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Abstract

In this paper, we propose algorithms to determine the Thue chromatic number and the
clique chromatic number of P4-tidy graphs and (q, q − 4)-graphs. These classes include
cographs and P4-sparse graphs. All algorithms have linear-time complexity, for fixed q,
and then are fixed parameter tractable. All these coloring problems are known to be
NP-hard for general graphs. We also prove that every connected (q, q − 4)-graph with at
least q vertices is 2-clique-colorable and that every acyclic coloring of a cograph is also
nonrepetitive, generalizing a result from [28]. Finally, we show that the algorithm from [31]
can also be used to compute the acyclic chromatic number of distance hereditary graphs
and graphs with a given split decomposition tree with bounded width.

KEYWORDS: nonrepetitive coloring, Thue chromatic number, clique coloring,
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1 Introduction

The graph terminology used here follows [10]. The complete bipartite graph with partitions of
size m and n is denoted by Km,n. A star is a K1,n. A P4 is an induced path with four vertices.
A cograph is any P4-free graph.

A k-coloring of G is a partition {V1, . . . , Vk} of V (G). A proper k-coloring is a k-coloring
such that every color class induces a stable set. The chromatic number χ(G) of G is the smallest
integer k such that G admits a proper k-coloring.

An acyclic coloring is a proper coloring such that every pair of color classes induces a forest.
A star coloring is a proper coloring such that every pair of color classes induces a forest of
stars. A nonrepetitive coloring is a proper coloring such that no path has an xx pattern of
colors, where x is a sequence of colors. A harmonious coloring is a proper coloring such that
every pair of color classes induces at most one edge.

In 2011, it was proved that every acyclic coloring of a cograph is also a star coloring [28].
In this paper, we prove that it is also nonrepetitive.

The acyclic, star, Thue and harmonious chromatic numbers of G, denoted respectively by
χa(G), χst(G), π(G), χh(G), are the minimum number of colors k such that G admits an
acyclic, star, nonrepetitive and harmonious coloring with k colors. By the definitions, it is easy
to see that

χ(G) ≤ χa(G) ≤ χst(G) ≤ π(G) ≤ χh(G).

Determining the acyclic chromatic number is NP-Hard even for bipartite graphs [16] and
deciding if χa(G) ≤ 3 is NP-Complete [26]. In 2004, Albertson et al. [2] proved that computing
the star chromatic number is NP-hard even for planar bipartite graphs. In 2007, Asdre et al.
[3] proved that determining the harmonious chromatic number is NP-hard for interval graphs,
permutation graphs and split graphs.

Borodin proved that χa(G) ≤ 5 for every planar graph G [11]. In 2004, Fertin, Raspaud
and Reed give exact values of χst(G) for several graph classes [18]. In 2004, Campbell and
Edwards [12] obtained new lower bounds for χh(G) in terms of the independence number.

In 2002, Alon et al. [1] proved a relation between the π(G) and ∆(G). In 2008, Barát
and Wood [8] proved that every graph G with treewidth t and maximum degree ∆ satisfies
π(G) = O(k∆) (it was also proved that π(G) ≤ 4t [21]). In 2009, Marx and Schaefer [29] proved
that determining whether a particular coloring of a graph is nonrepetitive is coNP-hard, even if
the number of colors is limited to four. In 2010, Grytczuk et al. [23] investigated list colorings
which are nonrepetitive and proved that the Thue choice number of Pn is at most 4 for every
n. See [21] and [22] for a survey on nonrepetitive colorings.

A clique coloring is a coloring (not necessarily a proper coloring) such that every maximal
clique receives at least two colors. The clique chromatic number χc(G) is the minimum number
k such that G has a clique coloring with k colors.

In 2004, Bacsó et al. [7] proved several results for 2-clique-colorable graphs. In 2002,
Kratochv́ıl and Tuza [27] proved that determining the clique-chromatic number is polynomial
time solvable for planar graphs, but is NP-Hard for perfect graphs.

