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RESUMO
Neste trabalho, é apresentado o problema linear estocástico de dois estágios o qual é formulado como 
um problema de programação linear, representado por cenários, usando o método divisão. Uma 
técnica apropriada, como o método de pontos interiores, pode ser usada para resolver o programa 
linear explorando a estrutura da nova formulação para grande porte. O esforço computacional na 
maioria  dos método de pontos interiores é em encontrar a solução do correspondente sistema linear 
de equações, e para isso, é usado a decomposição de Cholesky implementando no MATLAB. Alguns 
resultados numéricos preliminares são reportados.

PALAVARAS CHAVE. Programação linear estocástica, Método de pontos interiores, 
Decomposição de Cholesky.  

ABSTRACT
In this work, it is presented the two-stage stochastic linear programming which is formulated 
as a linear programming problem, represented by scenarios, using the splitting method. An 
appropriate technique, such as interior point methods, can be used to solve the linear 
program exploiting the structure of the new formulation to a large extent. The computational 
effort in most interior point methods is dominated of finding the solution of the 
corresponding linear system of equations, and for this, it is used the Cholesky factorization 
in the MATLAB code. Some preliminary numerical results are reported.
KEYWORD. Stochastic linear programs. Interior point methods. Cholesky 
factorizations.
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1.Introduction 

Many practical problems with data under uncertain can be modeled as mathematical programs, and 
this case resulted in the field of stochastic programming and for the last years this theory of 
stochastic programming has attracted the attention of researchers and  plays an increasingly 
important role in many situations in real-world applications. Some examples of this area of stochastic 
programming include portfolio management models, electric power generation capacity planning 
models, forestry management problems, as mentioned by Birge and Holmes (1992). Another 
example is a production planning problem as mentioned by Zhao (2001) where the demand is 
unknown when the production is planned and there is no way to assume that the amount produced 
can meet the demand exactly. 
Most basic among stochastic programs are discretely stochastic linear programs, which are the 
extensions of any standard linear programs, and may lead to large stochastic linear programs and 
extensive computational efforts may be required since the size of these problems generally grows 
exponentially with the number of stochastic parameters in the formulation.
There are various ways how the stochastic problem can be modeled and many algorithms for solving 
this problem. The main difficulty is caused by its nature of the dimensionality. Interested readers are 
referred to the following books on stochastic programming, Birge and Louveaux (1997) and Kall and 
Wallace (1994), Alonso-Ayuso, et al. (2009), Infanger (1994), Shapiro et al. (2009) and related 
references therein.
As a result of the wide variety of applications, as mentioned above, a number of different stochastic 
optimization models appeared in the literature. In this work, it is concentrated on the two-stage 
stochastic program with finite discrete distribution on the random entries, that is, where uncertainty is 
incorporated into the problem by the use of scenarios. The resulting stochastic linear programming is 
dramatically large and requires very high performance in order to solve real world problems. 
With the rapid growth, initiated by Karmarkar in 1984, and development in interior point methods to 
solve large linear programming problems, this method could be a successful solution method for 
stochastic programming and should exploit the special structure of the problem to cut down 
computational times.
The paper is organized as follows. In section 2, the two-stage stochastic linear programming is 
presented with a finite number of possible realizations, called scenarios. Section 3 describes the 
primal-dual interior-point to solve the corresponding linear programming. Section 4 introduces a key 
technique, a full-splitting method, to be employed in the linear problem. In section 5, it is presented 
some numerical results, via different number of scenarios, for the approach mentioned above. As an 
application, only the right-hand side of the linear programming is stochastic. Finally, the paper 
concludes in section 6.

2. Two-stage stochastic linear programming

Consider the following situation. There are two phases in a decision-making process. At the 
beginning of the first phase, one has to make a decision without precise knowledge of the random 
parameters in the second stage. In this phase, the structural component is fixed and free of any 
uncertainty.  After observing uncertainty, it is corrected the decision of stage 1.
The typical two-stage stochastic program can be written in standard form as follows:

                                                      Min   cTx + E( (x,w) )                                                                  (1)
                                                      subject to:     Ax = b,
                                                                              

where E stands
also called the recourse function, defined as:
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                                                            T y(w)                                                       (2)
                                                  subject to:   B(w)x + W(w)y(w) = h(w),
                                                                   

for all possible realizations (or scenarios) w. 
Problem (1) treats to minimize the sum of the first stage objective and the expected value of the 
recourse function. 
Usually, x and y are referred to as first and second stage decision variables, respectively, and W(w) is 

