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Campus Min. Petrônio Portella, Centro de Ciências da Natureza, Bloco 4, Teresina, PI,

sissy@ufpi.edu.br

RESUMO

Propomos um Método de Subgradiente de Plastria Projetado para resolver Problemas de
Equiĺıbrio em Espaços Euclidianos. Assumimos que o segundo argumento da bifunção
de equiĺıbrio é uma função quase-convexa e subdiferenciável inferiormente. Obtemos con-
vergência Quase-Féjer para o conjunto solução e que toda sequência de iteradas converge
para uma solução do problema.

PALAVRAS CHAVE. Problema de Equiĺıbrio, Método de Subgradiente Projetado, Sub-
diferencial de Plástria, Programação Matemática.

ABSTRACT

We propose a Projected Plastria’s Subgradient Method for solving Equilibrium Problems
in Euclidean Spaces. We assume that the second argument of the equilibrium bifunction is
a quasiconvex and lower subdifferentiable function. We obtain quasi-Féjer convergence to
the solution set and finally that the whole sequence of iterates converges to a solution of
the problem.

KEYWORDS. Equilibrium Problem, Projected Subgradient Method, Plastria’s
Subdifferential, Mathematical Programming.

3522



September 24-28, 2012
Rio de Janeiro, Brazil

1. Introduction
Let C be a nonempty closed convex subset of IRn and let

f : IRn × IRn → (−∞,+∞] be a function such that f(x, x) = 0 for all x ∈ C and C × C
is contained in the effective domain of f . We consider the following Equilibrium problem
(EP):

(EP )

{
Find x∗ ∈ C such that
f(x∗, y) ≥ 0 ∀ y ∈ C. (1)

In this paper we assume that the function f(x, ·) : IRn −→ (−∞,+∞] is essentially quasi-
convex (see definition 4 below) and lower subdifferentiable at x, for all x ∈ C.

Equilibrium problems have been considered by several authors, see for example, Blum
and Oettli (1994), Iusem and Sosa (2010), Konnov (2003), Lyashko et al (2011) and Santos
and Scheimberg (2011a) and the references therein. It is well known that various classes of
mathematical programming problems, variational inequalities, fixed point problems, Nash
equilibrium in noncooperative games theory and minimax problems can be formulated in
the form of (EP), see for instance, Blum and Oettli (1994).

Recently several numerical algorithms for solving the equilibrium problem have been
proposed based on the subdifferential of the convex function f(x, ·), see for example, Nguyen
et al (2009), Santos and Scheimberg (2011b).

The paper is organized as follows: In Section 2 we recall useful basic notions. In Section
3 we define the algorithm and study its convergence.

2. Preliminaries
Let us start by introducing the definition of the so-called quasiconvex bifunction.

Definition 1 A bifunction f(x, ·) : C ⊆ Rn → (−∞,+∞] is said quasiconvex if for every
y, z ∈ C and for every t ∈ [0, 1] the following inequality holds:

f (x, (1− t)y + tz) ≤ max {f(x, y), f(x, z)} . (2)

In the following, we present the definition of the Plastria’s subdifferential (see Plastria(1985)).

Definition 2 Given a function ϕ : Rn → R and a point x0 ∈ Rn, the Plastria’s lower
subdifferential of ϕ at x0 is defined and denoted by

∂Pϕ(x0) = { η ∈ Rn : ϕ(x) < ϕ(x0) =⇒ 〈η , x − x0〉 ≤ ϕ(x) − ϕ(x0) }.

For next results, we use Gutiérrez’s subdifferential, which is defined below.

Definition 3 Given a function ϕ : Rn → R and a point x0 ∈ Rn, the Gutiérrez’s lower
subdifferential of ϕ at x0 is defined and denoted by

∂Gϕ(x0) = { η ∈ Rn : ϕ(x) ≤ ϕ(x0) =⇒ 〈η , x − x0〉 ≤ ϕ(x) − ϕ(x0) }.

