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ABSTRACT

The odd graph Ok has the subsets with k elements of a set {1, . . . , 2k + 1} as
its vertices set, and there exists an edge between two vertices if the corresponding pair of
k-subsets is disjoint. A conjecture claims that Ok is hamiltonian for k > 2 and another
long-standing conjecture implies that all odd graphs have a hamiltonian path. We proved
that the prism over Ok is hamiltonian and that Ok has a cycle with at least .625|V (Ok)|
vertices.
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1. Introduction

A long-standing conjecture due to Lovász claims that every connected undirected
vertex-transitive graph has a hamiltonian path [Lovász(1970)]. Since the odd graphs form
a family of connected vertex-transitive graphs, they can provide a counterexample or more
evidence to support Lovász’ conjecture. Later, [Biggs(1979)] conjectured that the odd
graphs are hamiltonian for all k > 2. Still, a related conjecture by [Havel(1983)] claims
that the bipartite double graph of the odd graph is hamiltonian.

The vertices of the odd graph Ok are the k-subsets of {1, 2, . . . , n = 2k + 1} and
two vertices are adjacent if the corresponding k-subsets are disjoint (Figures 1(a) and 1(b)).
The bipartite double graph of the odd graph Ok is called the middle-layers graph and it is
denoted by Bk. The vertices are the k-subsets and (k + 1)-subsets of {1, 2, . . . , n = 2k + 1}
and the edges represent the inclusion between two such subsets (Figure 1(c)). The vertex
set of Bk can be seen as the two middle layers of the n-dimensional cube.
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Figure 1: The odd graph Ok for k = 1, 2 and the middle-levels graph Bk for k = 1.

At the moment, Biggs’ conjecture has been verified only for some values of k. The
odd graph is hamiltonian for 3 ≤ k ≤ 13 [Shields and Savage(2004)], and has a hamiltonian
path for k ≤ 19 [Bueno et al.(2009), Shimada and Amano(2011)]. On the other hand,
Havel’s conjecture is true for k ≤ 19 [Shields et al.(2009), Shimada and Amano(2011)].

Since the decision problem of the hamiltonian cycle problem is NP-Complete
[Karp(1972)], one recent trend is to search for long cycles. [Johnson(2004)] provided a
lower bound showing that Ok and Bk contain a cycle of length (1 − o(1))|V (Ok)| and
(1−o(1))|V (Bk)|, respectively, where the error term o(1) is of the form c√

k
for some constant

c. Although the author does not estimate c, this means that Ok and Bk are asymptotically
hamiltonian. [Savage and Winkler(1995)] showed that if Bk has a hamiltonian cycle for
k ≤ h, then Bk has a cycle containing a fraction 1− ε of the graph vertices for all k, where
ε is a function of h. For example, since Bk has a hamiltonian cycle for 1 ≤ k ≤ 19, the
graph Bk has a cycle containing at least 87.46% of the graph vertices for k ≥ 20. For the
odd graph Ok, the best lower bound known on the length of the longest cycle is

√

3|V (Ok)|,
given by [Babai(1979)] for vertex-transitive graphs in general, which is less than 3% for
O10, and asymptotically approaches zero as k increases.

Another trend is to search for related structures and, in this aspect, having a
hamiltonian prism in a graph has been shown to be an interesting relaxation of being
hamiltonian [Kaiser et al.(2007)]. The prism over a graph G is the Cartesian product
G�K2 of G with the complete graph on two vertices (Figure 2). If the prism over G is
hamiltonian, then G is prism-hamiltonian.

[Horák et al.(2005)] established that the prism over Bk is hamiltonian and, later,
the counterpart of this result was proved for Ok, but only for k even [Bueno and Horák(2011)].
In our work, published in [Mesquita et al.(2014)], we demonstrated that the prism over Ok

is hamiltonian for all k. Moreover, we improve the lower bound on the length of the longest
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cycle of Ok by providing a cycle with .625|V (Ok)| vertices at least.
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{1}

{3}
{2}

Figure 2: The prism over the graph O1.

In Section 2, we give some auxiliary results to discuss our main results in Section 3.
Section 4 details the participation of the undergraduate student in this research. The
present text is meant to be a brief introduction to the basic ideas underlying the proofs
contained in the papers [Mesquita and Bueno(2013), Mesquita et al.(2014)]. Obviously, it
does not delve too much into details due to space constraints.

2. Preliminaries

A spanning cactus in a graph G is a spanning connected subgraph of maximum
degree 3 consisting of vertex-disjoint cycles and vertex-disjoint paths. The cactus is even if
all cycles are even.

