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Abstract. Vizing’s theorem establishes that the edges of a simple graph can be
properly colored using at most ∆+1 colors. Therefore, the minimum number of
colors that are needed to color the edges of a graph G satisfies ∆≤ χ′(G)≤ ∆+1
and a polynomial algorithm to obtain a ∆+ 1 coloring of the graph is known.
Heuristics for the edge coloring problem do exist in the literature and can be
justified in situations where a ∆+ 1 coloring of the graph is not good enough.
In this paper, a constructive heuristic based on the proof of Vizing’s theorem is
proposed. The heuristic tries to find a ∆ coloring of the graph, but whenever that
coloring is not found, a solution using exactly ∆+1 colors is returned. Therefore,
the heuristic obtains solutions whose cost is, in the worst case, one color above
the optimum.
KEYWORDS. Graph Theory, Edge Coloring, Vizing’s Theorem.

1. Introduction
An assignment of colors to the edges of a graph G = (V,E) is a function λ : E→C, where
C is a non-empty set of colors. A color is present on a vertex, if an edge incident on the
vertex has that color; otherwise, the color is free or available on that vertex. A conflict
in an assignment of colors is the existence of two edges with the same color incident to a
common vertex. A proper edge coloring of G is an assignment of colors to every edge of
G without conflicts and a proper partial edge coloring is an assignment of colors without
conflicts such that some edges of G may be uncolored.

Edge coloring is an important problem in graph theory. It consists in coloring the
edges of a graph such that two edges incident to the same vertex get different colors. For
a graph G, the minimum number of colors necessary to obtain a proper edge coloring is
called the chromatic index χ′(G). Let ∆ be the maximum vertex degree on the graph. It
is easy to see that χ′(G) ≥ ∆ because all the edges incident to a maximum degree vertex
have to be assigned different colors. Vizing’s theorem proves, in a constructive way, that
every simple graph may be colored in polynomial time with no more than ∆+ 1 colors
[Vizing 1964]. The proof immediately yields a O(|E| · |V |) time algorithm.

A simple graph G is said to be in Class 1 if χ′(G) = ∆ and in Class 2 if χ′(G) =
∆+1. Vizing’s theorem states that there are no other possibilities: all graphs are either in
Class 1 or Class 2 [Vizing 1964]. It is N P -Complete to determine whether a graph is in
Class 1 or in Class 2 [Holyer 1981].

Many real-world problems may be modelled by edge coloring, including
scheduling of tasks requiring the cooperation of two processors [Kosowski 2009],
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file transfer operations [Nakano et al. 1995], and channel assignment in wireless net-
works [Hsu et al. 2006].

Metaheuristics have been applied to edge coloring. While Khuri et
al. [Khuri et al. 2000] proposed using genetic algorithms, Enochs and Wain-
wright [Enochs and R. 2001] developed a simulated annealing heuristic. Due to the ex-
istence of Vizing’s theorem, these time consuming heuristics can be only justified in cases
where a ∆+1 coloring of the graph is not good enough and a ∆ coloring should be found
whenever such a coloring exists.

A set of fast edge coloring heuristics was proposed by [Hilgemeier et al. 2003].
These heuristics do not guarantee to find a proper edge coloring of a graph but they might
be useful in contexts where very solutions must be generated in a short amount of time.

In [Sanders and Steurer 2005] the authors proposed an edge coloring heuristic that
attempts to use a minimum number of colors. They suggest that it is possible to speed up
their algorithm by starting the coloring process with only ∆ colors. Before adding more
colors, the heuristic would try to color edges by shifting alternating paths. At the best of
our knowledge, the idea was not implemented.

In this work, we propose a constructive heuristic for edge coloring based on a proof
of Vizing’s theorem that, while seeking solutions using exactly ∆ colors, guarantees ob-
taining solutions using no more than ∆+ 1 colors. The heuristic requires O(|E| · |V | ·∆)
time and always find a proper edge coloring of the graph.

The rest of this paper is organized as follows. In the next section we describe
a proof of Vizing’s theorem as a basis for the proposed heuristic. Section 3 describes
the constructive heuristic being proposed. In Section 4 we present computational results
concerning the new heuristic and evaluate its performance against state of the art heuristics.
In the last section we make some concluding remarks.

2. Vizing’s Theorem

The main result on edge coloring came in 1964 with Vizing’s theorem [Vizing 1964] which
says that every graph G may be colored with at most ∆+1 colors, that is,

χ
′(G)≤ ∆+1 (1)

There exist several proofs of Vizing’s theorem in the literature, see
for example [Diestel 2005, Dijkstra and Rao 1990, Gabow et al. 1985, Gould 1988,
Misra and Gries 1992]. All proofs are based on augmenting the coloring of the graph by
coloring a new edge at each iteration with color c ∈ {c1,c2, . . .c∆+1}. The proofs show
how to color an arbitrary uncolored edge of a partially colored graph (which may require
changing the color of colored edges to maintain validity) never exceeding ∆+ 1 different
colors. This procedure is repeated until all edges are colored.