Many NP-hard problems were proved to be polynomial time solvable for cographs. For
example, Lyons [28] obtained in 2011 a polynomial time algorithm to find an optimal acyclic
and an optimal star coloring of a cograph. However, it is known that computing the harmonious
chromatic number of a disconnected cograph is NP-hard [9].
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Some superclasses of cographs, defined in terms of the number and structure of its induced
P4’s, can be completely characterized by their primeval decomposition. Among these classes,
we cite P4-sparse graphs, P4-lite graphs, P4-tidy graphs and (q, q − 4)-graphs.

Babel and Olariu [5] defined a graph as (q, q − 4)-graph if no set of at most q vertices
induces more than q − 4 induced P4’s. Cographs and P4-sparse graphs are precisely (4, 0)-
graphs and (5, 1)-graphs respectively. P4-lite graphs are special (7, 3)-graphs. We say that a
graph is P4-tidy if, for every P4 induced by {u, v, x, y}, there exists at most one vertex z such
that {u, v, x, y, z} induces more than one P4. Since the complement of a P4 is also a P4, these
graph classes are self-complementary.

In this paper, we prove the following main results:

Theorem 1.1. Let q be a fixed integer and let G be a P4-tidy or a (q, q−4)-graph. There exist
linear time algorithms to obtain the Thue chromatic number and the clique chromatic number
of G.

These algorithms are dynamic programming, obtained from a graph decomposition, called
primeval decomposition, described in the next section, and obtained from the lemmas of the
Sections 3 and 4.

Let q(G) be the minimum integer q such that G is a (q, q − 4)-graph. Theorem 1.1 proves
that the nonrepetitive and the clique coloring problems are fixed parameter tractable on the
parameter q(G). Recently, Campos et al. [14] proved that the cochromatic number and the
cocoloring problem are fixed parameter tractable on q(G). Also in 2011, Campos et al. proved
the same for the acyclic coloring, the star coloring and the harmonious coloring problems [13].

The theorem below generalizes a result from [28].

Theorem 1.2. Every acyclic coloring of a cograph is also nonrepetitive. Moreover, every
connected (q, q − 4)-graph with at least q vertices is 2-clique-colorable.

Finally, we also prove that the algorithm from [31] to obtain an optimal coloring of a graph
using its split decomposition can also be used to obtain an optimal acylic coloring of such
graphs. Distance hereditary graphs are graphs in which the distances in any connected induced
subgraph are the same as they are in the original graph. Cographs are distance hereditary.
With this, we have our last main result.

Theorem 1.3. There exist polynomial time algorithms to obtain an optimal acyclic coloring
of distance hereditary graphs and graphs with a given split decomposition with bounded width.

The split decomposition is explained in Section 5. The proofs of these theorems follow
directly from the lemmas of the next sections.

2 Primeval and Modular decompositions

Let G1 = (V1, E1) and G2 = (V2, E2) be two vertex disjoint graphs. The disjoint union of
G1 and G2 is the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). The join is the graph G1 ∨ G2 =
(V1 ∪ V2, E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}).

A spider is a graph whose vertex set has a partition (R,C, S), where C = {c1, . . . , ck} and
S = {s1, . . . , sk} for k ≥ 2 are respectively a clique and a stable set; si is adjacent to cj if and
only if i = j (a thin spider), or si is adjacent to cj if and only if i 6= j (a thick spider); and
every vertex of R is adjacent to each vertex of C and non-adjacent to each vertex of S.
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Jamison and Olariu [5] proved an important structural theorem for (q, q− 4)-graphs, using
their primeval decomposition, which can be obtained in linear time. A graph is p-connected
if, for every bipartition of the vertex set, there is a crossing P4. A separable p-component is a
maximal p-connected subgraph with a particular bipartition (H1, H2) such that every crossing
P4 wxyz satisfies x, y ∈ H1 and w, z ∈ H2.

