COMPLETE COMMON NEIGHBORHOOD GRAPHS ## Andréa Soares Bonifácio Universidade Federal do Estado do Rio de Janeiro Av. Pasteur, 458, CCET, Urca, Rio de Janeiro, Brasil andreabonifacio@uniriotec.br #### Romulo R. Rosa Universidade Federal Fluminense - Rio das Ostras Rua Recife, s/n, Jardim Bela Vista, Rio das Ostras, Brasil romulorrosa@mat.uff.br #### **Ivan Gutman** University of Kragujevac Faculty of Science P. O. Box 60, 34000 Kragujevac, Serbia gutman@kg.ac.rs ### Nair Maria Maia de Abreu Universidade Federal do Rio de Janeiro Av. Athos da Silva Ramos, 149, Centro de Tecnologia, Rio de Janeiro, RJ, Brasil nair@pep.ufrj.br #### **RESUMO** O grafo vizinhança comum de um grafo G, ou simplesmente o congrafo de G, denotado por con(G) tem sido tema de pesquisa recente por Alwardi et. al. (aceito para publicação, "in press"). Neste trabalho consideramos congrafos iterados, isto é, aqueles obtidos por meio de sucessivas aplicações do congrafo de um grafo dado e obtemos os seguintes resultados: provamos sobre condições bem gerais que o congrafo iterado é eventualmente um grafo completo. Caracterizamos os grafos com primeiro congrafo completo e derivamos uma fórmula para a matriz de adjacência de con(G) em termos da matriz de adjacência de G. PALAVRAS-CHAVE: Grafo Completo, Clique, Congrafo. Área Principal: Teoria e Algoritimos em Grafos. ## **ABSTRACT** The *common neighborhood graph* of a graph G, or simply the *congraph* of G, denoted by con(G) has been a theme of some recent research by Alwardi *et. al.* (accepted for publication, in press). In the present work we consider *iterated congraphs*, i.e., those obtained via successive application of the congraph of a given graph and we obtain the following results: we prove under very general conditions that the iterated congraph is eventually a complete graph. We characterize the graphs with complete congraphs and we derive a formula for the adjacency matrix of con(G) in terms of the adjacency matrix of G. KEYWORDS: Complete Graph, Clique, Congraph. Main Area: Theory and Algorithms in Graphs. ### 1 Introduction Let G = G(V, E) be a graph of order n, V = V(G) the vertex set and E = E(G) the edge set of G. If $v_i, v_j \in V$ are linked to each other by an edge, we have $(v_i, v_j) \in E$ and we say that v_i and v_j are adjacent or neighboring vertices in G. The set of neighbors of v is denoted by $N_G(v)$ or simply N(v). Two graphs G_1 and G_2 are isomorphic, denoted by $G_1 \cong G_2$, if there exists an one-to-one onto function $f: V(G_1) \longrightarrow V(G_2)$, such that $(u, v) \in E(G_1)$ if and only if $(f(u), f(v)) \in E(G_2)$. The adjacency matrix of $G, A(G) = (a_{ij})$, is the $n \times n$ matrix such that $a_{ij} = 1$ if the vertex v_i is adjacent to v_j , and $a_{ij} = 0$ otherwise. Adjacency matrices of isomorphic graphs are similar matrices. A subgraph S(U, F) of G is a graph such that $U \subseteq V$ and $F \subseteq E$. An induced subgraph is a subgraph such that for all $v_i, v_j \in U$, if $(v_i, v_j) \in E$ then $(v_i, v_j) \in F$. The complete graph G is an induced subgraph of G isomorphic to G. **Definition 1.1.** We say that the common neighborhood graph of G or, simply, the congraph of G, denoted by con(G), is the graph with the same vertices as G such that (v_i, v_j) is an edge of con(G) if and only if v_i and v_j have a common neighbor in G. In this case, we refer to G as the parent graph of con(G). From this definition one can conclude that $N(v_i) \cap N(v_i) \neq \emptyset$ if and only if $(v_i, v_i) \in E(con(G))$. The congraph of a graph G has been studied recently by Alwardi et. al. (to appear). In their work they obtain, among other results, the following theorem: **Theorem 1.2** (Alwardi et. al. (to appear)). The common neighborhood graph con(G) is a connected graph if and only if the parent graph G is connected and non-bipartite. The same authors also observed that: **Remark 1.3.