of this method the feasible solution was obtained by the 
Algorithm.

The  best  (over  all  iterations)  feasible  solution  was  stored.  The  current  best  feasible 
solution was used to update the step size. If after 5 consecutive iterations of the subgradient 
technique the dual bound was not improved, the half of the step size scaling parameter was used. 
The process stops if  the step size scaling parameter  is less than 0:0001,  or  if  the maximum 
number (300) of iterations is reached. The procedure was implemented in GAMS/CPLEX 11.2 
using a Sun Fire V440 terminal, connected to 4 processors Ultra SPARC III with 1602 Hhz, 1 
MB of CACHE, and 8 GB of memory.

For all the instances we have calculated:

• IPz  – the value of the optimal objective of the two stage location problem.

• Lz - the value of the best Lagrangian bound.

• BFz  - the objective value corresponding to the best feasible solution.

The relative quality of the Lagrangian bound and of the best feasible solution was measured by

100%IP L
L

IP

z z

z
ε −= ×  and 100%BF IP

BF
BF

z z

z
ε −= × ,

correspondingly. The similar proximity indicators are used to measure the quality of the bounds 
and feasible solutions derived from other relaxations and other feasible solutions.
The results obtained for the Type 1 instances are presented in Table 1. 
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Table 1 – Type 1 instances.

Lagrangian relaxations Feasible solutions
In the top 3 (%) Best bound (%) In the top 3 (%) Best bound (%)

Size RB1 RB2 RB3 RB1 RB2 RB3 RA2 RA3 RB4 RA2 RA3 RB4
A 70 80 40 10 0 20 70 90 90 70 90 80
B 70 80 70 10 20 60 20 90 80 10 80 50
C 90 80 50 20 40 30 20 80 90 10 60 40
D 70 80 10 40 10 0 20 90 90 20 40 50

The  first  group  of  columns  in  Table  1  represents  (in  %)  how  many  times  the 
corresponding dual bound appeared among the best 3 bounds.  The second group of columns 
shows (in %) how many times the corresponding dual bound was the best. The indicators are 
presented only for the dual bounds corresponding to RB1, RB2 and RB3 since they were most 
frequently among the best.  The last columns present indicators for the best feasible solutions 
obtained by the Algorithm in the course of solving the dual problem. The third group of columns 
in Table 1 represents (in %) how many times the corresponding feasible solution appeared among 
the best 3 solutions.  The last group of columns shows (in %) how many times the corresponding 
feasible solution was the best. The indicators are presented only for the feasible solutions derived 
from RA2, RA3, and RB4 since they were most  frequently among the best. Table 2 presents 
similar results for the Type 2 instances.

Table 2 – Type 2 instances.

Lagrangian relaxations Feasible solutions
In the top 3 (%) Best bound (%) In the top 3 (%) Best bound (%)

Size RB1 RB2 RB3 RB1 RB2 RB3 RA2 RA3 RB4 RA2 RA3 RB4
A 80 90 100 0 10 90 90 90 60 90 90 60
B 100 100 100 10 10 80 90 50 50 60 40 20
C 100 100 100 20 20 60 80 70 70 40 30 40
D 100 100 100 40 20 40 90 40 90 70 10 40

As can be seen from Tables 1 and 2, the bound corresponding to RB3 appears frequently 
among the best Lagrangian bounds. Considering the quality of the feasible solutions we may 
highlight RB4 which is frequently among the best and is easier to calculate than RA3.  We note 
that relaxations giving the best dual bounds were never among those producing the best feasible 
solutions.

In the Lagrangian problem corresponding to RB4 the demand and the capacity plant con-
straints are relaxed. The problem decomposes into the following sub problems:
RB4: constraints (10) and (12) are dualized:

( ) ( )

RB4

, ,

( ) ( )i i j j ij ij jk jk k k jk i ij i i
i I j J i I j J j J k K k K j J i I j J

w mín f y g z c x d s u q s v x b y
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

= + + + + − + −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
           ; ,ij jk

i I k K

x s j J
∈ ∈

≥ ∈∑ ∑
             ; ,ij j j

i I

x p z j J
∈

≤ ∈∑
{ }, , , 0,1  ij jk i jx s R y z+∈ ∈

 The Lagrangian problem then decomposes into I independent sub problems of the form 
RB4
1 { ( ), {0,1}}i i i i i iw mín y f v b y= − ∈ , that can be analyzed analytically, and a sub problem in (x; s;  

z):

3646



September 24-28, 2012
Rio de Janeiro, Brazil

( ) ( )

RB4
2

, ,

( ) ( )j j ij i ij jk k jk
j J i I j J j J k K

w mín g z c v x d u s
∈ ∈ ∈ ∈ ∈

= + + + −∑ ∑ ∑
           ; ,ij jk

i I k K

x s j J
∈ ∈

≥ ∈∑ ∑
             ; ,ij j j

i I

x p z j J
∈

≤ ∈∑
{ }, , 0,1  ij jk jx s R z+∈ ∈ .