Theorem 2.1 (Characterizing (q, q − 4)-graphs [5]). A graph G is a (q, q − 4)-graph if and
only if exactly one of the following holds:

(a) G is the union or the join of two (q, q − 4)-graphs;

(b) G is a spider (R,C, S) and G[R] is a (q, q − 4)-graph;

(c) G contains a separable p-component H, with bipartition (H1, H2) and |V (H)| ≤ q, such
that G−H is a (q, q− 4)-graph and every vertex of G−H is adjacent to every vertex of
H1 and non-adjacent to every vertex of H2;

(d) G has at most q vertices or V (G) = ∅.

Using the modular decomposition of P4-tidy graphs, Giakoumakis et al. proved a similar
result for this class [20]. A quasi-spider is a graph obtained from a spider (R,C, S) by replacing
at most one vertex from C ∪ S by a K2 (the complete graph on two vertices) or a K2 (the
complement of K2).

Theorem 2.2 (Characterizing P4-tidy graphs [20]). A graph G is a P4-tidy graph if and only
if exactly one of the following holds:

(a) G is the union or the join of two P4-tidy graphs;

(b) G is a quasi-spider (R,C, S) and G[R] is a P4-tidy graph;

(c) G is isomorphic to P5, P5, C5, K1 or V (G) = ∅.

As a consequence, a (q, q − 4)-graph (resp. a P4-tidy graph) G can be decomposed by
successively applying Theorem 2.1 (resp. Theorem 2.2) as follows: If (a) holds, apply the
theorem to each component of G or G (operations disjoint union and join). If (b) holds,
apply the theorem to G[R] (operation spider or quasi-spider). Finally, if (c) holds and G is a
(q, q − 4)-graph, then apply the theorem to G−H (operation small subgraph).

It was also proved in [5] that every p-connected (q, q − 4)-graph with q ≥ 8 has at most
q vertices. With this, we can obtain q(G) in O(n7) time for every graph G from its primeval
decomposition (observe that q(G) can be greater than n and, if this is the case, q(G) is the
number of induced P4’s of G plus four).

The idea now is to consider the graph by the means of its decomposition tree obtained as
described. According to the coloring parameter to be determined, the tree will be visited in
an up way or bottom way fashion. We notice that the primeval and modular decomposition of
any graph can be obtained in linear time [5].
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3 Disjoint Union, Join and Spiders

We start by recalling a result from [28] for the acyclic chromatic numbers.

Lemma 3.1 (χa for union and join [28]). Given graphs G1 and G2 with n1 and n2 vertices
res-pectively:

χa(G1 ∪G2) = max{χa(G1), χa(G2)},

χa(G1 ∨G2) = min{χa(G1) + n2, χa(G2) + n1},

The next lemma shows how to obtain the Thue chromatic number for union and join
operations. It is not too difficult to see that Lemmas 3.1 and 3.2 implies that, if G is a
cograph, then π(G) = χa(G) and every acyclic coloring of a cograph is also nonrepetitive.

Lemma 3.2 (π(G) for union and join). Given graphs G1 and G2 with n1 and n2 vertices
respectively:

π(G1 ∪G2) = max{π(G1), π(G2)},

π(G1 ∨G2) = min{π(G1) + n2, π(G2) + n1}.

The two following lemmas deal with spiders and quasi-spiders and are proved in Section 6.
We will consider π(G[R]) = 0 whenever R = ∅.

Lemma 3.3 (π(G) for spiders). Let G be a spider (R,C, S), where |C| = |S| = k. Then
π(G) = π(G[R]) + k, unless R = ∅ and G is thick, when in this case, π(G) = k + 1.

Lemma 3.4 (π(G) for quasi-spiders). Let G be a quasi-spider (R,C, S) such that min{|C|, |S|} =
k and max{|C|, |S|} = k+1. Let H = K2 or H = K2 be the subgraph that replaced a vertex of
C ∪ S. Then

π(G) =











































π(G[R]) + k, if H ∈ S and G is thin,

π(G[R]) + k, if H ∈ S, G is thick

and R 6= ∅,

π(G[R]) + k + 2, if H ∈ C, G is thick

and R = ∅,

π(G[R]) + k + 1, otherwise.

Next lemma deals with the clique chromatic number.

