
September 24-28, 2012
Rio de Janeiro, Brazil

A new Simplex method updating procedure applied to linear systems
arising from the cutting stock problem

Daniela R. Cantane
Department of Bio-statistics, Institute of Bio-Sciences, UNESP, Distrito de Rubião Júnior, S/N CEP:

18618-970, Botucatu, SP, Brazil.
E-mail: dcantane@ibb.unesp.br

Carla L. T. S. Ghidini
Institute of Mathematics, Statistics and Scientific of Computation, UNICAMP, Sérgio Buarque de

Holanda, 651, CEP:13081-970, Campinas, SP, Brazil.
E-mail: carla@ime.unicamp.br

Aurelio R. L. Oliveira
Institute of Mathematics, Statistics and Scientific of Computation, UNICAMP, Sérgio Buarque de

Holanda, 651, CEP:13081-970, Campinas, SP, Brazil.
E-mail: aurelio@ime.unicamp.br

Christiano Lyra
Electric Engineering and Computation School, UNICAMP, Av. Albert Einsten, 400, CEP:13083-852,

Campinas, SP, Brazil.
E-mail: chrlyra@densis.fee.unicamp.br

Abstract

The objective of this work is to apply efficient Simplex-basis LU factorization update techniques
to improve the column updating performance of the Simplex method, when used to solve cutting stock
problems. Only the factored columns actually modified by the change in the basis are considered, to
obtain an efficient LU factorization update. The matrix columns are reordered according to a specific
given strategy. Thus, sparse factorizations are obtained for any basis without computational effort, to
obtain the order of the columns, because the reordering of the matrix is static, and the basis columns
follow this ordering. The proposed method achieves a reduction in the computational time for the solu-
tion of the cutting stock problems when compared with the GLPK.

Keywords: sparse matrix, LU factorization update, Simplex method, cutting stock problem.
Main area (Mathematical Programming).

3511

September 24-28, 2012
Rio de Janeiro, Brazil

1 Introduction

The cutting stock problem is applicable to various types of industries, including paper, furniture, tex-
tiles, and steel. The decisions concerning these problems interact with other decisions that are relevant
to production planning, and, thus, determining the optimal solution to the cutting stock problem is
important.

The cutting stock problem consists of cutting standard objects that are available in stock into smaller
items to meet a known demand, by optimizing a given objective function, e.g., by minimizing the total
number of objects in stock during each period or by minimizing the waste of raw material. This problem
can be formulated as an integer linear optimization problem. The relevance of this type of approach
has been demonstrated by the popularity of the pioneering works of Gilmore and Gomory [5, 6] as the
subject of many research studies, in which techniques were proposed to obtain a continuous optimal
solution to the relaxed problem.

The aim of this paper is not to study the cutting stock problem in detail or to propose a new method
for its solution, which can be found in Poldi and Arenales [12]. The main goal is to present innovations
that improve the performance of the proposed methods in the literature. Specifically, we present a
new technique of the LU factorization update that can be used to solve the linear systems that arise at
each iteration of the Simplex method. The Simplex method with column generation, thus, provides a
continuous solution to the cutting stock problem.

The efficient solution of large-scale linear systems is important for solving linear optimization prob-
lems. These systems can be approached through generic methods, for example, the LU factorization of
the basis and its update, or through the problem specific structure exploitation, as in the network flow
problem in Kennington and Helgason [9].

In this study a static reordering of the basis columns of the cutting stock problem using the Sim-
plex method with column generation is developed together with an efficient update of the entering and
leaving columns of the basis. The LU factorization is performed only in the columns that are actually
modified by the entering and/or leaving columns in the basis.

The newly proposed update presents a completely different approach when compared with the tra-
ditional methods of Duff et al., and Maros [3, 11]. In the LU factorization update, the operations of
the column that leaves the basis are undone; in other words, the operations are performed in the reverse
order of the factorization. The operations that factor the basic matrix, which are obtained with the enter-
ing column, are then performed. Finally, it is necessary to perform the operations on the columns that
are located after the entering column in the basis. Such operations should always consider the sparse
pattern of the basis.

