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A stable set of a graph is a set of mutually non-adjacent vertices. The de-
termination of a maximum size stable set (the maximum stable set problem)
and/or the determination of its size (the stability number) in a graph are central
combinatorial optimization problems. In general, given a nonnegative integer
k, to determine if a graph G has a stable set of size k is NP -complete [3]. A
convex quadratic programming upper bound on the stability number of graphs
was introduced in [4] and the graphs for which the stability number attains this
upper bound were called in [1] graphs with convex-qp stability number, where
qp means quadratic programming. There are infinite families of graphs with
convex-qp stability number [1]. Usually, the graphs with convex-qp stability
number are denoted Q-graphs. In this presentation, the properties of the least
eigenvalue of Q-graphs are surveyed and their extensions to the maximum size
k-regular induced graph problem are presented. Some open problems are also
proposed. Notice that the least eigenvalue of a graph plays a central role in the
characterization of Q-graphs. In fact, if λn is the least eigenvalue of a graph G,
then G is a Q-graph if and only if there exists a stable set S ⊂ V (G) such that
−λn ≤ minv∈V (G)\S |NG(v)∩ S| [2], where NG(v) is the neighborood of v in G.
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