Proposition 1 ([Čada et al.(2004)]). If G contains a spanning even cactus, then G is
prism-hamiltonian.

The main idea of our results consists in showing that Ok contains a spanning
even cactus consisting of an even cycle and paths of size 1 and/or 2 connected to the cycle.
Additionally, we show that the even cycle has at least .625|V (Ok)| vertices. First, we discuss
some definitions and auxiliary results.

There is a correspondence between the k-subsets and the (n − k)-subsets of
{1, 2, . . . , n = 2k +1} with a set of binary strings of n bits with exactly k 1’s and (n−k) 0’s
(Figure 3). The correspondence bnbn−1 . . . b1 → {i|bi = 1} is a bijection of binary strings
of n bits into the subsets of n. The complement x of a binary digit x is 1 if x = 0 and 0 if
x = 1. The complement of a binary string extends this definition by bitwise complement.
From now on, we consider the vertices of Ok and Bk represented by binary strings.

00011

01100

1000100110

11000
10100

10010

01010

00101

01001

Figure 3: The odd graph O2 from Figure 1(b) represented with the vertices as binary strings.

Definition 2 ([Mesquita et al.(2014)]). Let C = (v1, v2, v3, v4, . . . , vq) be a cycle or path in
Ok−1. We define the sequences C1 and C2 as follows:

(i) If q is even, then C1 = (0v11, 1v20, 0v31, 1v40, . . . , 1vq0) and C2 = (1v10, 0v21,
1v30, 0v41, . . . , 0vq1).

(ii) If q is odd, then C1 = (0v11, 1v20, 0v31, 1v40, . . . , 0vq1) and C2 = (1v10, 0v21,
1v30, 0v41, . . . , 1vq0).
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Lemma 3 shows that, if C is a cycle in Ok−1, then C1 and C2 are either one or two
cycles in Ok.

Given two disjoint paths Q1 and Q2 such that the last vertex of Q1 is adjacent to
the first vertex of Q2, denote by Q1 ◦Q2 the path obtained by traversing the vertices of Q1,
and then the vertices of Q2.

Lemma 3 ([Mesquita et al.(2014)]). Let C be a cycle with q vertices in Ok−1.

(i) If q is odd then there is a cycle with 2q vertices in Ok.

(ii) If q is even then there are two disjoint cycles each with q vertices in Ok.

Proof. By adding 1 and 0 to a vertex of C we have a vertex of Ok. Therefore, construct the
paths C1 and C2 in Ok according to Definition 2. By construction, C1 and C2 are paths in
Ok and, if q is even, both are cycles as well. If q is odd, since C is a cycle, then there are
edges {0v11, 1vq0} and {1v10, 0vq1} in E(Ok), which results in a cycle C1 ◦ C2 in Ok.

Definition 4 ([Mesquita et al.(2014)]). Let Sk, Tk and Rk be three disjoint subsets of the
vertices of Ok such that:

(i) Sk is the set of k-subsets which have element 1 or n, but not both.

(ii) Tk is the set of k-subsets which neither has element 1 nor element n.

(iii) Rk is the set of k-subsets which have both elements 1 and n.

Notice that V (Ok) = Sk ∪ Tk ∪Rk.

Lemma 5 ([Mesquita et al.(2014)]). Each vertex v ∈ Tk has exactly two edges to vertices
of Sk and (k − 1) edges to vertices of Rk.

By definition, the vertices of Sk have no edges to vertices of Rk and, by Lemma 5,
they have exactly two edges to vertices of Tk and (k−1) edges to vertices of Sk. Clearly, the
vertices of Rk are adjacent only to vertices of Tk. Therefore, Ok has a bipartite subgraph
with bipartition (Tk, Rk) such that the partition Tk has degree (k−1) and the partition Rk

has degree (k + 1).

Lemma 6 ([Mesquita et al.(2014)]). It holds that |Tk| > |Rk|.

Lemma 7 ([Mesquita and Bueno(2013), Mesquita et al.(2014)]). If C = (v1, v2, . . . , vq) is
a hamiltonian cycle in Ok−1 and C1 and C2 are constructed according to Definition 2, then

(i) Sk = V (C1) ∪ V (C2);

(ii) |Sk| = |C1|+ |C2| = 2|V (Ok−1)| > 0.5|V (Ok)|.

Lemma 8 ([Mesquita et al.(2014)]). It holds that |Tk| = |V (Ok−1)|.