The remainder of this paper is organized as follows. In Section 2, we present the cutting stock
problem. Section 3 describes the existing LU factorization update methods, and Section 4 describes
the proposed LU factorization update method. Implementation issues and computational experiments
are discussed in Sections 5 and 6, respectively. Finally, conclusions are given in Section 7.

2 One-Dimensional Cutting Stock Problem

2.1 Definition and Mathematical Model

The one-dimensional cutting stock problem can be stated as follows. Assume that there is available,
in stock, a sufficiently large number of objects (e.g., bars, reels) of length Lk with the quantity ek,
k = 1, . . . ,K. Furthermore, we have a set of m smaller ordered items of length li, that must be
produced in quantities di, i = 1, . . . ,m. The problem consists of producing the items by cutting the
available stock pieces to meet the demand, optimizing an objective function such as minimizing the
total number of pieces to be cut, minimizing the waste of raw material, or maximizing the profit.

The mathematical modeling of the cutting stock problem involves two steps: defining the cutting
pattern for the stock objects and deciding how often each cutting pattern will be used to meet the
demand. The first step can be performed independently of the demand for the items.

3512

September 24-28, 2012
Rio de Janeiro, Brazil

The specific method of cutting a stock length into items is termed the cutting pattern. Let Nk be the
number of cutting patterns for the stock length type k, and let αijk be the number of types of items i in
the jth cutting pattern for a stock length of type k. A vector ajk = (α1jk, α2jk, . . . , αmjk) represents
the jth cutting pattern for a stock of length type k, if it satisfies the following:

l1α1jk + l2α2jk + . . .+ lmαmjk ≤ Lk

αijk ≥ 0 and integer,

where Lk is the length of the stock object type k.
The cutting stock problem with multiple stock lengths in limited quantities was proposed by Gilmore

and Gomory [6] and can be formulated as follows:

Data:

• k = 1, . . . ,K: number of types (lengths) of the available objects;

• j = 1, . . . , Nk: number of the cutting patterns of the object type k;

• i = 1, . . . ,m: number of types of items to be cut;

• m: number of types of items;

• di: demand for item type i;

• K: number of types of stock objects;

• ek: availability of object type k.

Parameters:

• Nk: number of cutting patterns for stock object type k;

• αijk: number of items of type i cut in the j-th cutting pattern for object type k;

• cjk: the amount of waste of raw material when cutting an object of type k according to the cutting
pattern j.

Variables:

• xjk: number of objects of type k there are cut according to cutting pattern j.

minimize
N1∑
j=1

cj1xj1 +

N2∑
j=1

cj2xj2 + . . .+

NK∑
j=1

cjKxjK (2.1)

subject to
N1∑
j=1

αij1xj1 +

N2∑
j=1

αij2xj2 + . . .+

NK∑
j=1

αijKxjK = di (2.2)

Nk∑
j=1

xjk ≤ ek (2.3)

xjk ≥ 0, integer, i = 1, . . . ,m, j = 1, . . . , Nk, k = 1, . . . ,K. (2.4)

In model (2.1)-(2.4), the objective function minimizes the total waste of material. The waste of raw
material when cutting object type k according to the cutting pattern j is computed with the following
form:

cjk = Lk −
m∑
i=1

liαijk,

3513

September 24-28, 2012
Rio de Janeiro, Brazil

where li is the length of item type i, and Lk is the length of object k. The cost cjk could also be the cost
of the object type k (independent of the cutting pattern) and in this case cjk = ck.

The constraints (2.2) guarantee that the demand is met, i.e., that the quantities of the items that are
produced are exactly equal to the demand. The constraint set (2.3) guarantees that the number of stock
lengths cut of type k does not exceed the availability ek. Finally, the last constraints (2.4) guarantee
that the number of times that each pattern is cut is a non-negative integer.

We can rewrite the constraints (2.3) in the following form:

Nk∑
j=1

xjk + µk = ek, (2.5)

µk ≥ 0, (2.6)

where µk are the slack variables for the stock constraints (2.3).
The constraint matrix of the mathematical model has the following form:

α111 . . . α1N11 α112 . . . α1N22 . . . α11K . . . α1NKK 0 0 . . . 0
α211 . . . α2N11 α212 . . . α2N22 . . . α21K . . . α2NKK 0 0 . . . 0

...
. . .

