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RESUMO

O grafo vizinhança comum de um grafo G, ou simplesmente o congrafo de G, denotado por
con(G) tem sido tema de pesquisa recente por Alwardi et. al. (aceito para publicação, “in press”).
Neste trabalho consideramos congrafos iterados, isto é, aqueles obtidos por meio de sucessivas apli-
cações do congrafo de um grafo dado e obtemos os seguintes resultados: provamos sobre condições
bem gerais que o congrafo iterado é eventualmente um grafo completo. Caracterizamos os grafos
com primeiro congrafo completo e derivamos uma fórmula para a matriz de adjacência de con(G)
em termos da matriz de adjacência de G.

PALAVRAS-CHAVE: Grafo Completo, Clique, Congrafo.

Área Principal: Teoria e Algoritimos em Grafos.

ABSTRACT

The common neighborhood graph of a graph G, or simply the congraph of G, denoted by con(G)
has been a theme of some recent research by Alwardi et. al. (accepted for publication, in press).
In the present work we consider iterated congraphs, i.e., those obtained via successive application
of the congraph of a given graph and we obtain the following results: we prove under very general
conditions that the iterated congraph is eventually a complete graph. We characterize the graphs
with complete congraphs and we derive a formula for the adjacency matrix of con(G) in terms of
the adjacency matrix of G.

KEYWORDS: Complete Graph, Clique, Congraph.
Main Area: Theory and Algorithms in Graphs.
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1 Introduction

Let G = G(V, E) be a graph of order n, V = V(G) the vertex set and E = E(G) the edge set of
G. If vi, v j ∈ V are linked to each other by an edge, we have (vi, v j) ∈ E and we say that vi and v j
are adjacent or neighboring vertices in G. The set of neighbors of v is denoted by NG(v) or simply
N(v). Two graphs G1 and G2 are isomorphic, denoted by G1 � G2, if there exists an one-to-one
onto function f : V(G1) −→ V(G2), such that (u, v) ∈ E(G1) if and only if ( f (u), f (v)) ∈ E(G2). The
adjacency matrix of G, A(G) = (ai j), is the n × n matrix such that ai j = 1 if the vertex vi is adjacent
to v j, and ai j = 0 otherwise. Adjacency matrices of isomorphic graphs are similar matrices. A
subgraph S (U, F) of G is a graph such that U ⊆ V and F ⊆ E. An induced subgraph is a subgraph
such that for all vi, v j ∈ U, if (vi, v j) ∈ E then (vi, v j) ∈ F. The complete graph Kn is the graph with
n vertices in which any two vertices are adjacent. A p−clique of a graph G is an induced subgraph
of G isomorphic to Kp.

Definition 1.1. We say that the common neighborhood graph of G or, simply, the congraph of G,
denoted by con(G), is the graph with the same vertices as G such that (vi, v j) is an edge of con(G)
if and only if vi and v j have a common neighbor in G. In this case, we refer to G as the parent
graph of con(G).

From this definition one can conclude that N(vi)∩ N(v j) , ∅ if and only if (vi, v j) ∈ E(con(G)).

The congraph of a graph G has been studied recently by Alwardi et. al. (to appear). In their work
they obtain, among other results, the following theorem:

Theorem 1.2 (Alwardi et. al. (to appear)). The common neighborhood graph con(G) is a con-
nected graph if and only if the parent graph G is connected and non-bipartite.

The same authors also observed that:

Remark 1.3. Let G be a graph with n vertices.

• If G is a complete graph Kn then con(Kn) � Kn;
• If G is a cycle with odd length G = C2k+1 then con(C2k+1) � C2k+1 .

From this remark, we have that if G has an odd cycle as a subgraph, then con(G) contains an odd
cycle isomorphic to that one in G. It’s well known that a graph is bipartite if and only if it doesn’t
contain an odd cycle. Therefore, the congraph of a non-bipartite graph is also non-bipartite.

