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ABSTRACT 

 
 A telecommunication network is said survivable if it is still able to provide 
communication between sites it connects after certain component fails. Mesh restoration schemes 
were widely used in the 1970s and 1980s. Ring based topologies were introduced in the late 80s. 
Around ten years later appeared the p-cycle networking concept. A p-cycle provides one 
protection path for a failed span it crosses and it also protects spans that have both end nodes on 
the cycle but are not themselves on the cycle. This technology is reported to simultaneously 
provide the switching speed and simplicity of rings with the efficiency and flexibility for 
reconfiguration of a mesh network. The basic problem we deal with may be seen as the problem 
of covering with p-cycles all the demands on a 2-connected graph minimizing the total cost. We 
present two MIP models that do not require a priori enumeration of candidate cycles.  
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1. INTRODUCTION 
 
 Efficient protection is a major issue in telecommunications. Optical networks provide the 
backbone infrastructure for telecommunication networks. Because of the high-speed of optical 
networks, network survivability is of paramount importance. Upon an accidental failure such as a 
fiber-cut, it is imperative that the network can achieve fast optical recovery in order to minimize 
data loss. 
 A network is said survivable if it is operational even if certain component fails, that is, if 
it is still able to provide communication between sites it connects. Mesh restoration schemes were 
widely used in the 1970s and early 1980s. Ring based topologies were introduced in the late 80s 
based on self-healing rings (SHR) networks technology. Around ten years later appeared the p-
cycle networking concept that enables fast span/link protection with high capacity efficiency. The 
idea is to organize the spare capacity in the network into a set of preconfigured cycles to protect 
working capacity at each span. 
 This new technology is reported to simultaneously provide the switching speed and 
simplicity of rings with the much greater efficiency and flexibility for reconfiguration of a mesh 
network. As this architecture is based on local protection actions Add Drop Multiplexers (ADM) 
are simple and cheap. This technology can be very efficient for several types of service. Asthana 
et al. (2010) in their review propose a classification of the different ways p-cycles networks 
provide protection. 
 
 A single unit capacity p-cycle is a cycle composed of one spare channel on each span it 
crosses. A span traversed by a p-cycle is called an on-cycle span of this p-cycle. If a span is not 
traversed by a p-cycle but its two end nodes are, then it is called a straddle span of this p-cycle. 
In Figure 1, on-cycle spans are marked in bold.  
 

 
 

Figure 1. p-cycle 
 
If an on-cycle span fails the p-cycle provides one protection path as shown on Figure 2. If a 
straddle span fails the p-cycle provides two protection paths as shown on figure 3.  
 
 

 

Figure 2. An example of on-cycle protection. 
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Figure 3. An example of straddle protection. 
 
 
            In this paper we deal with p-cycle network planning problems. The basic problem may be 
stated as the problem of covering with p-cycles all the demands on a 2-connected graph 
minimizing the total cost. This problem is called at the Spare Capacity Optimization (SCO) 
Problem (also appears at the literature as the Spare Capacity Placement Problem, SCP, or Spare 
Capacity Allocation Problem, SCA). Demands and capacity are expressed in number of channels. 
In SCO routing is a fixed input. We assume that traffic demands have already been routed, so 
they are known and fixed on each span. Schupke (2004) shows that the SCO problem is NP-hard 
by means of a simple reduction from the Hamiltonian cycle problem.  
       In the more general problem, the Joint Capacity Optimization (JCO), routing and spare 
capacity placement are jointly optimized to minimize the total capacity required. That is, 
demands are not assumed to be routed in advance. Solving JCP would produce better solutions 
but is much harder to solve that SCA.  
        Several heuristics, some of them based on MIP models, have been proposed for SCO 
problem. For reviews on p-cycle networks architectures, models and methods see Grover et al. 
(2005) and Kiaie et al. (2009). 