Next, we present a relationship between Plastria’s subdifferential and Gutiérrez’s
subdifferential. For this, we consider the sets: Sϕ(x0) = {x ∈ C : ϕ(x) ≤ ϕ(x0)}
and Tϕ(x0) = {x ∈ C : ϕ(x) < ϕ(x0)}.

Proposition 1 Let x0 ∈ Rn. If the closure of Tf (x0) is equal to Sf (x0) then ∂Pϕ(x0) =
∂Gϕ(x0).

Proof: See Xu et al (1999).

Definition 4 A function ϕ : Rn → R quasiconvex is said to be essentially quasiconvex if
each local minimizer is global.
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An important result about Plastria’s subdifferential for essentially quasiconvex functions is
presented below.

Proposition 2 If ϕ : Rn → R is essentially quasiconvex continuous function then the
closure of Tϕ(x0) equals Sϕ(x0) for all non-minimizer x0 of ϕ. Consequently, ∂Pϕ(x0) =
∂Gϕ(x0) for all non-minimizer x0.

Proof: See Da Cruz Neto(2012).

Definition 5 A function ϕ : Rn → R is said Lipschitz if there exists a number 0 ≤ L <∞
such that

|ϕ(x) − ϕ(y)| ≤ L ‖x − y‖, for all x , y ∈ Rn.

In the following theorem we have a known result of Plastria’s subdifferential for the case of
quasiconvex and Lipschitz continuous functions.

Theorem 1 If ϕ : Rn → R is quasiconvex and Lipschitz continuous with constant L then
the following holds:

i) ∂Pϕ(x0) 6= ∅ for every x0 ∈ Rn. Moreover, there exists η ∈ ∂Pϕ(x0) com ‖η‖ ≤ L.

ii) ∂Pϕ(x0) is a closed and convex set for every x0 ∈ Rn;

iii) 0 ∈ ∂Pϕ(x0) if only if x0 ∈ Rn is global minimizer of ϕ, in which case ∂Pϕ(x0) = Rn.

Proof: See Plastria(1985).

We summarize in the next theorem the main result of the Plastria’s subdifferential for
the case of essentially quasiconvex and Lipschitz continuous functions.

Theorem 2 Let ϕ : Rn → R be essentially quasiconvex and Lipschitz continuous with
constant L then the following holds:

i) ∂Gϕ(x0) 6= ∅ for every x0 ∈ Rn.

ii) ∂Gϕ(x0) is a closed and convex set for every x0 ∈ Rn;

iii) 0 ∈ ∂Gϕ(x0) if only if x0 ∈ Rn is global minimizer of ϕ, in which case ∂Gϕ(x0) = {0}.

Proof: See Xu et al (1999).

In the following, we extend the definitions of Plastria’s and Gutiérrez subdifferential for
bifunctions.

Definition 6 The Plastria’s subdifferential of f(x0, ·) at x0 ∈ Rn is defined and denoted
by:

∂P f(x0, x0) = {η ∈ Rn : f(x0, y) < f(x0, x0) =⇒ 〈η, y − x0〉 ≤ f(x0, y)− f(x0, x0)}

Definition 7 The Gutiérrez’s subdifferential of f(x0, ·) at x0 ∈ Rn is defined and denoted
by:

∂Gf(x0, x0) = {η ∈ Rn : f(x0, y) ≤ f(x0, x0) =⇒ 〈η, y − x0〉 ≤ f(x0, y)− f(x0, x0)}
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Note that when x0 ∈ C, we have

∂Gf(x0, x0) = {η ∈ Rn : f(x0, y) ≤ 0 =⇒ 〈η, y − x0〉 ≤ f(x0, y)}.

From now on we denote the Plastria’s subdifferential of f with respect to the second
argument by ∂P2 f .

Lemma 1 A point x ∈ C is a solution of (EP) if and only if 0 ∈ ∂P2 f(x, x).

Proof: Consider φ(x) = f(x, x) and our conclusion follows from Theorem 9 in Censor and
Segal (2006).

We next recall the definition of quasi-Fejér sequence and an important related
convergence theorem.