Definition 1.4. We consider iterated congraphs, i.e., those obtained via successive applications of
the congraph of a given graph. More formally, iterated congraphs are those obtained from a graph
G as follows: con0(G) = G and conp(G) = con(conp−1(G)), for p ∈ N.

The paper is structured as follows: in Section 2, under certain conditions and for sufficiently large
p, we prove that the iterated congraph, conp(G), is a complete graph. In Section 3, we characterize
the graphs with complete congraphs. In Section 4 we derive a formula for the adjacency matrix of
con(G) in terms of the adjacency matrix of G.

2 Iterated congraphs

Our goal in this section is to prove that for some sufficiently large N, an iterated congraph of a
connected non-bipartite graph that is not a cycle, is (isomorphic to) a complete graph.
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2.1 Auxiliary Results

In the following lemmas we consider graphs for which we can explicitly put an upper bound on
the number of iterates needed to obtain conp(G) � Kn.

Let K1
n denote a graph obtained by attaching one vertex to the complete graph Kn and C1

n be the
graph obtained by attaching one vertex to the cycle Cn. So, the attached vertex is a pendant vertex
of G. In the Figure 1, we have the graphs K1

5 , con(K1
5 ) and con2(K1

5 ).

Figure 1. The graphs K1
5 , con(K1

5 ) and con2(K1
5 ) � K6.

Lemma 2.1. Let n ≥ 3. If G = K1
n then con2(G) � Kn+1.

Proof. Let n ≥ 3 and G = K1
n . The graph K1

n is connected and contains the n-clique Kn. Without
loss of generality, label the n vertices of Kn by v1, v2, . . . , vn and take the pendant vertex v∗ adjacent
to v1. From Remark 1.3, con(Kn) � Kn and it is easy to see that con(Kn) ⊂ con(K1

n ). Besides
con2(Kn) � Kn ⊂ con2(K1

n ). From this argument, every edge (vi, v j) on the n-clique Kn is an edge
on con2(K1

n ).
Now take v∗. So, N(v∗) = {v1}. For each 2 ≤ i ≤ n, we have N(v∗) ∩ N(vi) = {v1} and then, for

2 ≤ i ≤ n, (vi, v∗) is an edge of con(K1
n ). Moreover, N(v∗)∩N(v1) = {v1}∩N(v1) = ∅. Consequently,

(v1, v∗) is not an edge of con(K1
n ).

Let v be a vertex of K1
n and denote N1(v), the set of vertices adjacent to v in con(K1

n ), the congraph
of K1

n . Then we have, N1(v∗) = V(Kn)− {v1} and N1(v1) = V(Kn)− {v∗, v1}. So, N1(v∗)∩N1(v1) , ∅
and (v∗, v1) is an edge on con2(K1

n ). For i = 2, . . . , n, we obtain, N1(vi) = V(K1
n ) − {vi} and, then,

N1(v∗) ∩ N1(vi) , ∅. Consequently, (v∗, vi) is an edge on con2(K1
n ). As every (vi, v j) , (v∗, vi) is an

edge in con2(K1
n ), we get con2(K1

n ) � Kn+1. �

The next lemma is slightly technical but is very important for the proof of our main result.

Lemma 2.2. For 0 ≤ p ≤ 2k − 1, we have Kp+3 ⊆ con2p+1(C1
2k+1).

Proof. Consider G = C1
2k+1. Let v0, v1, · · · , v2k be the labels of the vertices of C2k+1 in G and v∗ the

pendant vertex of G attached to v0. So, N(v∗) = {v0}. Therefore N(v∗) ∩ N(v1) = N(v∗) ∩ N(v2k) =

N(v1)∩N(v2k) = {v0}. Then, the edges (v∗, v1), (v1, v2k) and (v2k, v∗) ∈ E(con(C1
2k+1) and v1, v2k and

v∗ constitutes a 3-clique in con(C1
2k+1). This verifies the claim for p = 0.

