Rio de Janeiro - Brazil - 2012

On the algebraic connectivity of classes of trees with given diameter

Oscar Rojo*
Departamento de Matemáticas
Universidad Católica del Norte
Antofagasta, Chile

Nair Maria Maia de Abreu [†]
Programa de Engenharia de Produção/COPPE
Universidade Federal do Rio de Janeiro
Rio de Janeiro, Brazil

Lilian Markenzon[‡]
Nucleo de Computação Electrônica
Universidade Federal do Rio de Janeiro
Rio de Janeiro, Brazil

Luciana Lee[§]
Programa de Engenharia de Produção/COPPE
Universidade Federal do Rio de Janeiro
Rio de Janeiro, Brazil

We introduce a class $\mathcal{P}_{n,k}$ of rooted trees of order n and diameter 2k. We prove that all trees in this class have the same algebraic connectivity and equal to the algebraic connectivity of the path P_{2k+1} of 2k+1 vertices. Moreover, we study subfamilies of trees obtained from $T_1, T_2, \ldots, T_m \in \mathcal{P}_{n,k}$ and the path P_m identifying the root vertex of T_i with the i-th vertex of P_m . Finally, we characterize the extremal trees, that is, the trees having the maximal and the minimal algebraic connectivities among all trees in each of these subfamilies.

AMS classification: 05C50, 15A48, 05C05

Keywords: Laplacian matrix, trees, path, algebraic connectivity, characteristic vertices, bottleneck matrices, Perron branches

^{*}Supported by Project Fondecyt Regular 1100072, Chile.

 $^{^\}dagger Partially supported by grant 300563/94-9(NV), CNPq, Brazil.$

[‡]Partially supported by grant 305372/2009-2, CNPq, Brazil.

 $[\]$ Supported by CNPq and project 027/CAP/2011, Universidade Federal do Mato Grosso, MT, Brazil.