Definition 8 A sequence {zk} ⊂ Rn is called quasi-Fejér convergent to a set U ⊂ Rn if
for every u ∈ U there exists a sequence {εk} ⊂ R+ such that

‖ zk+1 − u ‖2 ≤ ‖ zk − u ‖2 + εk

with
∞∑
k=0

εk <∞.

Proposition 3 If {zk} ⊂ Rn is a quasi-Fejér convergent sequence to a nonempty set U

then {zk} is bounded. Further, if a cluster point z of {zk} belongs to U then lim
k→∞

zk = z.

Proof: See Iusem et al (1994).

3. The Algorithm and Its Convergence Analysis

3.1. The Projected Subgradient Method (PSM)
In this section, we defined the projected subgradient algorithm for solving equilibrium

problem (EP). We show the well definedness of the generated sequence and we analyse its
convergence.
In order to describe the (PSM) we assume that f is essentially quasiconvex and Lipschitz
continuous function with constant L. Let {αk}, {εk} be sequences of nonnegative parame-
ters such that

αk =
βk
γk
,
∑

βk = +∞,
∑

β2k < +∞, (3)

γk = max{γ, ‖ηk‖}, γ > 0, (4)∑
βkεk < +∞. (5)

Step 0: Choose x0 ∈ C. Set k = 0.

Step 1: Let xk ∈ C. Obtain ηk ∈ ∂G2 f(xk, xk) ∩B(0, L).
If ηk = 0, stop.

Step 2: Compute xk+1:

xk+1 = ΠC

[
xk − αkη

k
]
. (6)
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We recall that, given a nonempty closed and convex subset C of Rn, the orthogonal
projection of x ∈ Rn onto C, denoted by ΠC(x), is the unique point in C, such that
‖ΠC(x)− y‖ ≤ ‖x− y‖ for all y ∈ C. Moreover, ΠC(x) satisfies

〈x−ΠC(x), z −ΠC(x)〉 ≤ 0 ∀ y ∈ C. (7)

We remark that all essentially quasiconvex function is, by definition, a quasiconvex
function. Consequently ∂Gf(x, x) ⊂ ∂P f(x, x). In particular, quasiconvexity of f and
Theorem 1 imply that there exists η ∈ ∂Gf(x, x) ∩B(0, L), where we mean by B(0, L) the
set {x ∈ Rn : ‖x‖ ≤ L}.

3.2. Convergence Analysis

We consider the following additional assumptions in order to obtain convergence results.

A1. The solution set, S∗, of the problem (1) is nonempty;

A2. The bifunction f is pseudomonotone on C, that is, for all x, y ∈ C

f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0;

A3. If x∗, x ∈ C, satisfy f(x, x∗) = f(x∗, x) = 0 then x∗ ∈ S∗ ⇒ x ∈ S∗;

A4. f(., u) is upper semicontinuous for all u ∈ C.

Remark 1 Assumptions A1 - A4 are usual requirements for (EP). A1 is a common
assumption, see for example Konnov (2003), Muu and Quoc (2009). Assumption A2 is
weaker than the monotonicity of f onto C, considered by several authors, see for instance
Iusem and Sosa (2010). Assumption A3 is satisfied when the problem (EP) corresponds to
an optimization problem, or when the problem (EP) is a reformulation of the variational
inequality problem with a paramonotone operator. Assumption A3 can be recovered if the
cyclic monotonicity of −f is required (see for instance Bianchi et al (2005)). Assumption
A4 is a common requirement for (EP), see for example Iusem and Sosa (2010), Nguyen et
al (2009) and references therein.

Lemma 2 If the algorithm stops at step k, then xk is a solution of (EP).

Proof: In this case, we have that ηk = 0. Suppose, for the sake of contradiction, that xk /∈
S∗. Then, there exists x ∈ C such that f(xk, x) < 0. So, by definition of ηk ∈ ∂G2 f(xk, xk)
we get that

0 = 〈ηk, x− xk〉 ≤ f(xk, x),

which is a contradiction. Hence, xk is a solution of (EP).

From now on we denote by {xk} an infinite sequence generated by the Algorithm PSM.
The next result will be useful in our convergence analysis.