 
1.1 ILP model for SCO 
  
        In what follows we assume that G=(V,X) is a 2 connected graph, n = |V|  and m =|E|   
Given a cycle, we can easily compute its cost and its straddles, and consequently we can 
determine the demands protected. So, if we were able to find the set of all possible cycles of the 
graph we could create every possible combination of cycles needed to cover the network 
demands. To find the optimal cover we would need to check which the cheapest combination is. 
       Theoretically we can find all the possible cycles of a graph using one of the classical 
algorithms, for example those of Johnson (1975) or Tarjan (1972) and we can formulate a simple 
ILP to choose the optimal cover. We present here a simplified version of one of the models 
mentioned in Grover et al (2005). 
 
Coefficients: 
 
K; is the set of cycles of the graph. 
 pik  encodes the protection relationship between the span i and eligible cycle k. So pik = 1 if the 
span i is on-cycle, pik = 2 if the span i is straddle, and pik = 0 otherwise. 
di; demands on span i. 
ck; cost of each unit-capacity copy of cycle k. 
 
Variables: 
 
xk ≥ 0: Integer variable. This variable represents the number of unit-capacity copies of cycle k in 
the solution. 
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ILP Formulation: 
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 As a graph may have an exponential number of cycles the model may have on the worst 
case an exponential number of variables. We know that the number of cycles in a complete graph 
of size n is: 
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Even to handle the output of the algorithm that finds the cycles can be a daunting task.  

           Several heuristics have been developed based on this model, that only generate a subset of 
the cycles having promising indicators. Grover et al (2005), present a review of some of these  
methods. Here we mention two possible criteria:  
 

• Topological Score: is the total number of spans the p-cycle is able to protect (demands 
are not taking into account in this case). 
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• A priori efficiency:  is the topological score divided by the p-cycle cost. 
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Liu and Ruan (2004) also propose heuristics to search for good candidate cycles. Their 

algorithm generates O(|E|) high efficiency cycles and O(|E|) short cycles. They claim that the 
cycles generated can lead to near optimal solutions when used by either ILP or a heuristic 
algorithm.  

The rest of the work is organized as follows. In Section 2 we present two new MIP 
models that do not require candidate cycle enumeration. In Section 3 we present numerical results 
and Section 4 is devoted to conclusions. 
  
2. ILP and MIP formulations for the SCO problem 
 
 Schupke (2004) presents an ILP model for the SCO without previous cycle enumeration. 
He assumes that a maximum number of cycles is known in advance. In an ILP formulation, 
cycles can be defined by requiring each node to have 2  or 0 on cycle spans incident to it. But 
with this definition multiple disjoint cycles may be obtained. Following Wu et al. (2010) notation 
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we call the sets of cycles generated this way  CSj. So the CSj may contain one or multiple disjoint 
sets. At Schupke model a predetermined number J of CSj  sets of disjoint cycles is generated and  
one cycle at each CSj is determined by means of flow constraints. The number of variables of this 
model is J(|V|2 + |V||E| + 4|E| + |V| + 1)  and J(|V|2 + |V||E| + 9|E| + |V| + 1 ) + |E| is the number of  
constraints, but it needs a long running time to obtain an optimal solution. So in the same paper a 
four-step heuristic is designed to obtain suboptimal solutions. 
 Wu et al. (2007, 2010), formulate three new models for the SCO based on Schupke 
previous work. They also consider a maximum of J set of cycles. At their first model they do not 
explicitly try to ensure a simple cycle at each set, instead they check if every span in the network 
can be protected by some CSj. This model has J|E|2 + J|E||V| + J|V| variables and J|E|(|E| + |V| + 2) 
+ J|V| + |E| constraints. The model that provided the best results is called “cycle-exclusion” 
model. It is based on new constraints authors introduce, intended to ensure that only a single 
valid cycle from each CSj will appear at the solution. They call these constraints electric voltage 
constraints (see section 2.2). It has 3J(|E| + |V|) variables and 4J|E| + 2J|V | + |E| + J constraints. 
 