The latter decomposes into J  independent sub problems of the form:

RB4 ( ) ( )j j j ij i ij jk k jk
i I k K

w mín g z c v x d u s
∈ ∈

= + + + −∑ ∑
ij jk

i I k K

x s
∈ ∈

≥∑ ∑
  ij j j

i I

x p z
∈

≤∑
{ }, , 0,1  ij jk jx s R z+∈ ∈ .

This problem has only one binary variable and can be solved by inspection (see, e.g., 
Wolsey,  1999),  fixing  z  to  0  or  1  and  then solving the  remaining  problem with  continuous 
variables (x,s).

Thus we may conclude that  the computational  cost  to solve the  Lagrangian problem 
corresponding to the relaxation RB4 is very low, in fact no integer problem is involved. 

Table  3  present  the  results  obtained  for  the  first  way to  generate  data  for  the  RB4 
relaxation, while Table 4 gives the results for the second way to generate data for  the same 
relaxation. The results are shown for 5 different instances for each problem size. The first two 
columns present the proximity indicators for the corresponding dual bound and for the best (over 
all  iterations)  feasible  solution  obtained  by  the  Algorithm.  The  last  two  columns  give  the 
proximity indicator for the feasible solution corresponding to the last and the first iteration of the 
subgradient  technique.  The  number  in  the  parenthesis  indicates  the  number  of  the  iteration 
corresponding to the bound value.

Table 3 – Results for RB4 type 1.

Size Lε (%) BFε (%) LFε (%) FFε (%)

A1 12.30 1.81 (14) 5.07 (135) 12.51
A2 2.31 0.00 (31) 0.00 (89) 14.95
A3 7.74 0.57 (5) 4.21 (138) 4.21
A4 6.39 0.00 (9) 0.00 (128) 11.63
A5 11.03 0.00 (4) 3.79 (130) 3.79
B1 6.04 0.00 (27) 0.99 (124) 3.47
B2 4.03 0.00 (17) 0.00 (135) 2.35
B3 5.93 1.26 (16) 4.73 (132) 2.66
B4 4.97 0.00 (15) 4.91 (147) 4.18
B5 4.15 0.18 (28) 0.18 (102) 8.37
C1 4.89 0.00 (36) 1.78 (118) 3.39
C2 4.43 0.35 (9) 2.81 (116) 8.22
C3 2.88 0.03 (8) 2.28 (151) 7.59
C4 4.59 0.00 (28) 6.57 (116) 8.49
C5 3.03 0.00 (28) 2.43 (118) 6.91
D1 2.89 0.00 (16) 4.26 (113) 5.30
D2 2.43 0.00 (24) 3.14 (129) 7.44
D3 3.75 0.00 (96) 5.55 (131) 9.71
D4 3.70 0.49 (1) 2.16 (130) 4.19
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D5 2.07 0.00 (105) 1.75 (153) 3.79

Table 4 – Results for RB4 type 2.

Size Lε (%) BFε (%) LFε (%) FFε (%)

A1 13.64 0.51 (9) 4.72 (214) 10.31
A2 4.79 0.00 (29) 0.00 (166) 14.48
A3 5.33 0.43 (2) 13.46 (158) 18.41
A4 6.89 0.00 (28) 10.17 (188) 11.98
A5 19.09 0.00 (1) 0.00 (157) 0.00
B1 13.18 0.00 (137) 0.79 (212) 2.09
B2 9.09 0.00 (58) 1.62 (250) 1.44
B3 8.29 1.57 (22) 9.79 (250) 8.63
B4 5.49 0.00 (61) 6.01 (243) 6.01
B5 9.32 0.11 (21) 0.11 (252) 14.79
C1 6.68 0.00 (62) 8.28 (223) 9.95
C2 10.83 0.25 (181) 2.11 (270) 5.06
C3 6.84 0.56 (76) 2.28 (258) 4.64
C4 8.55 0.00 (27) 4.80 (237) 5.28
C5 6.47 0.00 (47) 1.49 (250) 4.34
D1 6.32 0.20 (62) 2.12 (284) 6.79
D2 6.08 0.40 (237) 4.34 (256) 4.48
D3 8.48 0.00 (67) 1.62 (277) 5.64
D4 7.29 1.91 (18) 8.18 (250) 8.45
D5 5.57 0.19 (153) 3.58 (276) 2.19

Along with the set instances A – D we have used larger instances generated according to 
the values (I; J; K):

• E(10; 16; 30);
• F(30; 30; 30);
• G(30; 60; 120);
• H(30; 30; 100);
• I(50; 50; 200). 

Table 5 – Results for RB4 type 1.