...
...

. . .
... . . .

...
. . .

...
...

...
. . .

...
αm11 . . . αmN11 αm12 . . . αmN22 . . . αm1K . . . αmNKK 0 0 . . . 0
1 . . . 1 0 . . . 0 . . . 0 . . . 0 1 0 . . . 0
0 . . . 0 1 . . . 1 . . . 0 . . . 0 0 1 . . . 0
...

. . .
...

...
. . .

... . . .
...

. . .
...

...
...

. . .
...

0 . . . 0 0 . . . 0 . . . 1 . . . 1 0 0 . . . 1



Each of the
K∑
k=1

Nk first columns of the constraint matrix is an (m+K)-dimensional vector that is

formed from two parts. The first m components correspond to the cutting patterns and the remaining K
components are all null, except for component m+k, which is equal to one. The K remaining columns
relative to the slack variables are also vectors of dimension (m+K) with 1 in the position m+ k and
zero in the other positions.

More details of this formulation can be found in Poldi and Arenales [12].

Remarks:

1. The cost cjk could also be the cost of the object type k;

2. The integrality constraints in (2.4) are commonly found in real-world cutting problems, and they
make the model (2.1)-(2.4) very difficult to solve exactly, even for medium-size instances. Thus,
heuristic approaches are devised to find integer solutions. A class of residual heuristics is com-
monly used to solve this model. First, an optimal solution to the continuous relaxation is de-
termined and, after other heuristics, used to determine the integer solutions. For details about
residual heuristics see Poldi and Arenales [12], Wäscher and Gau [16], Holthaus [8], and Stadtler
[14].

2.2 Simplex Method with Column to the One-Dimensional Cutting Stock Problem

Two factors contribute to the solution of the mathematical model (2.1)-(2.4) that become impractical
for the one-dimensional cutting stock problem:

• the integrality constraint on the variables (how many times each cutting pattern will be used);

• the large number of variables (one variable for each cutting pattern). Practical problems can be
on the order of hundreds of thousands.

3514

September 24-28, 2012
Rio de Janeiro, Brazil

This model presents a specific structure that allows us to work implicitly with these variables.
If the integrality constraint of the variables is relaxed, then the problem can be solved by the Simplex

method developed by Dantzig in 1947, but the difficulty in relation to the large number of variables
still exists. To address this difficulty, Gilmore and Gomory [5] propose a modification to the Simplex
method that incorporates the column generation technique, as follows: in each iteration of the Simplex
method, one of the steps is to look for a new column for entering in the basis to improve the value of
the objective function. Rather than examining a large number of columns (all possible cutting patterns
for each type of object) to determine the lower relative cost, a new column is generated by solving
an auxiliary problem (subproblem). Whereas the criterion of Dantzig is used to determine the lowest
relative cost, the subproblem to be solved for the object of type k is the following:

crk − πTark = min{cjk − πTajk, j = 1, ..., NK}, (2.7)

where π is the Simplex multiplier vector of a determined iteration.
Considering that the objective function to be minimized is the total number of cutting objects, when

a column ak = (α1kα2k . . . αmk)
T matches a pattern for cutting the object k, equation (2.7) can be

rewritten as follows:

g(ak) = maximize
m∑
i=1

πiαik (2.8)

subject to
m∑
i=1

liαik ≤ Lik, (2.9)

αik ≥ 0, integer. (2.10)

If the lesser of the relative costs is non-negative, when considering all of the types of objects, then
the current solution of the relaxed problem is optimal; otherwise, a new column will enter at the base,
and the procedure continues.

The auxiliary problem (2.8)-(2.10), which consists of cutting a single type of object in stock, is a
knapsack problem, and an integer programming problem; therefore, implicit enumeration methods or
dynamic programming can be used to solve it.
Remark: In the model described in (2.1)-(2.4), the homogeneous solution, which is usually used as
an initial basic solution, may be not feasible, and in this case, phase I of the Simplex method must be
applied.

Algorithm:

1. {Phase I}
Determine an initial basic matrix B.
Do: Stop = False and it = 1.