The proof of the theorem in which our new heuristic is based may be found in
[Gould 1988]. In the rest of this section, we partially describe the proof as a basis for our
heuristic.

Let e0 = wv0 be an uncolored edge of a graph G partially colored with no more than
∆+1 colors. Observe that, since both w and v0 have at most ∆−1 colored incident edges,
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there are at least two available colors in both of them. Let us call Free(v) the set of colors
available at vertex v.

If Free(w)∩Free(v0) 6= ∅ we can simply choose one color from that intersection
to color edge e0.

Assume now, that the intersection is empty. Let α0 be an available color at v0 and
β an available color at w. Let P be the maximal path that starts at v0 and its edges are
alternately colored with colors β and α0. Two cases may arise: P ends at a vertex different
from w or P ends at w. In the first case, the coloring may be augmented by switching
the colors of the edges on the path P (edges colored with α0 are recolored with β and
vice-versa) and coloring edge e0 with color β that is now available in vertex v0 (see Fig. 1).

Figure 1. Color β is available at v0 after the switch.

Assume now that the path P ends at w. If we switch the edges of path P, color β

will be available in vertex v0 but, on the other hand, it will not be available in vertex w (see
Fig. 2).

Figure 2. A situation where the path P ends at w.

Let v1 be the vertex adjacent to w in P and e1 = wv1 which is colored with α0.
Remove color α0 from e1 and color e0 with that color (see Fig. 3).

Now the problem consists in re-coloring edge e1 and we can apply the same proce-
dure we used with edge e0 to try to assign a color to edge e1. Note that if Free(w)∩Free(v1)
is also empty, when considering a color α1 available at v1, this color must be different from
α0 in order to avoid cycling. Such color always exists because v1 has at most ∆−1 colored
incident edges.

We may continue in this way until Free(w)∩Free(vi) is not empty or the path P
does not end at w. The rest of the proof of Vizing’s theorem [Gould 1988], shows that
this will be eventually the case after at most ∆ iterations. This proof of Vizing’s theorem
immediately yields an O(|E| · |V | ·∆) time algorithm to obtain a ∆+1 proper coloring of a

3996



September 24-28, 2012
Rio de Janeiro, Brazil

Figure 3. Color α0 moves from wv1 to wv0.

simple graph. In the next section we adapt the algorithm derived from this proof to try to
obtain a ∆ proper coloring of the graph.

3. Edge coloring heuristic
The heuristic proposed in this paper, is an adaptation of the algorithm derived from the
proof of Vizing’s theorem described in the previous section. We call that algorithm, Viz-
ing’s algorithm, and its adaptation, the ∆ Vizing heuristic (∆Vh).

∆Vh considers a set {c1,c2, . . .c∆} of colors and tries to apply Vizing’s algorithm
using that set instead of the set with ∆+1 colors. Note that in this case, the observation that
there are at least two available colors in every vertex with an uncolored incident edge is
no longer valid. Indeed, if while executing the coloring algorithm, there is a vertex whose
degree is equal to ∆ and, all but one of its incident edges are colored, then there is only one
available color at that vertex.

Therefore, considering a set of just ∆ colors, Vizing’s algorithm may fail when
it has to set variable αi to a color available at vi different from αi−1. In this case, our
proposed heuristic augments the set of available colors including color c∆+1 and continues
its execution as Vizing’s algorithm.

Algorithm 1 depicts the ∆ Vizing heuristic. In line 1 variable taboo is set to nil.
This variable represents the color that cannot be used to recolor the current edge (e0), and is
different from nil only when the current edge has to be recolored (when it was uncolored in
the previous iteration). In line 2 the algorithm assigns the same set of ∆ different available
colors to each vertex of the graph. Then, the algorithm iterates until all edges are colored.
If no edge was uncolored in the previous iteration, in line 5 the algorithm chooses the
current edge at random among the uncolored edges of the graph. Otherwise, the current
edge is the edge that needs to be recolored. In lines 6 to 8, whenever the intersection of the
sets of available colors in both ends of the current edge is not empty, the algorithm assigns
a color from that intersection to the current edge and terminates the current iteration to
consider another edge. Note that the procedure SetColor(e0,ϕ) besides assigning the color
ϕ to edge e0, removes that color from the sets of available colors at both ends of the edge.