** Let G be a graph with n vertices. - If G is a complete graph K_n then $con(K_n) \cong K_n$; - If G is a cycle with odd length $G = C_{2k+1}$ then $con(C_{2k+1}) \cong C_{2k+1}$. From this remark, we have that if G has an odd cycle as a subgraph, then con(G) contains an odd cycle isomorphic to that one in G. It's well known that a graph is bipartite if and only if it doesn't contain an odd cycle. Therefore, the congraph of a non-bipartite graph is also non-bipartite. **Definition 1.4.** We consider iterated congraphs, i.e., those obtained via successive applications of the congraph of a given graph. More formally, iterated congraphs are those obtained from a graph G as follows: $con^0(G) = G$ and $con^p(G) = con(con^{p-1}(G))$, for $p \in \mathbb{N}$. The paper is structured as follows: in Section 2, under certain conditions and for sufficiently large p, we prove that the iterated congraph, $con^p(G)$, is a complete graph. In Section 3, we characterize the graphs with complete congraphs. In Section 4 we derive a formula for the adjacency matrix of con(G) in terms of the adjacency matrix of G. ### 2 Iterated congraphs Our goal in this section is to prove that for some sufficiently large N, an iterated congraph of a connected non-bipartite graph that is not a cycle, is (isomorphic to) a complete graph. ## 2.1 Auxiliary Results In the following lemmas we consider graphs for which we can explicitly put an upper bound on the number of iterates needed to obtain $con^p(G) \cong K_n$. Let K_n^1 denote a graph obtained by attaching one vertex to the complete graph K_n and C_n^1 be the graph obtained by attaching one vertex to the cycle C_n . So, the attached vertex is a pendant vertex of G. In the Figure 1, we have the graphs K_5^1 , $con(K_5^1)$ and $con^2(K_5^1)$. FIGURE 1. The graphs K_5^1 , $con(K_5^1)$ and $con^2(K_5^1) \cong K_6$. **Lemma 2.1.** Let $n \ge 3$. If $G = K_n^1$ then $con^2(G) \cong K_{n+1}$. *Proof.* Let $n \geq 3$ and $G = K_n^1$. The graph K_n^1 is connected and contains the n-clique K_n . Without loss of generality, label the n vertices of K_n by v_1, v_2, \ldots, v_n and take the pendant vertex v_* adjacent to v_1 . From Remark 1.3, $con(K_n) \cong K_n$ and it is easy to see that $con(K_n) \subset con(K_n^1)$. Besides $con^2(K_n) \cong K_n \subset con^2(K_n^1)$. From this argument, every edge (v_i, v_j) on the n-clique K_n is an edge on $con^2(K_n^1)$. Now take v_* . So, $N(v_*) = \{v_1\}$. For each $2 \le i \le n$, we have $N(v_*) \cap N(v_i) = \{v_1\}$ and then, for $2 \le i \le n$, (v_i, v_*) is an edge of $con(K_n^1)$. Moreover, $N(v_*) \cap N(v_1) = \{v_1\} \cap N(v_1) = \emptyset$. Consequently, (v_1, v_*) is not an edge of $con(K_n^1)$. Let v be a vertex of K_n^1 and denote $N_1(v)$, the set of vertices adjacent to v in $con(K_n^1)$, the congraph of K_n^1 . Then we have, $N_1(v_*) = V(K_n) - \{v_1\}$ and $N_1(v_1) = V(K_n) - \{v_*, v_1\}$. So, $N_1(v_*) \cap N_1(v_1) \neq \emptyset$ and (v_*, v_1) is an edge on $con^2(K_n^1)$. For $i = 2, \ldots, n$, we obtain, $N_1(v_i) = V(K_n^1) - \{v_i\}$ and, then, $N_1(v_*) \cap N_1(v_i) \neq \emptyset$. Consequently, (v_*, v_i) is an edge on $con^2(K_n^1)$. As every $(v_i, v_j) \neq (v_*, v_i)$ is an edge in $con^2(K_n^1)$, we get $con^2(K_n^1) \cong K_{n+1}$. The next lemma is slightly technical but is very important for the proof of our main result. **Lemma 2.2.** For $$0 \le p \le 2k-1$$, we have $K_{p+3} \subseteq con^{2p+1}(C^1_{2k+1})$. *Proof.* Consider $G = C^1_{2k+1}$. Let v_0, v_1, \cdots, v_{2k} be the labels of the vertices of C_{2k+1} in G and v_* the pendant vertex of G attached to v_0 . So, $N(v_*) = \{v_0\}$. Therefore $N(v_*) \cap N(v_1) = N(v_*) \cap N(v_{2k}) = N(v_1) \cap N(v_{2k}) = \{v_0\}$. Then, the edges $(v_*, v_1), (v_1, v_{2k})$ and $(v_{2k}, v_*) \in E(con(C^1_{2k+1}))$ and v_1, v_{2k} and v_* constitutes a 3-clique in $con(C^1_{2k+1})$. This verifies the claim for p = 0. Now let $p \in \mathbb{N}$, $1 \le p \le 2k - 2$, and assume the induction hypothesis for p: $$K_{p+3} \subseteq con^{2p+1}(C^1_{2k+1}).