2. {Phase II}
While Stop = False, do:

2.1 Determine the actual basic solution: ByB = d.

2.2 Determine the dual solution: BTπ = cB .

2.3 Solve the K knapsack problems in (2.8)-(2.10) (one for each type of
object).
Find r such that g(ar) = min {g(ak), k = 1, ...,K} and achieve the new
column ar.

3515

September 24-28, 2012
Rio de Janeiro, Brazil

2.4 {Optimality test:}
If (1− g(ar)) ≥ 0 then Stop = True (the actual solution is optimal).
Otherwise, determine the basic coordinates of the Simplex direction:
Bz = −ar.

2.5 {Determining the step size:}
Find l such that:

−yl
zl

= min {−yBi

zi
, zi ≥ 0, 1 = 1, ...,m}

2.6 {Updating:}
Update the basis B, replacing column l by ar, which is archived in 2.3.
Do: it = it+ 1.

An integer solution to the original cutting stock problem can be determined from the optimal solu-
tion of the relaxed problem using heuristic procedures (e.g., constructive heuristics and residual heuris-
tics) that were developed by several researchers in the area, such as Poldi and Arenales [12], Wäscher
and Gau [16], Hinxman [7], and Stadtler [14], among others.

3 LU Factorization Update Methods

Much of the computational effort needed for the Simplex method with column generation in each
iteration consists of solving the following linear systems:

• ByB = d (primal basic solution);

• BTπ = cB (dual solution);

• Bz = −ar (Simplex direction).

Note that the three linear systems have the same coefficient matrix B or its transpose BT . Thus,
part of the computation that is performed for finding the solution of one system can be used for the
solution of the other systems.

A method that is often used in software packages for linear optimization, to solve linear systems,
is LU factorization, which is roughly equivalent to the Gauss elimination strategy, especially when
applied to large and sparse linear systems.

Furthermore, in efficient implementations of the LU factorization method, it is important that good
procedures be used to update from one iteration to another the LU factorization of the matrix B, because
only one column of B is changed in each iteration. It is regarding this point that the present study make
its greatest contribution. In the next section, we present the proposed method, in details, for performing
the LU factorization update.

The LU factorization update technique with partial pivoting was proposed by Bartels and Golub
[1]. Two variants of this algorithm, studied in Reid [13], aimed to balance the sparsity and numeric
stability in the factorization. The latter variant is an improvement over the former.

In the literature several methods have been proposed to update the triangular factors of a modified
matrix. Forrest-Tomlin’s analysis [4] addresses large scale optimization problems and concludes that
the method of Brayton et al. [2], appears to be the most convenient for practical implementations.

Maros [11] describes in detail the LU factorization update and its application to the basis update
in the Simplex method proposed by Markowitz [10]. Moreover, Maros discusses the efficient imple-
mentation that was proposed by Suhl and Suhl [15], which is a good combination of the symbolic and
numerical phases of the pivoting and presents a compromise between the sparsity and the numerical
stability. These update techniques are described in detail in Duff, Erisman and Reid [3].

In section 4, we present the update method that is proposed in this study. This updating approach
never requires refactoring, which is required by the updating strategies described above.

3516

September 24-28, 2012
Rio de Janeiro, Brazil

4 The Proposed LU Factorization Update Method

The LU factorization update method proposed in this study performs operations only in the columns
that were actually modified by the change in the basis, and it uses the structure of the sparse matrix in
best manner possible.

It is possible that changes are not made in columns that are located after the entering column (e)
at the basis, and/or the leaving column (l), because of the sparse structure of the columns that are
involved. In other words, if a matrix entry is in the row k and in the original entering column e, it is
equal to zero (B(k, e) = 0). Additionally, if the matrix entry is in row k and in the leaving column l of
the (B(k, l) = 0), then column k does not change in the basis updating procedure.

To achieve greater efficiency and to reduce fill-in, the columns of the basis are ordered according
to a specific strategy. In the initial basis, the stock columns are permuted to the first positions and the
cutting patterns to the last positions of the matrix. When entering a column in the basis, the procedure
verifies whether it is a stock or a cutting pattern column. The search for the position in which the
column will be inserted at the basis is performed only for the positions of the stock columns or of the
cutting pattern. The column will be inserted in the right position at the basis according to the number
of nonzero entries. The set of cutting and stock columns is updated and the procedure is repeated.