Assume now that the intersection of the sets of available colors in both ends of the
current edge is empty. If there is only one available color at v0 and is equal to the taboo
color (note that this may only happen while recoloring), in lines 11 to 13 the algorithm
inserts the new color c∆+1 to the set of available colors at every vertex of the graph, colors
the current edge with the new color and terminates the current iteration to consider a new
uncolored edge. Observe that, if the algorithm execution reaches lines 11 to 13 it will not
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find a ∆ coloring of the graph and will return a ∆+1 proper coloring.

Assume now that there is at least one color available at v0 different from taboo.
The algorithm assigns to α0 one of such colors chosen at random in line 15. Then, in line
17, if the current edge is not being recolored, the algorithm assigns to β a color available at
w, otherwise β is already an available color at w that was selected in a previous iteration.
Next, the algorithm computes the maximal path P starting in v0 and whose edges alternate
between edges colored with β and edges colored with α0. If this path does not end at w,
in lines 20 to 22 the algorithm switches the colors of the edges on the path from β to α0
and vice-versa, assigns the color β (which is now available at v0) to e0 and terminates the
current iteration to consider another uncolored edge.

Finally, assume that the path P ends at w. In this case, in lines 24 to 29, the algo-
rithm removes the color α0 from the last edge of P, assigns the color α0 to the current edge
e0, set the new current edge as the last edge of P and sets variable taboo to α0 in order
to avoid, in the next iteration, recoloring the new current edge with the color it just lost.
Observe that the procedure UnSetColor(e1), besides removing the current color from the
edge e1, inserts that color in the sets of available colors at both ends of the edge.

The asymptotic complexity of the ∆ Vizing heuristic is the same as Vizing’s al-
gorithm, that is, O(|E| · |V | · ∆). We acknowledge the existence of other edge coloring
algorithms with lower complexity [Gabow et al. 1985]. In fact, the best known proof of
Vizing’s theorem [Misra and Gries 1992] immediately yields a O(|E| · |V |) algorithm. In
order to attain that complexity, the algorithm computes Free(w)∩Free(vi) and the path
P only once per iteration, which ends up hurting the effectiveness of a heuristic based on
that proof of the theorem. Moreover, experimental results showed that, despite their dif-
ferent complexities, the algorithms derived from the two proofs are equivalent in terms of
execution times.

4. Computational results
The heuristic described in Section 3 was coded in C++ and compiled with version 4.4.1 of
the g++ compiler with the optimization flag -O3. The experimental results showed in this
section were taken on a AMD Sempron 3600+ processor (1.8 GHz, 256kB cache) with 2
GB of RAM running Linux.

We compare ∆Vh against other heuristics from the literature in terms of solu-
tion quality and execution times. The problem instances are the same considered in
[Enochs and R. 2001] excluding complete graphs and multigraphs (graphs with parallel
edges). The chromatic index of complete graphs is ∆+ 1 when the number of vertices is
odd and, in that case, Vizing’s algorithm finds an optimal coloring. When the number of
vertices is even, complete graphs have chromatic index equal to ∆ and there exist several
fast algorithms that find ∆ colorings for such graphs (see for example [Costa et al. 2012]).

Table 1 compares ∆Vh against the constructive heuristics proposed in
[Hilgemeier et al. 2003] (observe that the authors considered just a subset of the instances
tackled in [Enochs and R. 2001]) showing results of a unique execution of the heuristics on
each problem instance. The first column shows the instance name. The next six columns
show solution costs and execution times in seconds for the three constructive heuristics
evaluated in [Hilgemeier et al. 2003]. The last two columns show solution costs and ex-
ecution times for the heuristic proposed in this work (∆Vh). The results concerning the
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Algorithm 1: Edge Coloring Heuristic
1 taboo← nil ;
2 Let Free(v)←{c1,c2, . . .c∆} for every v ∈V ;
3 while there are uncolored edges in G do
4 if taboo = nil then
5 e0 = wv0← uncolored edge of G;

6 if ∃ϕ ∈ {Free(v0)∩Free(w)} then
7 SetColor(e0,ϕ) ;
8 taboo← nil ;
9 else

10 if {ϕ ∈ Free(v0)|ϕ 6= taboo}= /0 then
11 Free(v)← Free(v)∪{c∆+1} for every v ∈V ;
12 SetColor(e0,c∆+1) ;
13 taboo← nil ;
14 else
15 α0← a color in {ϕ ∈ Free(v0)|ϕ 6= taboo} ;
16 if taboo = nil then
17 β← a color in Free(w) ;