Lemma 3 Assume that A1 and A2 hold, then solution set of (EP), S∗, is a subset of U ,
where

U = {u ∈ C : f(xk, u) ≤ 0}. (8)
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Proof: Let x∗ ∈ S∗. Suppose, for the sake of contradiction, that x∗ /∈ U . Then, there
exists k ∈ N such that f(xk, x∗) > 0. By using A2, it results

f(xk, x∗) > 0 ⇒ f(x∗, xk) < 0,

which is a contradiction due to f(x∗, xk) ≥ 0 (Recall that x∗ is a solution to the problem
(EP)).

The next result is used to derive an important convergence property.

Proposition 4 Assume A1 and let x∗ be a solution of (EP). Then, for all k ∈ N it holds

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + β2k + 2αkf(xk, x∗). (9)

Proof: Let x∗ be a solution of (EP), by Lemma 3 we know that x∗ ∈ U and

‖xk+1 − x∗‖2 = ‖xk+1 − xk‖2 + ‖xk − x∗‖2 + 2〈xk+1 − xk, xk − x∗〉
= ‖xk+1 − xk‖2 + ‖xk − x∗‖2 + 2〈xk+1 − xk + αkη

k, xk − x∗〉
+2〈αkη

k, x∗ − xk〉
≤ ‖xk+1 − xk‖2 + ‖xk − x∗‖2 + 2〈xk+1 − xk + αkη

k, xk − x∗〉
+2αkf(xk, x∗),

(10)

where the inequality is due to the definition of ηk ∈ ∂G2 f(xk, xk). Note that

〈xk+1 − xk + αkη
k, xk − x∗〉 = 〈xk+1 − xk + αkη

k, xk − xk+1〉
+〈xk+1 − (xk − αkη

k), xk+1 − x∗〉
≤ 〈xk+1 − xk + αkη

k, xk − xk+1〉
= −‖xk+1 − xk‖2 + αk〈ηk, xk − xk+1〉
≤ −‖xk+1 − xk‖2 + αk‖ηk‖‖xk − xk+1‖
≤ −‖xk+1 − xk‖2 + βk‖xk − xk+1‖,

(11)

where the first inequality is due to the definition of projection (see (7)) and the last
inequality is obtained by (4) and (5). Then, by (10) and (11),

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 + 2βk‖xk+1 − xk‖+ 2αkf(xk, x∗)
≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 + (‖xk+1 − xk‖2 + β2k) + 2αkf(xk, x∗)
= ‖xk − x∗‖2 + β2k + 2αkf(xk, x∗).

The proof is completed.

The result below is important for the convergence analysis.

Corollary 1 Assume that A1, A2 and A3 are verified. Then the sequence {xk} is bounded.

Proof: In fact, by using that f(xk, x∗) ≤ 0 it results from (9) that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + β2k.

So, {xk} is Quasi-Féjer convergent to the solution set of (EP). Then, by Proposition 3, we
close the proof of this corollary.

The next result will be useful to show that there exists a cluster point of {xk} belonging
to S∗.
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Theorem 3 Suppose that A1 and A2 are hold. Then,

lim sup
k→+∞

f(xk, x∗) = 0.

Proof: Firstly, we use the Proposition 4 to obtain that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2αkf(xk, x∗) + β2k. (12)

So, by recalling that
αkf(xk, x∗) ≤ 0, (13)

that is,
0 ≤ 2αk[−f(xk, x∗)] ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + β2k, (14)

we obtain,

0 ≤ βk
L

[−f(xk, x∗)] ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + β2k. (15)

Hence,
0 ≤ L−1

∑m
k=0 βk[−f(xk, x∗)]

≤ ‖x0 − x∗‖2 − ‖xm+1 − x∗‖2 +
∑m

k=0 β
2
k,

(16)

by taking limits with m→ +∞ we obtain

0 ≤
+∞∑
k=0

βk[−f(xk, x∗)] ≤ L

[
‖x0 − x∗‖2 +

+∞∑
k=0

β2k

]
< +∞. (17)

We use the divergence of
∑+∞

k=0 βk to conclude the proof, that is,

lim sup
k→+∞

f(xk, x∗) = 0.