Lemma 3.5 (χc for union, join and quasi-spiders). Let G1 and G2 be two graphs. Then,
χc(G1 ∪ G2) = max{χc(G1), χc(G2)} and χc(G1 ∨ G2) = 2. If G is a quasi-spider, then
χc(G) = 2.

4 Coloring (q, q − 4)-graphs

In this section, suppose that G is a (q, q − 4)-graph which contains a separable p-component
H, with bipartition (H1, H2) and at most q vertices, such that every vertex from G − H is
adjacent to all vertices in H1 and non-adjacent to all vertices in H2. Let n′ be the number of
vertices of G − H. If G − H is empty, consider χa(G − H) = χst(G − H) = π(G − H) = 0.
Given a coloring ψ of H, let k(ψ) be the number of colors of ψ.

Theorems below prove that determining the chromatic numbers π and χc for item (c) of
Theorem 2.1 is linear time solvable, if q is a fixed integer.
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Lemma 4.1. Given a coloring ψ of H, let k2(ψ) be the number of colors with no vertex of H1

and with no vertex of H2 which is neighbor of two vertices from H1 with the same color. Then

π(G) = min
{

min
ψ∈Cπ(H)

{

k(ψ) + max{0, n′ − k2(ψ)}
}

,

min
ψ′∈C′

π(H)

{

k(ψ′) + max{0, π(G−H)− k2(ψ
′)}

}}

where Cπ(H) is the set of all nonrepetitive colorings of H, and C ′

π(H) ⊆ Cπ(H) is the subset
of nonrepetitive colorings such that all vertices from H1 receive distinct colors.

Lemma 4.2. If G−H is not empty, then χc(G) = 2 (coloring the vertices of G−H and H2

with the color 1 and the vertices of H1 with the color 2). If G −H is empty, then G has less
than q vertices and

χc(G) = min
ψ∈Cc(H)

{

k(ψ)
}

,

where Cc(H) is the set of all clique-colorings of H.

Theorem 4.3. If G is a P4-tidy or (q, q−4)-graph, then we can obtain a minimum nonrepetitive
and a minimum clique coloring of G and determine π(G) and χc(G) in linear time.

Proof. From Section 2, we can obtain the primeval decomposition in linear time. From lemmas
of Sections 3 and 4, we are finished.

5 Split decomposition

A split of a graph G is a partition of V (G) into two sets V1 and V2 with at least two vertices
such that every vertex in V1 with a neighbor in V2 has the same neighborhood in V2. Given a
split (V1, V2) of a graph G, we can decompose G into G1 and G2, where, for i ∈ {1, 2}, Gi is
the subgraph of G induced by Vi with an additional vertex u, called a marker, such that the
neighborhood of v in Gi is the set of those vertices in Vi which are adjacent to a vertex outside
of Vi. A graph is prime if it does not have a split.

Given graphs G1 and G2 such that V (G1) ∩ V (G2) = {v}, let G1 ∗ G2 be the graph with
vertex set (V1 ∪ V2) \ {v}, and edge set {xy ∈ E(G1) : x 6= v and y 6= v} ∪ {xy ∈ E(G2) : x 6=
v and y 6= v} ∪ {xy : x ∈ NG1

(v) and y ∈ NG2
(v)}. Clearly, if G is decomposable into G1 and

G2, then G = G1 ∗G2.
The split decomposition of a graph is the recursive decomposition of the graph using simple

decompositions in splits until none of the obtained graphs can be decomposed further. The
split decomposition tree of the graph G is the tree T in which each node h corresponds to a
prime graph denoted by G∗

h obtained by the split decomposition. Furthermore two nodes h
and h′ of T are adjacent if and only if the corresponding graphs G∗

h and G∗

h′ have a common
marker. If h′ is the parent of the node h in T , let vh be the unique marker belonging to G∗

h

and G∗

h′ , which we call parent marker. Let Gh be the graph corresponding to the subtree of T
rooted at the node h.