2.1. New IP models for SCO Problem 
 
 We formulated 4 new models for the SCO. Because of lack of space we are presenting 
here only two of them. At the two models not described here constraints derived from Miller-
Tucker- Zemlim subtour elimination for the TSP were included in order to ensure only one cycle 
on each  CSj.. In the models presented here we first introduce a new set of constraints to establish 
which edges ar straddles on a p-cycle. Then we define new constraints based in the cycle space 
C(G) of a graph.  
          In both models the number of cycles to be generated is restricted to an arbitrary number J, 
as on the models on Schupke, (2004) and Wu et al, (2007, 2010). The minimum number of cycles 

needed to protect a network with p-cycles is  2
DJ ≥  where D is the highest demand on any 

single edge of graph G. Also we can state an upper bound of the maximum number of cycles on 

an optimal solution, that is ∑
∈

≤
Ei

idJ , where di is the demand on edge i. Then we have:   
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 This threshold can be tight in the worst case, as it can be seen on figure 4. In this graph 
there are cycles of length 3 with zero costs and demand equal one on one edge of each cycle and 
zero in the others. Each cycle is connected to the next one by an edge (bold edges) of infinity cost 
and zero demand: 

 
 

Figure 4. Upper bound on J. 
 

cost = ∞   demand = 0 
cost = 0   demand = 0 
cost = 0   demand = 1 
 

4170



September 24-28, 2012
Rio de Janeiro, Brazil

 

 The limitation of J cycles could be seen as a serious problem. But on real networks the 
optimum is not far from the lower bound (on the standard benchmark COST239 network D = 11, 
so 6≥J  and the number of cycles on its 19 optimal solutions is 7). In real networks cost are very 
tightly related to distances and demands are not as sparse on networks were planners are really 
interested. And D is never too big because, in that case we should be planning on a bigger mux 
level.   
 
2.1.1. MIP model for SCO problem based on voltage subtour constraints and straddle 
identification 
  

As we mentioned above at their most compact model Wu et al (2010) define electric 
voltage constraints as a way to ensure a single cycle at each CSj. Each span e is given a direction 
(or vector) e = (u,v) or e = (v,u) (but not both). If we have e=(u,v) we say that u is de head of the 
vector and v the tail. A root is a node which is the head of two vectors. A reversal node is a node 
that is the tail of two vectors. A value called voltage is assigned to each node in CSj.  We require 
the tail of a vector to have a larger value than its head.  There is a single pair of root and node 
reversal nodes if and only if a feasible set of voltage values exists. This way ensuring a single 
cycle on each CSj is equivalent to ensuring only one pair of root an reversal nodes on CSj, For 
more details about these constraints see Wu et al (2010).  
             We propose in this model a different representation of the straddles. If M is the incidence 

matrix of the graph G and  if x represents a cycle, and then Mxr 2
1=  represents the nodes of the 

cycle and can only take values in {0, 1}. Then, the result of )2( IrMx t −  is a vector whose 
elements can only take three values in {0, 1, 2}. The meaning of those values corresponds to the 
number of nodes (on the p-cycle) incident to each edge minus the on-cycle nodes. So, if the value 
of one element of )2( IrMx t −  is two, it is a straddle edge. 
 
Sets, matrices and indices: 
 
n: Total number of nodes of graph G (|V|). 
m: Total number of edges of graph G (|E|). 
J: The maximum number of cycles allowed in the p-cycle solution. 
j: Cycle set index, j ∈ {1, 2, …, J} . 
coste: Cost of adding one unit of spare capacity on edge e. 
de: Demand on edge e. 
M: Incidence matrix of the graph G (n * m). 
L: A very big number. 

||
1

V=α : Coefficient to guarantee feasible voltages. 

 
Variables: 
 
xj

eo: Binary variable. It takes 1 if the edge e is on the generated cycle j and 0 otherwise. Index  
        o ∈{0,1} indicates direction of the vector needed to define voltage constraints. 
yj

e: Binary variable. It takes 1 if the edge e is a straddle of the generated cycle j and 0 otherwise. 
rootj

q: Binary variable. It takes value 1 if node u is a root node on CSj and 0 otherwise. 
voltj

q: Continuous variable. Is the voltages value of node u. 
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Formulation : 
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VuJjroot j
u ∈∀∈∀∈ ,} ,1,0{       (16) 

VuJjvolt j
u ∈∀∈∀∞∈ ,),,0[      (17) 

 
The total cost of all p-cycles in minimized by (6). 
Constraints (7) state flow conservation. Constraints (8) are used to indentify spans that are 

straddle, as it was explained above. Constraints (9) state that an edge can take only one direction. 
 Constraints (10) restrict nodes to have only degree less or equal to 2. Constraints (11) 
force a root to exist on each cycle.  Constraints (12) state difference of voltage on each span with 
the exception of the last span on the cycle. Constraints (13) impose that the demands have to be 
satisfied. 
  