Theorem 4 Assume that A1-A4 are satisfied. Then, the whole sequence {xk} converges
to a solution of (EP).

Proof: Let x∗ ∈ S∗. By Corollary 1, the sequence {xk} is bounded, then there exists a
x ∈ C and a subsequence of {xk}, namely {xkj}, such that limj→+∞ x

kj = x and due to
the Theorem 3 it follows that

lim
j→+∞

f(xkj , x∗) = 0. (18)

From assumption A4 and Theorem 3, we obtain

f(x, x∗) ≥ lim supj→+∞ f(xkj , x∗)

= limj→+∞ f(xkj , x∗)
= 0.

(19)

That is, f(x, x∗) ≥ 0. From assumption (A2) we have f(x∗, x) ≤ 0. Recall that f(x∗, x) ≥ 0
since x∗ is a solution to (EP), it follows f(x∗, x) = 0. Using the assumption (A2) again, we
have f(x, x∗) = 0. So,

f(x, x∗) = 0, f(x∗, x) = 0. (20)

Hence, for x∗ ∈ S∗ we obtain that (20) is satisfied and from (A3) we get that x ∈ S∗.
Then, by Proposition 3, the whole sequence {xk} is convergent to x ∈ S∗.

3528



September 24-28, 2012
Rio de Janeiro, Brazil

References

Bianchi, M., Kassay, G. and Pini R. (2005), Existence of equilibria via Ekeland’s
principle, Journal of Mathematical Analysis and Applications, 305, 502-512.
Blum, E. and Oettli, W. (1994), From optimization and variational inequality to equi-
librium problems, The Mathematics Student, 63, 127-149.
Censor, Y. and Segal, A. (2006), Algorithms for the quasiconvex feasibility problem,
Journal of Computational and Applied Mathematics, 185, 34-50.
Da Cruz Neto, J.X., Da Silva, G.J.P., Ferreira, O.P. and Lopes, J.O. (2011),
A subgradient method for multiobjective optimization, Computational Optimization and
Applications, accepted for publication.
Iusem, A. N., Kassay, G. and Sosa, W. (2009), On certain conditions for the existence
of solutions of equilibrium problems, Mathematical Programming, 116, 259-273.
Iusem, A. N. and Sosa, W. (2010), On the proximal point method for equilibrium
problems in Hilbert spaces,Optimization, 59(8), 1259-1274.
Iusem, A. N., Svaiter B. F. and Teboulle, M. (1994), Entropy-like proximal methods
in convex programming, Mathematics of Operations Research, 19(4), 790-814.
Konnov, I.V. (2003), Application of the proximal point method to nonmonotone
equilibrium problems, Journal of Optimization Theory and Applications, 119, 317-333.
Lyashko, S. I., Semenov, V. V. and Voitova, T. A. (2011), Low-Cost modification
of Korpelevich’s methods for monotone equilibrium problems, Cybernet. Systems Analysis,
47, 631-639.
Nguyen, T.T., Strodiot, J. J. and Nguyen, V. H. (2009), The interior proximal
extragradient method for solving equilibrium problems, Journal of Global Optimization,
44, 175-192.
Muu, L.D. and Quoc, T.D. (2009), Regularization algorithms for solving monotone
Ky Fan inequalities with application to a Nash-Cournot equilibrium model, Journal of
Optimization Theory and Applications, 142, 185-204.
Plastria, F. (1985), Lower subdifferentiable functions and their minimization by cutting
planes, Journal of Opt. Theory and Appl., 46(1), 37-53.
Santos, P.S.M. and Scheimberg, S. (2011a), A relaxed projection method for finite-
dimensional equilibrium problems, Optimization, 8-9, 1193-1208.
Santos, P.S.M. and Scheimberg, S. (2011b), An inexact subgradient algorithm for
equilibrium problems, Computational & Applied Mathematics, 30, 91-107.
Xu, H., Rubinov, A.M. and Glover, B.M. (1999), Strict lower subdifferentiability and
applications, J. Austral. Math. Soc. Ser. B, 40, 379-391.

3529


