A vertex removal and its effects on the algebraic connectivity

Marcia Bengio (CEFET-RJ), Carla Oliveira (ENCE-IBGE) and Leonardo Lima (CEFET-RJ)

Let G be a simple graph on n vertices. We write $A(G)$ for the adjacency matrix of a graph, $D(G)$ for the diagonal matrix of its vertices degree and $L=D-A$ for the Laplacian of G. We denote $a(G)$ as the second smallest eigenvalue of L, that is, the algebraic connectivity of G, [1]. Consider the graph $G \backslash v$ obtained from G after removing a vertex v and the following function

$$
\phi_{G}(v)=a(G)-a(G \backslash v) .
$$

In 2010, Kirkland [2] established necessary and sufficient under G such that $\phi_{G}(v)=1$. As a consequence of this result, he showed that if v has degree $n-1$, then $\phi_{G}(v)=1$. Also, he raised the question:
"What can we say about $\phi_{G}(v)$ if vertex degree of v is $n-2$?"
In this paper, we studied this problem in the cases where there is a vertex of degree $n-2$ that generates $\phi_{G}(v)=0$.

Keywords: vertex removal, Laplacian matrix, algebraic connectivity, Fiedler vector.

References

[1] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal 98, 298-305, 1973.
[2] S. Kirkland, Algebraic connectivity for vertex-deleted subgraphs, and a notion of vertex centrality, Discrete Mathematics 310, 911-921, 2010.