In the proposed LU factorization update, the operations caused by the leaving column l are undone,
in the reverse order of the factorization, from the last column to the s+ 1 column, considering the LU
sparse patterns.

The next step is to determine which columns from the entering column (e + 1 column) to the last
remain unchanged, which is accomplished by entering column e at the basis. The operation will be
performed only in the modified columns, after the column that enters in the basis e is updated.

Algorithm:

1. {Reordering:}
Order (static approach) the base columns according to the number of nonzero entries: permute

the stock columns to the first positions and the cutting patterns to the latest positions of the matrix.

2. {LU Factorization:}
Perform a complete factorization of the base.

3. Verify the entering column and the leaving column of the base.
Search the position in which the column will be inserted at the basis only
in the positions of the stock columns or of the cutting pattern.

4. {Undo the LU Factorization:}
Perform operations in the reverse order of factorization from the last
column to column s+ 1, considering the LU sparse patterns.

5. {Update the LU Factorization:}
Insert the column in the right position at the basis according to the number
of nonzero entries (according to Step 3).
Perform the LU factorization in the entering column e at the base.
Determine which columns from the entering column (column e+ 1) to the
last column remain unchanged by entering column e at the basis.
Perform the operations only in the modified columns.

3517

September 24-28, 2012
Rio de Janeiro, Brazil

5 Implementation Issues

The objective of the implementation developed here is to evaluate the computational performance of
the LU factorization update implemented in the GLPK (“Gnu Linear Programming Kit”). The GLPK
uses the revised Simplex method with two phases and the Bartels-Golub update [1].

In this proposed approach, a static reordering approach is used that leads to sparse factorizations
without computational effort, to obtain the order of the columns, as described in the previous section.
The entering column e in the basis follows the static ordering, and an LU factorization update of the
basis (which considers its sparsity) is performed.

An implementation of the Simplex method with the column generation technique was performed
because the large number of columns that correspond to the cutting pattern, provide a very large con-
straint matrix. A branch-and-bound method was used to solve the constrained knapsack problem (this
method is a modification of Gilmore and Gomory that takes into account the upper bounds) to generate
the entering columns at the base.

Consider the mathematical model (2.1) − (2.6), without (2.3) (the pattern form). It is assumed
that L1 ≥ Lk, k = 2, . . . ,K, i.e., the stock length type 1 is the largest component. Additionally, it is
assumed that li ≤ L1, i = 1, . . . ,m; otherwise, the problem would be infeasible. Therefore, we can
build m columns that are associated with simple cutting patterns that, have m+K components,

aj1 = (0, . . . , bjj , 0, . . . , 1, 0, . . . , 0)
T ,

where bjj = min{L1/lj , dj}, j = 1, . . . ,m.
Any basis has m+K columns; thus, K more columns are needed, which could include columns that

are associated with slack variables. When xjk = 0, the m’s first equations are sufficient to determine
the values of xj1, j = 1, . . . ,m.

Then, the feasibility of the solution must be analyzed. If
m∑
j=1

xj1 ≤ e1, then the solution is feasible,

and the initial basic matrix is B, with dimension (m +K). Next, if
m∑
j=1

xj1 > e1, then the solution is

infeasible and a phase I of the Simplex method is necessary.
The column generation Simplex method solves only the linear relaxation of the cutting stock prob-

lem. To improve the performance of the Simplex method with columns generation, using the sparse
structure of the matrix, the news techniques of the LU factorization update are used to solve the linear
systems. Such techniques were not considered in Poldi and Arenales [12].

The implementation of this approach uses GLPK functions to perform the LU factorization of the
base and the updating columns that are entered at the base in the Simplex method. The implementa-
tion of the LU factorization update proposed was integrated into this implementation. Therefore, it
was possible to perform computational experiments using the GLPK functions and the proposed LU
factorization update.

6 Computational Experiments

The cutting problems used in the numerical experiments were generated randomly. The random gener-
ator of instances was developed by Poldi and Arenales [12]. In the first experiment (Table 1), 12 classes
were generated with 40 instances in each class, resulting in a total of 480 instances. In the second
experiment (Table 2), 30 classes were generated with 20 instances in each class, resulting in a total of
600 instances. The parameters used in the problems generation were the following.