Now let p ∈ N, 1 ≤ p ≤ 2k − 2, and assume the induction hypothesis for p:

Kp+3 ⊆ con2p+1(C1
2k+1).
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We wish to prove that
K(p+1)+3 ⊆ con2(p+1)+1(C1

2k+1).

If p ≤ 2k − 2 then p + 3 ≤ 2k + 1. Then, Kp+3 ⊆ con2p+1(C1
2k+1) where Kp+3 has at most

2k + 1 vertices. Consequently, there is a vertex vi0 of con2p+1(C1
2k+1) that is not a vertex of

Kp+3. Since con2p+1(C1
2k+1) is a connected graph, vi0 is attached to Kp+3. We call this subgraph

K1
p+3. From Lemma 2.1, we will have K(p+3)+1 ⊆ con2p+1+2(C1

2k+1) or, equivalently, K(p+1)+3 ⊆

con2(p+1)+1(C1
2k+1). �

The Figure 2 shows the graph C1
5 and its four first iterated congraphs.

Figure 2. The graph C1
5 and its iterated congraphs: con(C1

5), con2(C1
5), con3(C1

5)
and con4(C1

5) � K6.

In the next lemma, we calculate an upper bound on the number of iterates needed to obtain a
complete congraph starting from C1

2k+1.

Lemma 2.3. If G = C1
2k+1, there is N′ ≤ 4k − 1 such that conN′(G) � K2k+2.

Proof. Let p = 2k − 1. From Lemma 2.2, we have

K2k−1+3 ⊆ con2(2k−1)+1(C1
2k+1).

So,
K2k+2 ⊆ con4k−1(C1

2k+1).
As the congraph of G has the same number of vertices of G, we get

con4k−1(C1
2k+1) � K2k+2.

�
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2.2 Proof of the main Theorem

First, we want to check a sufficient condition for G to contain a C1
2k+1, an this is in the following

remark:

Remark 2.4. If G is connected, C2q+1 ⊆ G and G , C2q+1 then ∃ k, 1 ≤ k ≤ q, such that C1
2k+1 ⊆ G.

Proof. Let v∗ be a vertex of G that is not a vertex of C2q+1. Since G is connected, the result holds.
Otherwise, G has an edge that is a chord in C2q+1. Since 2q + 1 is odd, this chord divides C2q+1 in
two cycles of distinct parity. Therefore, there is k, 1 ≤ k < q such that C2k+1 ⊆ G. This way, there is
at least one vertex v∗ in the cycle C2q+1 of G that is not a vertex of C2k+1 and it is attached to C2k+1.
So, the remark follows. �

We are now ready to prove our main result.

Theorem 2.5. Let G be a graph with n > 3 vertices. The existence of an N ∈ N such that conN(G)
is complete is equivalent to the following: G is a connected non-bipartite graph and is not a cycle.

Proof. (⇒) If for some N ∈ N we have that conN(G) is complete then by the Theorem 1.2 we have
that con(N−1)(G) is connected and non-bipartite. Applying this same argument N −1 times, we have
that G is connected and non-bipartite graph and, therefore, it contains an odd cycle. By hypothesis,
conN(G) is complete. By the Remark 1.3 we know that C2k+1 � con(C2k+1) � conN(C2k+1). Then
G cannot be an odd cycle (because an odd cycle is not a complete graph for n > 3).

(⇐) Let G be a connected non-bipartite graph with n vertices, G , Cn. From Remark 2.4, G has
a C1

2k+1 as a subgraph. From Lemma 2.3, there is N′ ≤ 4k − 1 such that K2k+2 ⊆ conN′(G). If
2k + 2 = n we are done. Otherwise, there is a pendant vertex in G which is attached to K2k+2. From
Lemma 2.1, conN(G) � Kn, where N = N′ + 2(n− (2k + 2)) ≤ 4k− 1 + 2(n− (2k + 2)) = 2n + 3. �

3 Graphs with complete congraphs

This section is devoted to prove a theorem that characterizes the class of graphs whose congraph
(the first iterated congraph) is a complete graph. However, in order to get there, we need to establish,
in the next lemma, a necessary condition to have such graphs.