$$ We wish to prove that $$K_{(p+1)+3} \subseteq con^{2(p+1)+1}(C_{2k+1}^1).$$ If $p \leq 2k-2$ then $p+3 \leq 2k+1$. Then, $K_{p+3} \subseteq con^{2p+1}(C_{2k+1}^1)$ where K_{p+3} has at most 2k+1 vertices. Consequently, there is a vertex v_{i_0} of $con^{2p+1}(C_{2k+1}^1)$ that is not a vertex of K_{p+3} . Since $con^{2p+1}(C_{2k+1}^1)$ is a connected graph, v_{i_0} is attached to K_{p+3} . We call this subgraph K_{p+3}^1 . From Lemma 2.1, we will have $K_{(p+3)+1} \subseteq con^{2p+1+2}(C_{2k+1}^1)$ or, equivalently, $K_{(p+1)+3} \subseteq con^{2(p+1)+1}(C_{2k+1}^1)$. The Figure 2 shows the graph C_5^1 and its four first iterated congraphs. FIGURE 2. The graph C_5^1 and its iterated congraphs: $con(C_5^1)$, $con^2(C_5^1)$, $con^3(C_5^1)$ and $con^4(C_5^1) \cong K_6$. In the next lemma, we calculate an upper bound on the number of iterates needed to obtain a complete congraph starting from C_{2k+1}^1 . **Lemma 2.3.** If $G = C_{2k+1}^1$, there is $N' \le 4k - 1$ such that $con^{N'}(G) \cong K_{2k+2}$. *Proof.* Let p = 2k - 1. From Lemma 2.2, we have $$K_{2k-1+3} \subseteq con^{2(2k-1)+1}(C_{2k+1}^1).$$ So, $$K_{2k+2}\subseteq con^{4k-1}(C^1_{2k+1}).$$ As the congraph of G has the same number of vertices of G, we get $$con^{4k-1}(C_{2k+1}^1) \cong K_{2k+2}.$$ ### 2.2 Proof of the main Theorem First, we want to check a sufficient condition for G to contain a C_{2k+1}^1 , an this is in the following remark: **Remark 2.4.** If G is connected, $C_{2q+1} \subseteq G$ and $G \neq C_{2q+1}$ then $\exists k, 1 \leq k \leq q$, such that $C_{2k+1}^1 \subseteq G$. *Proof.* Let v_* be a vertex of G that is not a vertex of C_{2q+1} . Since G is connected, the result holds. Otherwise, G has an edge that is a chord in C_{2q+1} . Since 2q+1 is odd, this chord divides C_{2q+1} in two cycles of distinct parity. Therefore, there is k, $1 \le k < q$ such that $C_{2k+1} \subseteq G$. This way, there is at least one vertex v_* in the cycle C_{2q+1} of G that is not a vertex of C_{2k+1} and it is attached to C_{2k+1} . So, the remark follows. We are now ready to prove our main result. **Theorem 2.5.** Let G be a graph with n > 3 vertices. The existence of an $N \in \mathbb{N}$ such that $con^N(G)$ is complete is equivalent to the following: G is a connected non-bipartite graph and is not a cycle. *Proof.* (⇒) If for some $N \in \mathbb{N}$ we have that $con^N(G)$ is complete then by the Theorem 1.2 we have that $con^{(N-1)}(G)$ is connected and non-bipartite. Applying this same argument N-1 times, we have that G is connected and non-bipartite graph and, therefore, it contains an odd cycle. By hypothesis, $con^N(G)$ is complete. By the Remark 1.3 we know that $C_{2k+1} \cong con(C_{2k+1}) \cong con^N(C_{2k+1})$. Then G cannot be an odd cycle (because an odd cycle is not a complete graph for n > 3). (⇐) Let G be a connected non-bipartite graph with n vertices, $G \neq C_n$. From Remark 2.4, G has a C^1_{2k+1} as a subgraph. From Lemma 2.3, there is $N' \leq 4k-1$ such that $K_{2k+2} \subseteq con^{N'}(G)$. If 2k+2=n we are done. Otherwise, there is a pendant vertex in G which is attached to K_{2k+2} . From Lemma 2.1, $con^N(G) \cong K_n$, where $N = N' + 2(n - (2k+2)) \leq 4k-1 + 2(n - (2k+2)) = 2n+3$. □ ### 3 Graphs with complete congraphs This section is devoted to prove a theorem that characterizes the class of graphs whose congraph (the first iterated congraph) is a complete graph. However, in order to get there, we need to establish, in the next lemma, a necessary condition to have such graphs. **Lemma 3.1.** Let G be a graph such that the congraph of G is a complete graph. Then, every edge of G is in a 3-clique of G. *Proof.