• Number of stock objects: K = 3, 5, 7, 50, 60, 100 and 200;

• Stock length objects: The values of the Lk, k = 1, . . . ,K were randomly generated and varied
between 1 and 100 length units;

3518

September 24-28, 2012
Rio de Janeiro, Brazil

• Available stock length: The values of the ek, k = 1, . . . ,K were randomly generated from 1 to
100m

2 ;

• Number of item types: Different values were used m = 5, 10, 20, 100, 200 and 300;

• The length of the items to be produced: The length of items li was randomly generated between
v1L and v2L, where L was the average value among the Lk, k = 1, . . . ,K. The parameters v1
and v2 were fixed at v1 = 0.01 or 0.1 and v2 = 0.2 or 0.8. Combining these values, we generated
classes with problems that were smalls (v1 = 0.01 and v2 = 0.2), mediums (v1 = 0.01 and
v2 = 0.8) and larges (v1 = 0.1 and v2 = 0.8).

• Demand: We used two different generators for the values of the demand of the items: the first
generator produced values close to 10, (di ∈ [7, 12], i = 1, . . . ,m) and the second generator
produced values close to 100, (di ∈ [70, 120], i = 1, . . . ,m).

With the objective of comparing the computational time with the GLPK solver, the Simplex method
simulation and the proposed LU factorization update were implemented in the C programming lan-
guage.

In Table 1, the examples were generated according to Poldi and Arenales [12]. The experiments
were run on an Intel Core 2 Quad (2.33GHz and 2.96GB RAM). We verified that the proposed up-
date obtained a reduction in the computational time in comparison with the GLPK update. Better
results were obtained in the C3;C1;C6, and C11 classes, with a reduction in the computational time of
50%; 28%; 23%, and 15%, respectively.

Table 2 shows the results of the large examples that were tested. In this case, the experiments were
run on an Intel Core i7 (2.93GHz, 16.00GB RAM and 64Bits Operational System). The proposed
update obtained a reduction in the computational time, and better results were found in the C13;C23,
and C3 classes, with a reduction in the computational time of 43%; 40%, and 23%, respectively.

7 Conclusions

In this study, a static reordering of the matrix columns for linear programming problems is proposed,
leading to a Simplex base with sparse LU factorizations and inexpensive factorization updates.

This method uses a specific reordering according to a specific strategy, to reduce fill-ins. The
reordering has no initialization or updating costs because there is no need to reorder the columns in the
factorization.

Table 1 shows the proposed method for obtaining a reduction in the computation time of 50% for
class C3 in comparison with the GLPK update. The proposed LU factorization update reduced up to
43% of the computation time in comparison with the GLPK in Table 2.

The updating approach never requires refactoring; thus, it is faster than other updating strategies.
A further result is the following. If the starting basis is the identity matrix, then it is not necessary to
perform any LU factorization at all.

Acknowledgements

This research was sponsored by the Foundation for the Support of Research of the State of São Paulo
(FAPESP), the Brazilian Council for the Development of Science and Technology (CNPq) and Founda-
tion for Development of UNESP (FUNDUNESP). Thanks also go to Kelly Christina Poldi for providing
the cutting stock problem instances generator.

References

[1] R. BARTELS AND G. GOLUB, The Simplex method of linear programming using the LU decom-
position, Communications of the Association for Computing Machinery, 12 (1969), pp. 266–268.

3519

September 24-28, 2012
Rio de Janeiro, Brazil

[2] R. BRAYTOM, F. GUSTAVSON, AND R. WILLOUGHBY, Some Results on Sparse Matrices, IBM
Research Center, Yorktown Heights, N.Y., 1969.

[3] I. DUFF, A. ERISMAN, AND J. REID, Direct Methods for Sparse Matrices, Clarendon Press,
Oxford, 1986.

[4] J. FORREST AND J. TOMLIN, Updating triangular factors of the basis to maintain sparsity in the
product form Simplex method, Mathematical Programming, 2 (1972), pp. 263–278.