Lemma 3.1. Let G be a graph such that the congraph of G is a complete graph. Then, every edge
of G is in a 3-clique of G.

Proof. A necessary condition for the congraph of G be a complete graph is that every edge of G
has to be an edge also of the congraph of G. Let G be a graph such that con(G) is complete. Let
(vi, v j) be an edge of G. It follows from the hypothesis that (vi, v j) is also an edge of con(G). That
means the vertices vi and v j have at least one common neighbor vk in G. Then, (vi, vk) and (vk, v j)
are edges on G and, consequently, vi, v j, vk is a 3-clique in G. �

Theorem 3.2. Let G be a connected graph. Then con(G) is complete if and only if for any given
pair of vertices vi, v j of G there is a 3-clique containing vi and a 3-clique containing v j such that
those cliques have a common vertex.

Proof. (⇒) Suppose con(G) is complete. Take a pair of vertices vi, v j on G. As con(G) is complete
there is a common neighbor vk on G for vi and v j. From Lemma 3.1, the edge (vi, vk) is on a 3-clique
in G and also (v j, vk) is on a 3-clique in G. So, those 3-cliques have vk in common.

(⇐) Let G be a connected graph satisfying the conditions in the above statement. Let vi, v j be
two vertices of G. If they are on a same 3-clique on G then (vi, v j) is an edge in con(G).

Now consider vi, v j on different 3-cliques with a common vertex vk. This way vk is a common
neighbor for vi and v j and therefore (vi, v j) is an edge on con(G). So we have proved that, if G
satisfies the above condition, then for any pair of vertices vi, v j we have that (vi, v j) is an edge of
con(G) and therefore con(G) is complete. �
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In the Figure 3 below we have some graphs whose first congraph is a complete graph.

Figure 3. Some graphs whose congraph is complete.

Remark 3.3. In a complete graph one can guarantee that each vertex is connected to all the other
vertices by a path of length one. The class of graphs that have a complete congraph is exactly the
class of connected non-bipartite graphs where each vertex is connected to all the other vertices by
a path of length two.

4 The adjacency matrix of con(G)

In this section we obtain a simple formula for the adjacency matrix of con(G) in terms of the
adjacency matrix of G. Let A = A(G) be the adjacency matrix of a connected graph G and denote
by bi j the elements of A2 . So,

bi j :=
n∑

k=1

aikak j.

Let Â = A(con(G)) be the adjacency matrix of the graph con(G) and denote by J the square
matrix of the same order of A with all entries equal to 1.

Remark 4.1. For x ∈ R, we have
x + 1 − |x − 1|

2
= 1⇔ x ≥ 1 and

x + 1 − |x − 1|
2

= 0⇔ x = 0.

Theorem 4.2. For every connected graph G, we have the following formula:

Â =
1
2

(
A2 + J − |A2 − J|

)
− I.

Proof. Consider i , j. An element bi j of A2 is the number of paths of length two linking the vertices
vi and v j in G. So, we have that âi j = 1⇔ bi j ≥ 1. It follows immediately that âi j = 0⇔ bi j = 0.

From Remark 4.1, we have, for i , j, the following formula for âi j:

(4.1) âi j =
bi j + 1 − |bi j − 1|

2
.

Now we consider a diagonal element bii. As G is connected, there is k , i such that aik = 1. By
the symmetry of A , aik = aki and then

bii :=
n∑

k=1

aikaki ≥ 1.
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The matrix Â is an adjacency matrix and therefore âii = 0. This way we have the following formula
for âii:

(4.2) âii =
bii + 1 − |bii − 1|

2
− 1.

From the equations 4.1 and 4.2 the result follows. �
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