* A necessary condition for the congraph of G be a complete graph is that every edge of G has to be an edge also of the congraph of G. Let G be a graph such that con(G) is complete. Let (v_i, v_j) be an edge of G. It follows from the hypothesis that (v_i, v_j) is also an edge of con(G). That means the vertices v_i and v_j have at least one common neighbor v_k in G. Then, (v_i, v_k) and (v_k, v_j) are edges on G and, consequently, v_i, v_j, v_k is a 3-clique in G. **Theorem 3.2.** Let G be a connected graph. Then con(G) is complete if and only if for any given pair of vertices v_i, v_j of G there is a 3-clique containing v_i and a 3-clique containing v_j such that those cliques have a common vertex. *Proof.* (\Rightarrow) Suppose con(G) is complete. Take a pair of vertices v_i, v_j on G. As con(G) is complete there is a common neighbor v_k on G for v_i and v_j . From Lemma 3.1, the edge (v_i, v_k) is on a 3-clique in G and also (v_i, v_k) is on a 3-clique in G. So, those 3-cliques have v_k in common. (⇐) Let G be a connected graph satisfying the conditions in the above statement. Let v_i, v_j be two vertices of G. If they are on a same 3-clique on G then (v_i, v_j) is an edge in con(G). Now consider v_i, v_j on different 3-cliques with a common vertex v_k . This way v_k is a common neighbor for v_i and v_j and therefore (v_i, v_j) is an edge on con(G). So we have proved that, if G satisfies the above condition, then for any pair of vertices v_i, v_j we have that (v_i, v_j) is an edge of con(G) and therefore con(G) is complete. In the Figure 3 below we have some graphs whose first congraph is a complete graph. FIGURE 3. Some graphs whose congraph is complete. **Remark 3.3.** In a complete graph one can guarantee that each vertex is connected to all the other vertices by a path of length one. The class of graphs that have a complete congraph is exactly the class of connected non-bipartite graphs where each vertex is connected to all the other vertices by a path of length two. ## 4 The adjacency matrix of con(G) In this section we obtain a simple formula for the adjacency matrix of con(G) in terms of the adjacency matrix of G. Let A = A(G) be the adjacency matrix of a connected graph G and denote by b_{ij} the elements of A^2 . So, $$b_{ij} := \sum_{k=1}^{n} a_{ik} a_{kj}.$$ Let $\hat{A} = A(con(G))$ be the adjacency matrix of the graph con(G) and denote by J the square matrix of the same order of A with all entries equal to 1. **Remark 4.1.** For $$x \in \mathbb{R}$$, we have $\frac{x+1-|x-1|}{2}=1 \Leftrightarrow x \geq 1$ and $\frac{x+1-|x-1|}{2}=0 \Leftrightarrow x=0$. **Theorem 4.2.** For every connected graph G, we have the following formula: $$\hat{A} = \frac{1}{2} \left(A^2 + J - |A^2 - J| \right) - I.$$ *Proof.* Consider $i \neq j$. An element b_{ij} of A^2 is the number of paths of length two linking the vertices v_i and v_j in G. So, we have that $\hat{a}_{ij} = 1 \Leftrightarrow b_{ij} \geq 1$. It follows immediately that $\hat{a}_{ij} = 0 \Leftrightarrow b_{ij} = 0$. From Remark 4.1, we have, for $i \neq j$, the following formula for \hat{a}_{ij} : $$\hat{a}_{ij} = \frac{b_{ij} + 1 - |b_{ij} - 1|}{2}.$$ Now we consider a diagonal element b_{ii} . As G is connected, there is $k \neq i$ such that $a_{ik} = 1$. By the symmetry of A, $a_{ik} = a_{ki}$ and then $$b_{ii} := \sum_{k=1}^n a_{ik} a_{ki} \ge 1.$$ The matrix \hat{A} is an adjacency matrix and therefore $\hat{a}_{ii} = 0$. This way we have the following formula for \hat{a}_{ii} : $$\hat{a}_{ii} = \frac{b_{ii} + 1 - |b_{ii} - 1|}{2} - 1.$$ From the equations 4.1 and 4.2 the result follows. Acknowledgments: The first and the last authors were partially supported by FAPERJ (project E-26/110.552/2010); the third author was partially supported by CNPq (project 300563/94-9 (NV)) and the second author thanks the Serbian Ministry of Science for partial support of this work, through Grant no. 144015G. #### References **Alwardi, A., Arsic, B., Gutman I. and Soner, N. D.**, The Common Neighborhood Graph and Its Energy. *Iran. J. Math. Sci. Inf.*, in press. Bondy, J. A. and Murty, U. S. R., Graph Theory, Graduate Texts in Mathematics, Springer, 2008.