The split decomposition of a graph is not necessarily unique. In [17], Dahlhaus obtained
a linear time algorithm to compute a split decomposition of a graph. See [15] for more de-
tails. Distance hereditary graphs are completely decomposable by split decomposition and
consequently have a unique split decomposition tree [24].
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In [30] and [31], a polynomial time algorithm to obtain an optimal proper coloring of
a graph with a given split decomposition tree was proposed. To explain it, we need some
technical definitions.

Let G be a graph and let w : V (G) → N be a weight function. A w-weighted coloring is
an assignement, for each vertex v, of a set Cv with w(v) colors such that, for every edge xy,
Cx ∩ Cy = ∅. Let CV ′ be the set of colors used in a subset V ′ ⊆ V (G).

Let D(G,w, V ′) be the set of all pairs (a, b) ∈ N
2 such that there is a w-weighted coloring

C of G with a + b colors and |CV ′ | = a. Let T be a split decomposition tree of G and let r
be its root. Given a node h 6= r of T , let D(h) = D(Gh − vh, w,NGh

(vh)) be the D-set of h,
where, for all v ∈ Vh \ {vh}, w(v) = 1.

With these definitions, we can summarize the algorithm of [30] and [31].
For each node h of T , they obtain the set D(h) of all pairs (a, b) such that there is a proper

coloring of Gh − vh with a+ b colors where the neighbors of vh in Gh receive a colors. This is
done by the following procedure.

Let b ∈ {0, . . . , n} be the number of colors we wish to reserve for vh (that is, these colors
cannot appear in the neighborhood of vh in Gh). Let c ∈ {1, . . . , 2n} be an upper bound to
the number of colors in Gh. For each child i of h, let ai be the smallest integer such that
there exists a coloring of Gi − vi with at most c colors where the neighbors of vi in Gi use
ai colors. We can compute ai with the set D(i). Let w be the following weight function for
G∗

h: w(vh) = b, w(vi) = ai for every child i of h and w(x) = 1 for the remaining vertices of
G∗

h. Compute an optimal w-weighted coloring of G∗

h and let mc be the minimum between the
number of colors and the value of c. That is, for every value of c, we have a value mc. Let mb

be the minimum over all values mc. We then add the pair (mb − b, b) in Dh. After all possible
values for b, we have the set D(h). When h is the root r, then b can assume only one value
b = 0, since Gr has no parent marker.

How we can obtain a proper coloring of Gh given a w-weighted coloring of G∗

h? The vertices
with weight 1 receive the same color, the neighbors of vi in Gi receive the colors of vi for every
child i of h and the remaining vertices can receive the remaining colors.

For more details, see [30] and [31]. Observe that, if the number of vertices in G∗

h is bounded
by a constant for every node h of T , then this procedure has polynomial time complexity.

In this paper, we change this algorithm a little bit to obtain an optimal acyclic coloring of
G, proving Theorem 1.3.

The main idea behind our modification is that, given a graph G decomposable into G1 and
G2, if G has a bicolored cycle with vertices of G1 and G2, then G1 or G2 also has a bicolored
cycle. Then our procedure follows the main steps of the algorithm above, but computing
w-weighted acyclic colorings, instead of w-weighted proper colorings.

6 Some technical proofs

We now provide some proofs of the most important results of the paper. Firstly, we need to
state a definition and recall a theorem from [6].

Definition 6.1. Let G = (V,E) be a graph. A subset M of V with 1 ≤ |M | ≤ |V | is called
a module if each vertex in V −M is either adjacent to all vertices of M or to none of them.
A module M is called a homogeneous set if 1 < |M | < |V |. The graph obtained from G by
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shrinking every maximal homogeneous set to one single vertex is called the characteristic graph
of G.

A graph is called split graph if its vertex set has a partition (K,S) such that K induces a
clique and S induces an independent set.

Lemma 6.2 ([6]). A p-connected graph G is separable if and only if its characteristic graph is
a split graph.

The rest of the paper is dedicated to prove Theorem 4.3 and lemmas from Sections 2 and
3.

6.1 Nonrepetitive colorings

We start with the proofs of Lemmas 3.2, 3.3 and 3.4.