Theorem 9 ([Mesquita and Bueno(2013), Mesquita et al.(2014)]). If there exists a hamil-
tonian cycle C = (v1, . . . , vq) in Ok−1, then Ok has a cycle C ′ such that |C ′| > 0.75|V (Ok)|.

Proof. Construct C1 and C2 according to Definition 2. Notice that there are q vertices 0vj0
connecting 0vj1 to 1vj0, where 0vj1 ∈ Sk, 1vj0 ∈ Sk and vj ∈ C for 1 ≤ j ≤ q, since the
complement vj of a vertex vj ∈ C has k 1’s and (k − 1) 0’s. Therefore, 0vj0 ∈ V (Ok).
Construct q paths with 3 vertices by combining the vertices of C1, C2 and Tk:

Q1 = 0v11, 0v10, 1v10
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Q2 = 1v20, 0v20, 0v21

...

Qq = 1vq0, 0vq0, 0vq1, if q is even or

Qq = 0vq1, 0vq0, 1vq0, if q is odd.

For Qj, 1 ≤ j ≤ q, the first vertex of Qj is in C1, the second one is in Tk and the third
one is in C2. The q vertices 0vj0, for vj ∈ C, are distinct, since C is a hamiltonian cycle
in Ok−1 and, therefore, the complement of the vertices of C are distinct as well and, by
Lemmas 8, consist of all vertices of Tk. Denote by

←−
Q a path Q traversed from the last to

the first vertex. Concatenate the q paths Qj, for 1 ≤ j ≤ q, as follows:

C ′ = Q1 ◦
←−
Q2 ◦Q3 ◦

←−
Q4 ◦ . . . ◦

←−
Qq, if q is even and

C ′ = Q1 ◦
←−
Q2 ◦Q3 ◦

←−
Q4 ◦ . . . ◦Qq, if q is odd.

Since Ok is hamiltonian for 3 ≤ k ≤ 13 [Shields and Savage(2004)], Theorem 9
gives a cycle in O14 with at least 75% of the vertices of the graph. Lemmas 7, 8 and
Theorem 9 imply that C ′ has all vertices of Sk and Tk. Therefore, to make C ′ a hamiltonian
cycle or path in Ok, it remains to add the vertices of Rk to C ′.

Modular matchings were proposed in [Duffus et al.(1994)] for the middle-levels
graph Bk. Let A be a k-subset of {1, . . . , 2k + 1}. In a matching mi, for i = 1, . . . , k + 1,
A is adjacent to the set A ∪ {aj}, where

j ≡ i +
∑

a∈A

a (mod k + 1),

and aj is the j-th largest element in A. It was proved that mi is a perfect matching in
Bk [Duffus et al.(1994)] and that mi can be projected onto the graph Ok by replacing each
(k + 1)-set A by its complement A = {1, . . . , 2k + 1} \ A, resulting in either a 2-factor
or a perfect matching in Ok [Johnson and Kierstead(2004)]. Notice that A is a k-set and,
therefore, a vertex of Ok.

3. Main Results

In this section, we show how to obtain a spanning even cactus in Ok from a
spanning even cactus in Ok−1. Since Ok has a hamiltonian cycle for 3 ≤ k ≤ 13, it suffices
to prove the statement for k ≥ 14.

Definition 10. A peyote is a spanning even cactus of Ok such that all vertices of Sk and
Tk form an even cycle and each vertex of Rk is connected to that cycle by an edge (Figure
4(a)).

Lemma 11 ([Mesquita et al.(2014)]). If there exists a hamiltonian cycle C = (v1, . . . , vq)
in Ok−1 such that |C| is even, then Ok has a peyote.

Proof (Sketch). From a hamiltonian cycle C in Ok−1 such that |C| is even, Theorem 9
constructs a cycle C ′ with all vertices of Sk and Tk such that |C ′| is even. It remains to
connect the vertices of Rk to C ′. By Lemma 6, |Tk| > |Rk|. Therefore, a modular matching
provides a matching M in the bipartite subgraph (Tk, Rk) that saturates all vertices of Rk.
The subgraph formed by the cycle C ′ and the matching M is a peyote of Ok.

Definition 12 ([Mesquita et al.(2014)]). A cactoid is a spanning even cactus of Ok such
that all vertices of Sk and X, where X ⊆ Tk, form an even cycle, all vertices of Tk \X are
connected to that cycle by an edge, and each vertex of Rk is connected by an edge to some
vertex of Tk (Figure 4(b)).