          Number of variables: J(3|E| + 2|V|). 
          Number of constraints: 4J|E| + 2J|V| + |E| + J. 
 
 So our model has less variables and exactly the same number of constraints that the cycle 
exclusion model of Wu et al (2010).  
 
2.1.2 MIP model for SCO problem based on cycle space and voltage subtour constraints  
 
 Cycles of a graph can be represented by binary arrays, where the ith position indicates if 
the ith edge of the graph is part of the cycle or not. 
           The cycles and the union of edge disjoint cycles of a graph forms a space that we will call 
C = C(G) (see for example Diestel, 2000). The cycle space C(G) is the subspace of E(G) spanned 
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by all the cycles in G, more precisely, by their edge sets. The dimension of C(G) is the 
cyclomatic number µ= |E| - |V| + c, where c is the number of connected components of the 
graph. On 2-connected graphs (as is our case) c is 1. 
 If we consider an arbitrary spanning tree T of G, then each edge not in T determines a 
unique cycle if it is added to the spanning tree. These cycles are called fundamental cycles of G. 
The set of all fundamental cycles with respect to an arbitrary spanning tree is a base of the cycle 
space C(G).  
            Following Bapeswara Rao and Murty (1969) we call the disjoint union (ring union, mod 2 
addition, or “exclusive or”) operation between cycles vectors a circ. So a circ is either a cycle, the 
null cycle or an edge-disjoint union of cycles.   
          We propose a new model for the SCO using these concepts. We will need to calculate a 
priori a spanning tree of the graph and to determine the corresponding set of fundamental cycles.  
          We replace constraints (10) of model on section 2.1.1 by constraints (22). They state that 
each generated cycle is obtained by means of mod 2 addition of fundamental cycles. Voltage 
constraints are included to avoid edge-disjoint union of cycles. Using the same notation as in 
2.1.1, we have: 
 
Matrices: 
 
B: Matrix of a set of fundamental cycles (m * µ). Each fundamental cycle is a column and each 
row is an edge. 
 
Variables: 
 
xj

eo: Binary variable. It takes 1 if the edge e is on cycle j and 0 otherwise. Index o ∈{0,1} 
indicates direction of the vector needed to define voltage constraints. 
cj

i: Binary variable. It takes 1 if cycle j is generated by fundamental cycle i and 0 otherwise. 
yj

e: Binary variable. It takes 1 if the edge e is a straddle of the generated cycle j and 0 otherwise. 
pj

e: Integer variable. Is an auxiliary variable that indicates how many pairs of fundamental cycles 
are selected to generate the cycle j that includes the edge e. 
rootj

u: Binary variable.  
voltj

u: Continuous variable.  
 
Formulation: 
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                  The objective function (18) and constraints (19) to (21) and (23) to (25) have been 
defined in the previous model (constraints (7) to (9) and (11) to (13)). Constraints (22) generates 
cycles using the base of the cycle space as it was explained above. 
  
 Number of variables: 5J|E| + 2J|V|. 
 Number of constraints: 5J|E| + 2J|V| + J + |E|. 
 
3. Numerical results 
 
 We implemented our models and the best model from Wu et al (2010) in order to compare 
their efficiency. In all the cases we used as value for J. They models implemented on C++ using 
Concert Technologies from ILOG-IBM CPLEX 10.2. The server runs under HP-Unix on 16 
processors at 1.1 GHz and 8 Gb RAM. The p-cycle community uses the COST 239 (figure 5) 
network that represents European telecommunications connections as standard benchmark case.  
 