Proof of Lemma 3.2. If G = G1∪G2, then every color of G1 can be used in G2, and vice-versa.
Thus, π(G) = max{π(G1), π(G2)}. So, let G = G1 ∨ G2. Suppose that |V (G1)| ≥ 2 and
|V (G)| ≥ 2. Let a1, b1 ∈ V (G1) and a2, b2 ∈ V (G2). Suppose that a1 and b1 receive color C1

and that a2 and b2 receive color C2. Then we have the bicolored P4 a1a2b1b2, which is the
repetition pattern C1C2C1C2; a contradiction. So, (a) all vertices of G1 have distinct colors;
or (b) all vertices of G2 have distinct colors.

Proof of Lemma 3.3. Let G be a spider with partition (R,C, S), such that |C| = |S| = k. A
minimum acyclic coloring of G can be easily obtained from an acyclic coloring of G[R], by
assigning a new color for each vertex in C and finally by coloring each vertex of S with any
appropriated avaiable color of C. Thus, χa(G) = χa(G[R]) + k.

On the other hand, to produce a star coloring of G, we first color optimally G[R] and then
assign one new color to each vertex of C. If G is thin, we color each vertex of S with any
appropriated available color of C. If G is thick and R 6= ∅, then we use one of the colors of R
to color every vertex of S. Then, χst(G) = χst(R) + k. If G is thick and R = ∅, then we have
to add a new color and assign it to every vertex of S. By consequence, χst(G) = k + 1. The
same arguments can be used to π(G).

6.2 Clique coloring

Proof of Lemma 3.5. The proof is direct if G = G1 ∪ G2. If G is the join of two graphs G1

and G2, then it is easy to see that every maximal clique of G must have vertices of G1 and G2,
since, for every clique C of G1, C ∪ {v2} (where v2 ∈ G2) is a clique of G. Then, coloring the
vertices of G1 with color 1 and the vertices of G2 with color 2, we have that every maximal
clique receives two colors.

Now suppose that G is a quasi-spider with partition (R,C, S). Suppose first that R is not
empty. The same argument below shows that there is no maximal clique of G with vertices
of R and no vertex of C and that there is no maximal clique of G with vertices of C and no
vertex of R or no vertex of S. Since there is no clique with two vertices of S, we can obtain
a clique coloring of G by coloring the vertices of R and S with color 1 and the vertices of C
with color 2.

Suppose now that R is empty. In this case, is is possible that C is a maximal clique. Let
H = K2 or H = K2 be the subgraph that replaced a vertex of C ∪ S in the definition of
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quasi-spider. Let x ∈ C − H be a vertex of C that is not in H. Let N(x) be the set of
neighbors of x in S. It is easy to see that coloring C − {x} and N(x) with color 1 and x and
S −N(x) with color 2, we have that every maximal clique receives two colors. Then we have
a 2-clique-coloring of G.

Proof of Lemma 4.2. At first, suppose that G − H is not empty. Then H is a separable p-
component and, by Lemma 6.2, the characteristic graph of H is a split graph (H1 ”reduces”
to a clique and H2 ”reduces” to an independente set). Also remember that every vertex of
H2 has a neighbor in H1. Hence, if two vertices of H2 induces an edge, then they are in the
same homogeneous set and then they have a common neighbor in H1. Consequently, there is
no maximal clique with vertex set contained in H2.

It is easy to see that there is no maximal clique of G with vertices of G−H and no vertex
of H1, since, for every clique C of G−H, C ∪ {v} (where v ∈ H1) is a clique of G. The same
argument shows that there is no maximal clique of G with vertices of H1 and no vertex of H2

or no vertex of G −H.Then, we can obtain a clique coloring of G by coloring the vertices of
G−H and H2 with color 1 and the vertices of H1 with color 2.

Now, suppose that G−H is empty. Since H is a p-connected (q, q − 4)-graph, then H has
at most q−1 vertices. Since q is fixed, we can generate all possible clique-colorings in constant
time and obtain the clique chromatic number.
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