Size Lε (%) BFε (%) LFε (%) FFε (%)

E1 4.56 0.00 (59) 0.10 (225) 11.65
E2 5.03 0.53 (92) 0.75 (217) 7.79
E3 3.94 1.37 (49) 5.67 (231) 12.86
E4 3.47 0.52 (134) 2.05 (256) 9.14
E5 4.25 0.46 (191) 6.07 (256) 9.10
F1 2.21 0.75 (109) 1.44 13.92
F2 1.89 0.00 (53) 0.89 (235) 13.67
F3 1.88 0.03 (58) 1.17 (198) 15.48
F4 1.61 1.55 (264) 3.67 19.47
F5 1.91 0.55 (60) 1.66 (266) 13.71
G1 1.10 0.37 (240) 1.91 8.11
G2 0.99 1.18 (88) 1.58 7.63
G3 1.13 0.21 (249) 1.24 8.69
G4 0.94 0.56 (100) 1.81 7.42
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G5 0.67 0.23 (194) 0.87 9.92
H1 1.04 0.46 (284) 2.02 10.28
H2 1.29 0.47 (168) 1.04 5.84
H3 1.49 0.38 (191) 1.57 8.18
H4 1.39 0.77 (284) 2.57 7.16
H5 1.73 0.73 (147) 3.93 8.83
I1 0.96 0.52 (199) 1.27 5.98
I2 0.93 0.81 (130) 2.52 6.44
I3 0.78 1.09 (196) 1.49 7.01
I4 0.73 0.92 (202) 1.57 5.94
I5 0.64 1.04 (94) 1.90 6.44

Table 6 – Results for RB4 type 2.

Size Lε (%) BFε (%) LFε (%) FFε (%)

E1 4.04 2.54 (44) 9.06 (227) 13.75
E2 9.56 0.79 (71) 0.79 (205) 4.93
E3 3.71 5.76 (51) 6.83 (293) 14.73
E4 6.25 0.00 (108) 1.69 (233) 7.35
E5 7.40 0.32 (56) 8.03 (277) 8.79
F1 3.15 0.67 (133) 1.31 (257) 13.41
F2 2.94 0.00 (60) 1.14 (261) 15.65
F3 2.28 0.95 (56) 2.93 (250) 14.24
F4 2.90 0.93 (51) 2.06 (261) 13.58
F5 2.96 0.64 (32) 5.42 (277) 20.07
G1 3.33 0.61 (194) 1.12 6.94
G2 1.98 0.82 (128) 1.56 8.22
G3 1.27 0.46 (120) 2.60 8.29
G4 0.87 0.16 (260) 1.11 7.15
G5 1.51 0.70 (87) 1.87 9.14
H1 1.64 1.16 (206) 2.52 8.33
H2 2.23 0.58 (214) 2.88 8.28
H3 1.54 0.23 (240) 2.25 7.26
H4 1.47 0.58 (127) 3.49 5.37
H5 1.14 0.43 (78) 2.64 8.81
I1 1.09 0.79 (211) 1.09 6.61
I2 1.95 0.81 (207) 2.27 5.62
I3 1.59 1.41 (221) 1.81 5.28
I4 1.29 1.01 (168) 2.89 6.59
I5 1.48 0.94 (146) 1.78 5.67

As we can see from the Tables for both ways to generate the data the approach provides 
very tights feasible solutions, typically within 0.5-1.0% of the relative proximity.  So we may 
expect that the population of the Lagrangian solutions generated by the subgradient technique in 
the course of solving the Lagrangian dual is sufficient for the Algorithm to generate high quality 
feasible solutions. The quality of the dual bund is poor, improving for larger instances.

The feasible solution derived from the solution of the Lagrangian dual and corresponding 
to the last iteration of the subgradient technique not necessarily is the best feasible solution.
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Moreover, typically  LFε >  BFε  and the best feasible solution is obtained on the early 

iterations of  the subgradient  method.  Thus we may conclude that  it  is  important  to generate 
feasible solutions in all iterations of the subgradient technique.

5. Conclusions

Lagragian bound was presented for the two stage capacitated facility location problem. 
Two  indicators  were  considered:  the  quality  of  the  dual  bound  and  the  proximity  of  the 
Lagrangian based feasible solution. It turned out that relaxing the demand and the capacity plant 
constraints provides a rather poor dual bound, but the Lagrangian based feasible solutions are 
good,  typically  within  0.5-1.0% of  the  relative  suboptimality.  Relaxing  the  demand  and the 
capacity plant constraints result in a decomposable Lagrangian problem with all sub problems 
analyzed by inspection. Thus this low cost relaxation seems to be promising to form the core of 
the Lagrangian based heuristics.

Solving the dual problem by the subgradient technique we compared two approaches to 
generate a feasible Lagrangian based solution. One is to get a feasible one by the solution of the 
dual  problem,  i.e.  at  the  last  iteration  of  the  subgradient  technique.  Another  approach  is  to 
generate  feasible  solutions  in  all  iterations  of  the  subgradient  method  and  then  choose  the 
tightest. It turned out that the best (over all iterations) feasible solution never was obtained at the 
last iteration. That is, simply solving the Lagrangian dual and getting a corresponding Lagrangian 
based feasible solution is not sufficient to produce a tight feasible solution. On the contrary, the 
population of the Lagrangian solutions generated by the subgradient technique in the course of 
solving the Lagrangian dual is sufficient to generate high quality feasible solutions.
An interesting direction for  the  future  research is  improving  the  heuristic used to derive  the 
feasible solutions. Some complements in this direction are in course.
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