 
 

 Figure 5. “Cost239” 

                  We know the objective value of an optimal solution of SCO for COST 239 is 32,340. 
Table 1 shows the numerical results of the three implemented models with a run time limit of 400 
seconds. Reduced MIP refers to the number of rows and columns of the problem after the pre-
solve procedure of CPLEX has been applied. WYH stands for the cycle exclusion model of Wu 
et al(2010), DV is the model in section 2.1.1 and CBV the model presented in section 2.1.2. 
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Model 
Best 

solution  
Optimality 

gap (%) 
Reduced 

MIP Rows 

Reduced 
MIP 

Columns 

Reduced 
MIP 

non-zero 
coefficients 

WYH 32,390 1.02 915 777 3871 
DV 32,930 4.70 913 686 5229 

CBV 32,340 0.00 913 686 5229 
 

Table 1. “Cost239” results after 400s of execution time. 

 Note that even if the initial number of variables and constraints of model presented in 
section 2.1.2 are not the best among these models, the final numbers of variables and constraints 
(Reduced MIP) are the same as those of the most compact model. 
 
 We also tested all the models on a set of networks representing real USA 
telecommunications networks (data available from authors). The set consists of 15 networks with 
number of nodes ranging from 6 to 13 and edges ranging from 15 to 78. The stopping criterion 
was to obtain an optimality gap of 5% or less. Results are summarized on tables 2 and 3. 
 
 

 
 Objective function Gap 

Network # Cycles  WYK DV CBV Optimum  WYK DV CBV 

VZ_US_PIP_001 106967     33.345      33.320      32.550       32.240  3,43% 3,35% 0,96% 

VZ_US_PIP_002 37286     37.370      38.070      37.370       37.370  0,00% 1,87% 0,00% 

VZ_US_PIP_003 37286     35.370      35.770      35.370       35.170  0,57% 1,71% 0,57% 

VZ_US_PIP_004 37286     41.060      41.095      40.670       39.980  2,70% 2,79% 1,73% 

VZ_US_PIP_005 15341     25.407      26.059      25.472       24.937  1,88% 4,50% 2,15% 

VZ_US_PIP_006 15341     26.190      26.425      26.190       26.190  0,00% 0,90% 0,00% 

VZ_US_PIP_007 15341     30.534      30.549      30.534       30.534  0,00% 0,05% 0,00% 

VZ_US_PIP_008 15341     33.277      33.532      33.216       32.736  1,65% 2,43% 1,47% 

VZ_US_PIP_009 15341     37.306      37.521      37.256       37.071  0,63% 1,21% 0,50% 

VZ_US_PIP_010 15341     45.421      46.251      45.871       44.084  3,03% 4,92% 4,05% 

VZ_US_PIP_011 3354     43.936      43.881      43.591       42.054  4,48% 4,34% 3,65% 

VZ_US_PIP_012 1636     37.201      37.401      35.754       35.754  4,05% 4,61% 0,00% 

VZ_US_PIP_013 167     30.184      30.654      29.984       29.984  0,67% 2,23% 0,00% 

VZ_US_PIP_014 70     14.740      14.740      14.740       14.740  0,00% 0,00% 0,00% 

VZ_US_PIP_015 18     14.775      14.775      14.775       14.775  0,00% 0,00% 0,00% 

 
Table 2. Results on a set of USA networks 

 
 

Model Avg. time in seconds 

WYH 356 

DV 896 

CBV 232 
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Table 3. Average running times 
 
4. Conclusions 
 
 Our primary focus was to propose new MIP models that do not require candidate cycle 
enumeration for p-cycles networks design problems. Two new MIP model were formulated for 
solving the spare capacity optimization (SCO) problem. All the models have a polynomial 
number of variables and constraints and if the value of J is big enough, the exact optimal solution 
can be obtained. 
 Our main contributions are that cycle generation is done by means of a constraint based 
on cycle space properties and that the straddle representation is based on the incidence matrix of 
the network. These concepts lead to very compact models and efficient algorithms. 
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