[5] P. GILMORE AND R. GOMORY, A linear programming approach to the cutting stock problem,
Operations Research, 9 (1961), pp. 848–859.

[6] , A linear programming approach to the cutting stock problem - part ii, Operations Research,
11 (1963), pp. 863–888.

[7] A. HINXMAN, The trim-loss and assortment problems: a survey, European Journal of Operational
Research, 5 (1980), pp. 8–18.

[8] O. HOLTHAUS, Decomposition approaches for solving the integer one-dimensional cutting stock
problem with multiple stock lengths, European Journal of Operational Research, 44 (2002),
pp. 295–312.

[9] J. L. KENNINGTON AND R. V. HELGASON, Algorithms for Network Programming, Wiley, New
York, 1980.

[10] H. MARKOWITZ, The elimination form of the inverse and its applications to linear programming,
Management Science, 3 (1957), pp. 255–269.

[11] I. MAROS, Computational Techniques of the Simplex Method, Kluwer Academic Publishers,
2003.

[12] K. POLDI AND M. ARENALES, Heuristics for the one-dimensional cutting stock problem with
limited multiple stock lengths, Computers and Operations Research, 36 (2009), pp. 2074–2081.

[13] J. REID, A sparsity-exploiting variant of the Bartels-Golub decomposition for linear programming
bases, Mathematical Programming, 24 (1982), pp. 55–69.

[14] H. A. STADTLER, A one-dimensional cutting stock problem in the aluminiun industry and its
solution, European Journal of Operational Research, 44 (1990), pp. 209–230.

[15] U. SUHL AND L. SUHL, A fast LU update for linear programming, Annals of Operations Re-
search, 43 (1993), pp. 33–47.

[16] G. WSCHER AND T. GAU, Heuristics for the integer one-dimensional cutting stock problem: a
computational study, OR Spektrum, 18 (1996), pp. 131–144.

3520

September 24-28, 2012
Rio de Janeiro, Brazil

Classes Data Computational time (in seconds)
K m Items Demand Proposed update GLPK update

C1 3 5 small small 0.080 0.111
C2 3 5 medium small 0.015 0.016
C3 3 5 large small 0.016 0.032
C4 3 20 small small 15.566 15.837
C5 5 10 small small 155.533 158.126
C6 5 10 medium small 0.157 0.203
C7 5 10 large small 0.109 0.125
C8 5 20 large small 0.126 0.141
C9 7 10 small small 1.361 1.423

C10 7 10 medium small 0.250 0.267
C11 7 10 large small 0.172 0.202
C12 7 20 large small 1.967 1.985

Table 1: Computational time of the Poldi and Arenales [12] examples.

Classes Data Computational time (in seconds)
K m Items Demand Proposed update GLPK update

C1 50 100 medium small 135.87 164.52
C2 50 100 medium large 13.57 16.99
C3 50 100 large small 14.12 18.22
C4 50 100 large large 9.92 12.40
C5 50 150 medium small 397.22 415.72
C6 50 150 medium large 91.24 94.35
C7 50 150 large small 83.92 85.67
C8 50 150 large large 45.95 46.96
C9 50 200 medium large 223.32 231.19
C10 50 200 large small 253.10 256.27
C11 50 200 large large 113.82 121.69
C12 50 300 medium large 907.30 1100.21
C13 50 300 large small 594.25 1040.21
C14 50 300 large large 452.48 455.55
C15 100 150 medium small 3168.53 3520.48
C16 100 150 medium large 127.31 136.73
C17 100 150 large small 129.68 133.83
C18 100 150 large large 75.64 78.67
C19 100 200 medium small 12000.00 13138.97
C20 100 200 medium large 346,48 360,26
C21 100 200 large small 300.57 316.14
C22 100 200 large large 202.22 212.04
C23 100 300 large small 1564.04 2589.34
C24 100 300 large large 782.90 934.98
C25 150 200 medium large 551.29 597.00
C26 150 200 large large 284.38 294.6
C27 150 300 medium large 2999.50 3556.90
C28 150 300 large large 1110.01 1144.83
C29 200 300 large large 1286.00 1539.25
C30 250 300 large large 1817.38 1867.38

Table 2: Computational time of the large examples.

3521