3252



Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

vertex ∈ Tk

vertex ∈ Sk

vertex ∈ Rk

(a) (b)

Figure 4: Illustration of (a) a peyote and (b) a cactoid where X ( Tk.

Notice that every peyote is a cactoid where X = Tk. Besides, since the even cycle
in a cactoid only has vertices of Sk and Tk, each vertex of Tk \X is connected to the cycle
by an edge to some vertex of Sk. Finally, the vertices of Rk are connected to the vertices of
X or Tk \X. In the last case, instead an edge connected to the even cycle, there is a path
of length 2.

Theorem 13 ([Mesquita et al.(2014)]). If there exists a cactoid in Ok−1, then Ok has a
cactoid.

Proof (Sketch). Consider that Ok−1 has a peyote and let C ′ = (v1, v2, . . . , vq) be its even
cycle. Construct C ′

1 and C ′
2 from C ′ according to Definition 2: C ′

1 = (0v11, 1v20, . . . , 1vq0)
and C ′

2 = (1v10, 0v21, . . . , 0vq1). For a vertex vi in C ′, 1 ≤ i ≤ q, that is adjacent to a
vertex w of Rk−1 in the peyote, add to C ′

1 and C ′
2 the edges {1w0, 0vi1} and {0w1, 1vi0}.

As in Theorem 9, construct q paths by combining the vertices of C ′
1, C ′

2 e Tk:

(i) If the vertex vi is not adjacent in C ′ to a vertex of Rk−1, then construct a path with
three vertices: (0vi1, 0vi0, 1vi0);

(ii) If the vertex vi is adjacent in C ′ to a vertex w of Rk−1, then construct a path with
five vertices: (0vi1, 1w0, 0w0, 0w1, 1vi0).

Proceed the concatenation of the q paths as in the proof for Theorem 9, obtaining
a cycle C ′′ that has even length. Add the remaining vertices of Tk to C ′′ by joining them to
one of its neighbours in Sk. By Lemma 6, a modular matching provides a matching M in
the bipartite subgraph (Tk, Rk) that saturates all vertices of Rk. Therefore, the subgraph
formed by the cycle C ′′ and the matching M is a cactoid of Ok.

If Ok−1 has a cactoid that is not a peyote, then the path between 0vi1 and 1vi0
can be a path with seven vertices: (0vi1, 1u0, 0w1, 0w0, 1w0, 0u1, 1vi0), where u ∈ Tk−1,
w ∈ Rk−1 and vi ∈ Sk−1. Even so the cycle C ′′ has even length.

Corollary 14 ([Mesquita et al.(2014)]). The prism over the odd graph Ok, k ≥ 14, is
hamiltonian.

Proof. Since O13 is hamiltonian and |V (O13)| is even, by Lemma 11 and Theorem 13,
for k ≥ 14, the odd graph Ok has a cactoid. Therefore, by Proposition 1, Ok is prism-
hamiltonian.

Theorem 15 ([Mesquita et al.(2014)]). The odd graph Ok, k ≥ 14, has a cycle with at
least .625|V (Ok)| vertices.
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[Horák et al.(2005)] proved that the graph Bk is prism-hamiltonian by determining
a spanning 3-connected 3-regular subgraph in Bk, since [Paulraja(1993)] proved that graphs
with such a spanning subgraph are prism-hamiltonian. We provided an alternative proof
for Bk, by relating a cactoid in Ok to a spanning even cactus in Bk [Mesquita et al.(2014)].

4. Conclusion

In our work, published in [Mesquita et al.(2014)], we proved that there exists a
hamiltonian cycle in the prism over each odd graph Ok. Previously, it was known that
Ok is prism-hamiltonian only for even k [Bueno and Horák(2011)]. Also, we improved the
lower bound on the length of the longest cycle of Ok by providing a cycle with at least
.625|V (Ok)| vertices. Previously, the best lower bound provided a cycle with less than 3%
of the vertices of Ok for k ≥ 10 [Babai(1979)].

About the contribution of the undergraduate student, our work used Lemma 7 and
Theorem 9, two results obtained by the student in a research project from 2011 October to
2012 July, which were presented in SBPO 2013 [Mesquita and Bueno(2013)]. The remaining
results were determined by the student in a research project from 2012 August to 2013 July
and were presented in the 11th Latin American Theoretical INformatics Symposium (LATIN
2014) [Mesquita et al.(2014)]. All results were found by the student under supervision of
Letícia R. Bueno and a collaboration with Rodrigo A. Hausen in the proof of Theorem 15.
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