

Odd Graphs are Prism-Hamiltonian and Have a Long Cycle

Felipe de Campos Mesquita CMCC, Universidade Federal do ABC (UFABC) Santo André - SP - Brazil felipe.mesquita@aluno.ufabc.edu.br

Letícia Rodrigues Bueno CMCC, Universidade Federal do ABC (UFABC) Santo André – SP – Brazil leticia.bueno@ufabc.edu.br

Rodrigo de Alencar Hausen CMCC, Universidade Federal do ABC (UFABC) Santo André – SP – Brazil

hausen@compscinet.org

ABSTRACT

The odd graph O_k has the subsets with k elements of a set $\{1, \ldots, 2k + 1\}$ as its vertices set, and there exists an edge between two vertices if the corresponding pair of k-subsets is disjoint. A conjecture claims that O_k is hamiltonian for k > 2 and another long-standing conjecture implies that all odd graphs have a hamiltonian path. We proved that the prism over O_k is hamiltonian and that O_k has a cycle with at least $.625|V(O_k)|$ vertices.

KEYWORDS. Hamiltonian Cycle, Hamiltonian Path, Odd Graph.

Main area: TAG - Graph Theory and Algorithms in Graphs.

1. Introduction

A long-standing conjecture due to Lovász claims that every connected undirected vertex-transitive graph has a hamiltonian path [Lovász(1970)]. Since the odd graphs form a family of connected vertex-transitive graphs, they can provide a counterexample or more evidence to support Lovász' conjecture. Later, [Biggs(1979)] conjectured that the odd graphs are hamiltonian for all k > 2. Still, a related conjecture by [Havel(1983)] claims that the bipartite double graph of the odd graph is hamiltonian.

The vertices of the odd graph O_k are the k-subsets of $\{1, 2, \ldots, n = 2k + 1\}$ and two vertices are adjacent if the corresponding k-subsets are disjoint (Figures 1(a) and 1(b)). The bipartite double graph of the odd graph O_k is called the *middle-layers graph* and it is denoted by B_k . The vertices are the k-subsets and (k + 1)-subsets of $\{1, 2, \ldots, n = 2k + 1\}$ and the edges represent the inclusion between two such subsets (Figure 1(c)). The vertex set of B_k can be seen as the two middle layers of the n-dimensional cube.

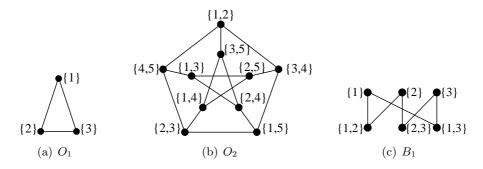


Figure 1: The odd graph O_k for k = 1, 2 and the middle-levels graph B_k for k = 1.

At the moment, Biggs' conjecture has been verified only for some values of k. The odd graph is hamiltonian for $3 \le k \le 13$ [Shields and Savage(2004)], and has a hamiltonian path for $k \le 19$ [Bueno et al.(2009), Shimada and Amano(2011)]. On the other hand, Havel's conjecture is true for $k \le 19$ [Shields et al.(2009), Shimada and Amano(2011)].

Since the decision problem of the hamiltonian cycle problem is NP-Complete [Karp(1972)], one recent trend is to search for long cycles. [Johnson(2004)] provided a lower bound showing that O_k and B_k contain a cycle of length $(1 - o(1))|V(O_k)|$ and $(1-o(1))|V(B_k)|$, respectively, where the error term o(1) is of the form $\frac{c}{\sqrt{k}}$ for some constant c. Although the author does not estimate c, this means that O_k and B_k are asymptotically hamiltonian. [Savage and Winkler(1995)] showed that if B_k has a hamiltonian cycle for $k \leq h$, then B_k has a cycle containing a fraction $1 - \varepsilon$ of the graph vertices for all k, where ε is a function of h. For example, since B_k has a hamiltonian cycle for $1 \leq k \leq 19$, the graph B_k has a cycle containing at least 87.46% of the graph vertices for $k \geq 20$. For the odd graph O_k , the best lower bound known on the length of the longest cycle is $\sqrt{3|V(O_k)|}$, given by [Babai(1979)] for vertex-transitive graphs in general, which is less than 3% for O_{10} , and asymptotically approaches zero as k increases.

Another trend is to search for related structures and, in this aspect, having a hamiltonian prism in a graph has been shown to be an interesting relaxation of being hamiltonian [Kaiser et al.(2007)]. The prism over a graph G is the Cartesian product $G \square K_2$ of G with the complete graph on two vertices (Figure 2). If the prism over G is hamiltonian, then G is prism-hamiltonian.

[Horák et al.(2005)] established that the prism over B_k is hamiltonian and, later, the counterpart of this result was proved for O_k , but only for k even [Bueno and Horák(2011)]. In our work, published in [Mesquita et al.(2014)], we demonstrated that the prism over O_k is hamiltonian for all k. Moreover, we improve the lower bound on the length of the longest

cycle of O_k by providing a cycle with $.625|V(O_k)|$ vertices at least.