Rn is a vector of first-stage variable that are 
subject to fixed, structural constraints, associated to the first stage constraint matrix A, and represent 
decisions that must be made before the values of uncertain parameters are observed. The first-stage 
decisions variables are often referred to as here-and-now decisions solutions. The values of these 

s is 
the vector of second stage control decisions that represent recourse actions that can be taken after a 
specific realization of the uncertain parameters is observed. These second-stage decisions are referred 
as wait-and- m is the first stage right-hand side vector and  c

n   mxn and the vectors b and c are deterministic 
lxn lxv l the second stage right-hand side 

v is the second stage cost vector.
A standard approach to solving the two stage problem (1) – (2) is by constructing scenarios, it means 
that the random data has a finitely supported distribution. That is, one generates a finite numbers of 
possible scenarios wk which might occur and assigns to each wk a probability pk > 0, such that 

                                                                       1
1

K

k
kp

where K is the number of scenarios. For example, the scenarios may represent historical data 
collected over a period of time.
Taking into account every scenario, the two-stage problem (1)-(2) can be formulated as the following 
deterministic and large equivalent optimization linear problem:

                                                      Min  cTx + p1d1
Ty1 + . . . + pKdK

TyK                                                                          (3)
                                                subject to:  Ax                                          = b,                                  
                                                                   B1x + W1y1                            = h1,
                                                                    .                .                             .
                                                                    .                      .                          .
                                                                     BKx                         + WKyK = hK,
                                                                         1 K

The first constraint of the above linear programming (3) represents m structural constraints whose 
coefficients are fixed and unaffected by uncertainty. The coefficient matrices Bv , Wv and the vectors 
hv and dv may take different values under each scenario.
The linear programming problem (3) has a special structure, the so called dual block- angular 
structure. For the above problem (3), the dual problem is given by:

                                                     Max   bTu + h1
Tv1 + . . . + hK

TvK                                                     (4)
                                            subject  to:   ATu + B1

Tv1 + . . . + BK
TvK +  s               = c.

                                                                           W1
Tv1                              + z1        = p1d1,

                                                                                   .                                    .            .
                                                                                         .                                  .        .
                                                                                                   WK

TvK            + zK = pKdK,
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                                                                     1 K

It can be seen that the size of the equivalent linear programming problem (3) grows rapidly with the 
number of realizations, and in many applications the number of scenarios K may be very large, but 
sparse linear problem where the exploitation of the structure is very important. Some different special 
classes of the problem (4) are given in the literature of stochastic problem. If W is not a random, that 
is, W1 = W2 = …= WK, then the problem has fixed recourse. If the second-stage of a fixed recourse 
problem is feasible for every possible realization of the data random, it is said that the problem has a 
complete recourse. A special case of complete recourse is a simple recourse where W = [I, -I].
There are many algorithms for solving the two-stage problem (3). As mentioned by Zhao (2001), 
these algorithms can be roughly classified into three classes: (i) direct methods which directly use the 
simplex method or interior point methods to solve a linear program; (ii) cutting plane based 
decomposition methods which generate a set of cuts to approximate the nonlinear and non-smooth 
problem given in (1) and (iii) derivate based decomposition methods which determine a search 
direction by using the gradient and Hessian at the current point and find a new point along this 
direction. Interested readers can also see these methods in details from the papers written by 
Berkelaar, et al. (2002), Kall and Mayer (2006), Linderoth et al. (2006), Mészaros (1997), Sun and 
Liu (2006), Ruszczynski (1999), Ruszczynski, and Swietanowski, (1997),  etc. Certainly, the 
selection of methods to be used depends on the two-stage problem to be solved.
This work is concentrated on methods that use specific stochastic program structure, for this, it is 
used the primal-dual interior-point method to solve the linear programming given in (3), using the 
full-splitting technique. The next section will describe the interior point method.

3. Primal-Dual Interior-Point Method

In practice, experience of extensive numerical tests indicates that the primal-dual interior-point 
method is the most powerful algorithm from a family of interior point methods. 
Consider the following primal linear programming problem:

                                                  (P)           min   cTx                                                                            (5)
                                                            subject to:   Ax = b,
                                                                                 

where A is a m x n matrix, c and x are n vectors, and  b is a m vector. It is assumed that A is of full 
row rank.
The dual problem associated with the primal linear programming (5) can be written as follows:

                                                  (D)          max   bT y                                                                            (6)
                                                            subject to:   AT y + z = c,
                                                                                            

where y denote the m vector of dual variables and z is the n vector of dual slack variables.
Finding the optimal solutions of (P) and (D) is equivalent to solving the following system:

                                                               
                                                        AT

                                                             XZe = 0,

where X is a diagonal matrix, its components is given by the components of vector x, that is, X = 
diag(x1,…,xn), and Z is a diagonal matrix given by, Z = diag(z1,...,zn),  and e is the all one vector, that 
is, e = (1,1,...,1)T Rn.
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The basic idea of the primal-dual interior-point is to replace the third equation in (7) by the 
par

                                                                  
                                                           ATy + z = c,  z 
                                                                 

satisfied and it yields optimal solutions for both primal and dual problems.
The Newton’s method is used to solve the system in (8). The resulting linear system is denominated 
the Newton equation system whose solutions (dx , dy, dz)  are given by the following equations, 
denominated normal equations:

                                                 (A Z-1 X AT )dy  =  A Z-1 X(  rc – X-1 r )   + rb           
                                                                       dz  = - AT dy + rc .                                                       (9)  
                                                                      dx  =  Z-1 ( r - X dz ),
where:
                               rc = c - AT y – z,    
                               rb = b - Ax  ,   
                               r = e - XZe.

To summarize an iteration of the primal-dual interior-point method, let, at the j-th iteration, dwj = ( 
dxj, dyj, dzj )T denote the solution obtained for system  (9). In the next iteration, a new point wj+1 = ( 
xj+1, yj+1, zj+1 )T is determined by
                                                xj+1 = xj + j dxj                                                             
                                                yj+1 = yj + j dyj

                                                                            zj+1 = zj + j dzj,

j being the step length, determined by a suitable line search procedure. 
With this new point wj+1, the barrier parameter is updated according to certain rules and a new 
system (9) is formed. It is solved by any solution method and the iterative procedure follows until a 
stopping rule is satisfied.

4.Full - Splitting Technique.

In this work, it is considered the full-splitting formulation, used with different format by Birge 
(1997),  for problem (3) and it is represented in the following case:  

                                              Min cTx + 0x1 + …. + 0xK + p1d1
Ty1 + . . . + pKdK

TyK                               (10)                                                
                                         subject to  Ax                                                          = b,

                                                             B1x1 + W1y1                                       = h1,
                                                                       .                .                                    .
                                                                                       .                   .                  .
                                                                                                    BKxK + WKyK = hK,
                                                           x – x1                                                        =  0,
                                                           .           .                
                                                           .                        .
                                                           x                                         – xK               = 0,
                                                            1 K 1 K 0,
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or it is convenient to write the problem (10) in the following compact form: 

                                    min cTx + 0Tx1 + …+ 0TxK + p1d1
T y1 + p2d2

Ty2 + . . . + pKdK
TyK            (11)

                                          subject to    A'x' = b',
                                                                  x'

where the full constraint matrix has the form: 

                                         A´ =   

K

KK

II

II

WB

WB

A

1

11

,

and x´ = (x, x1, …, xK, y1,...,yK)T, c´ = (c, 0,…,0, p1d1,…,pKdK)T and b´= ( b1, h1, …,hK, 0…, 0)T

considering the appropriate dimensions.
To apply the primal-dual interior point method, the matrix (A´)(D´)(A´)T is formed and in this case is 
given by: 
                                                        
(A´)(D´)( A´)T =

K
T

K
T

TT
KK

T
KKK

T
KKK

TT

T

DDDBDDA

DDDBDDA
DBWVWBDB

DBWVWBDB
ADADADA

...

.

11

11111111

or simply in compact form:

                                            (A´)(D´)(A´)T =
EKJ
KCO
JOF

TT

where  F =   ADAT,  J =  [ AD … AD ] , K is a diagonal matrix of block, K= diag (-Bi Di), i = 1,…,K, 
C also a block diagonal matrix, C = diag(BiDiBi

T + WiViWi
T), i = 1,…,K, and
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                                          E  =   

KDDDD
D

DDD
DDDD

2

1

,

n is a diagonal matrix, D = Z-1 X, Di
n a diagonal matrix, Di = (Zi

-1) Xi and Vi
v a

diagonal matrix, Vi = (Zi´)-1 Yi , for i = 1,…,K. 
Following the interior point method, it is solved the following linear system: 

                                                               (A´)D(A´)T dy = r ,                                                             (12)

where   dy = (dy1, dy2, dy3 )T and  r = (r1, r2, r3)T.
The solution of the above linear system (12) is given by: 

                                     [ E – JT F-1 J – KT C-1 K] dy3 = r3 – JT F-1 r1 – KT C-1 r2,                               (13)
                                                                          dy1 = F-1 (r1 – J dy3),                                            (14)

                                                                              dy2 = C-1 (r2 – K dy3),                                          (15)

and                                             r = EZ-1X c´ – EZ-1 + b´,
                                                  b´ = b´ – A´x,
                                                  c´ = c´- A’T y – z,
                                                   – Xze.