18 Compute P, the maximal alternating β-α0-path starting in v0 ;
19 if P does not end at w then
20 Switch(P) ;
21 SetColor(e0,β) ;
22 taboo← nil ;
23 else
24 e1← last edge of P ;
25 UnSetColor(e1) ;
26 SetColor(e0,α0) ;
27 e0← e1 ;
28 v0← end vertex of e0 different from w ;
29 taboo← α0 ;
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heuristics from the literature were taken from [Hilgemeier et al. 2003] and were obtained
on a AMD Athlon XP2200+ processor (1.8 GHz, 256kB cache) with 512 MB RAM run-
ning Linux.

benchmark linE antN ant1 ∆Vh
name colors secs colors secs colors secs colors secs
myciel6 47 - 47 - 47 0.01 47 -
myciel7 95 0.02 95 0.01 95 0.03 95 -
le450 5c 66 0.08 66 0.08 66 0.15 66 -
le450 15a 99 0.06 99 0.07 99 0.12 99 -
le450 15c 139 0.40 139 0.42 139 0.76 139 0.01
le450 15d 138 0.42 138 0.42 138 0.78 138 0.01
le450 25c 179 0.52 179 0.52 179 0.96 179 0.01
le450 25d 157 0.53 157 0.51 157 0.96 157 0.01

Table 1. Computational results for small graphs.

∆Vh clearly outperforms the constructive heuristics from the literature in terms of
execution time (even considering the different hardware). In terms of solution quality, all
heuristics found a ∆ coloring of the graph for every benchmark instance considered.

In order to compare ∆Vh against metaheuristic approaches, we developed a multi
start heuristic. This heuristic loads the graph once and then executes ∆Vh 1000 times.
Table 2 shows the computational results. The first column shows the instance name. The
next two columns show solution costs and execution times for the simulated annealing
heuristic introduced in [Enochs and R. 2001] (running times were taken on a Intel Pentium
III, 700Mhz computer). The next column shows solution costs for the genetic algorithm
proposed in [Khuri et al. 2000] (note that the authors did not report executions times). The
last three columns concern ∆Vh results. The first of these columns shows the best solution
cost found over the 1000 executions of the heuristic. The second column in the group
shows the success rate, this is, the number of times the best solution was obtained divided
by 1000. The last column shows the computational time of loading the instance once and
executing the heuristic 1000 times.

benchmark SA GA ∆Vh
name colors secs colors colors suc. rate secs
myciel3 5 1 5 5 1 0.01
myciel4 11 1 11 11 1 -
myciel5 23 1 23 23 1 0.03
myciel6 47 2 47 47 1 0.12
myciel7 95 3 95 95 1 0.69
le450 5a 42 25 43 42 1 1.59
le450 5b 42 25 43 42 1 1.60
le450 5c 66 93 67 66 1 3.12
le450 5d 68 88 69 68 1 3.06
le450 15a 99 35 99 99 1 3.03
le450 15b 94 36 94 94 1 3.00
le450 15c 139 234 139 139 1 6.25
le450 15d 138 231 140 138 1 6.31
le450 25a 128 33 129 128 1 3.32
le450 25b 111 38 112 111 1 3.16
le450 25c 179 243 180 179 1 7.01
le450 25d 157 440 159 157 1 6.76

Table 2. Computational results for small graphs.
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Both, the simulated annealing approach and ∆Vh were able to find ∆ colorings
for all instances tested. The success rate column shows that, for all instances, in each
one of the 1000 executions of the heuristic, the optimal solutions was found. The genetic
algorithm was unable to find optimal solutions for nine of the 17 instances. As expected,
∆Vh is at least order of magnitude faster than the simulated annealing approach (even
considering that the computer used in this work is at least three times faster). The most
time consuming instances were solved 1000 times by ∆Vh in around 7 seconds. On the
other hand, the simulated annealing heuristic took as much as 440 seconds to execute once
to solve a single instance problem.

5. Conclusions

In this paper we introduced a new constructive heuristic for the edge coloring problem on
simple graphs based on Vizing’s theorem. Being a simple modification of Vizing’s algo-
rithm, the new heuristic guarantees that, when it is not able to find a proven optimal solution
to the problem (matching the ∆ lower bound), it finds a solution using at most one more
color than the optimal. Experimental results showed that the new heuristic was capable
of finding a ∆ coloring for all benchmark instances considered. In terms of computational
times, the new heuristic is significantly faster than previous approaches in the literature.

As future work, we intend to extend the proposed heuristic to consider multigraphs.
In fact, Vizing’s theorem states that the chromatic index of a multigraph is between ∆ and
∆+ µ being µ the multiplicity of the graph. Vizing’s algorithm finds ∆+ µ colorings of
multigraphs. A heuristic similar to the one developed in this work may be able to find
better solutions in almost the same computational time.
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