The major problem, as any interior point method, is to solve the linear system given in (13). This 
linear system of equations requires determining the inverse of the block diagonal matrix C= 
diag(BiDiBi

T + Wi ViWi
T), i = 1,…,K,. In practice it is found the Cholesky factorization, or any other 

decomposition technique, of each matrix diag(BiDiBi
T + WiViWi

T), for each scenario i, i = 1,…,K, 
and use them to form the right hand side and the matrix associated to equation given in (13), and then 
find the related factorization of  matrix [ E – JT F-1 J – KT C-1 K].
For example, factor the block diagonal matrix C = diag(BiDiBi

T + WiViWi
T), i = 1,…,K, into LCLC

T

using Cholesky factorization, that is, C = LCLC
T where LC is lower triangular matrix. This operation 

can be implemented in parallel machines for each scenario. The same, using Cholesky factorization, 
factor the matrix [E – JT F-1 J – KT C-1 K] and solve the corresponding linear system. Instead of factor 
this matrix, Castro (2007) uses the preconditioned conjugate gradient method to solve the above 
normal equations. To find the inverse of matrix F, is not a difficult task because of its low dimension, 
factor matrix F using Cholesky factorization and apply to equation (13) and (14).

5.Computational Experiments

In this section, it is evaluated the performance of the splitting method for the stochastic problem 
developed in the last section. The set of test instances is generated based on a production/distribution 
problem, where the demand of the customers is unknown when the production on the set of all 
suppliers is planned. The kind of problem is studied by Cheung and Powell (1996) for the two-stage 
and multistage stochastic programming.
In all these cases of the production/distribution problems, it is not take the advantage the structure of 
the restrictions of these problems, that is, it is storaged all the matrices associated to the above 
stochastic problem. The exploting of these restrictions could be done in future work for large scale 
problems.
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The full-splitting technique is programmed in MATLAB code and the test is conducted on a Core I5
laptop computer with 4GB of RAM, running at 2.53 GHz.
For simplicity, it is supposed that all scenarios occur with the same probability. The initial data of all 
the test problems is infeasible and given by x = 10,  z = 1 and y = -0.25.
For each test problem, the demand hk, the right-hand-term, is generated such that, hk´ = dk + 0.1, 
where dk is a fixed vector. Also, matrix W is not random, i.e., W1 = W2 = … = WK, the related 
problem has fixed recourse. Additionally, for the generated right hand side above, the second stage of 
the fixed recourse problem, it is said that the problem has a complete recourse.

represents the number of iterations. CPU represents the Central Processing Unit time (in seconds) for 
running the MATLAB code in solving the production/distribution problem, with 5 production 
centers, 7 warehouse centers and 10 customer centers. The number of scenarios, represented by nc, 
varies from 30 to 105. 
The algorithm terminates when the following relative gap, computed by the formula: 

´´)(0.1
´´)(´´)(

yb
ybxc

T

TT

is less than 10-8, where (c´)Tx´ is the value of the objective function of the primal linear 
problem and (b´)T y´ is the value of the objective function of the corresponding dual 
problem.
The number of iterations in the interior point method is typically very low as it can be seen from the 
table 
cputime function of MATLAB and is recorded in the last line of the table.

Table. Results on Production/distribution Problems
nc 30 60 90 105
iter 7 7 7 7

3.0112e-9 3.4079e-9 3.7192e-9 3.8769e-9

CPU 3.363898 20.483931 108.651003 614.685508

6. Conclusions

In this paper, it is proposed the splitting method to solve the stochastic linear programming 
formulated via scenarios. Generally, this kind of problem grows rapidly as the number of scenarios 
grows. For this, it is used the dual-dual interior-point method to solve the new large scale linear 
program. The method proposed in this work is intended to provide an alternative to others papers. All 
the matrices associated to the linear program are storaged without using any technique of exploiting 
the structure of these matrices, but the preliminary numerical experiments demonstrate encouraging 
performance of the proposed method. Further, the code shall be improved, can be done in parallel, 
and conduct more numerical experiments by exploiting the special structure, in this case, of the 
production/distribution problem. This is merely for illustrative purposes, although this decomposition 
method could be done for any problem. This will be a subject of future research.
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