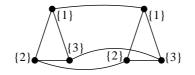


Figure 2: The prism over the graph O_1 .

In Section 2, we give some auxiliary results to discuss our main results in Section 3. Section 4 details the participation of the undergraduate student in this research. The present text is meant to be a brief introduction to the basic ideas underlying the proofs contained in the papers [Mesquita and Bueno(2013), Mesquita et al.(2014)]. Obviously, it does not delve too much into details due to space constraints.

2. Preliminaries

A spanning cactus in a graph G is a spanning connected subgraph of maximum degree 3 consisting of vertex-disjoint cycles and vertex-disjoint paths. The cactus is *even* if all cycles are even.

Proposition 1 ([Čada et al.(2004)]). If G contains a spanning even cactus, then G is prism-hamiltonian.

The main idea of our results consists in showing that O_k contains a spanning even cactus consisting of an even cycle and paths of size 1 and/or 2 connected to the cycle. Additionally, we show that the even cycle has at least $.625|V(O_k)|$ vertices. First, we discuss some definitions and auxiliary results.

There is a correspondence between the k-subsets and the (n - k)-subsets of $\{1, 2, \ldots, n = 2k + 1\}$ with a set of binary strings of n bits with exactly k 1's and (n - k) 0's (Figure 3). The correspondence $b_n b_{n-1} \ldots b_1 \rightarrow \{i|b_i = 1\}$ is a bijection of binary strings of n bits into the subsets of n. The complement \overline{x} of a binary digit x is 1 if x = 0 and 0 if x = 1. The complement of a binary string extends this definition by bitwise complement. From now on, we consider the vertices of O_k and B_k represented by binary strings.

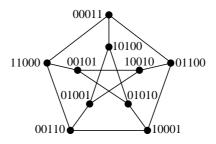


Figure 3: The odd graph O_2 from Figure 1(b) represented with the vertices as binary strings.

Definition 2 ([Mesquita et al.(2014)]). Let $C = (v_1, v_2, v_3, v_4, \ldots, v_q)$ be a cycle or path in O_{k-1} . We define the sequences C_1 and C_2 as follows:

- (i) If q is even, then $C_1 = (0v_11, 1v_20, 0v_31, 1v_40, \dots, 1v_q0)$ and $C_2 = (1v_10, 0v_21, 1v_30, 0v_41, \dots, 0v_q1)$.
- (ii) If q is odd, then $C_1 = (0v_11, 1v_20, 0v_31, 1v_40, \dots, 0v_q1)$ and $C_2 = (1v_10, 0v_21, 1v_30, 0v_41, \dots, 1v_q0)$.

Lemma 3 shows that, if C is a cycle in O_{k-1} , then C_1 and C_2 are either one or two cycles in O_k .

Given two disjoint paths Q_1 and Q_2 such that the last vertex of Q_1 is adjacent to the first vertex of Q_2 , denote by $Q_1 \circ Q_2$ the path obtained by traversing the vertices of Q_1 , and then the vertices of Q_2 .

Lemma 3 ([Mesquita et al.(2014)]). Let C be a cycle with q vertices in O_{k-1} .

- (i) If q is odd then there is a cycle with 2q vertices in O_k .
- (ii) If q is even then there are two disjoint cycles each with q vertices in O_k .

Proof. By adding 1 and 0 to a vertex of C we have a vertex of O_k . Therefore, construct the paths C_1 and C_2 in O_k according to Definition 2. By construction, C_1 and C_2 are paths in O_k and, if q is even, both are cycles as well. If q is odd, since C is a cycle, then there are edges $\{0v_1, 1, 1v_q0\}$ and $\{1v_1, 0, 0v_q1\}$ in $E(O_k)$, which results in a cycle $C_1 \circ C_2$ in O_k . \Box

Definition 4 ([Mesquita et al.(2014)]). Let S_k , T_k and R_k be three disjoint subsets of the vertices of O_k such that:

- (i) S_k is the set of k-subsets which have element 1 or n, but not both.
- (ii) T_k is the set of k-subsets which neither has element 1 nor element n.
- (iii) R_k is the set of k-subsets which have both elements 1 and n.

Notice that $V(O_k) = S_k \cup T_k \cup R_k$.

Lemma 5 ([Mesquita et al.(2014)]). Each vertex $v \in T_k$ has exactly two edges to vertices of S_k and (k-1) edges to vertices of R_k .

By definition, the vertices of S_k have no edges to vertices of R_k and, by Lemma 5, they have exactly two edges to vertices of T_k and (k-1) edges to vertices of S_k . Clearly, the vertices of R_k are adjacent only to vertices of T_k . Therefore, O_k has a bipartite subgraph with bipartition (T_k, R_k) such that the partition T_k has degree (k-1) and the partition R_k has degree (k + 1).

Lemma 6 ([Mesquita et al.(2014)]). It holds that $|T_k| > |R_k|$.

Lemma 7 ([Mesquita and Bueno(2013), Mesquita et al.(2014)]). If $C = (v_1, v_2, \ldots, v_q)$ is a hamiltonian cycle in O_{k-1} and C_1 and C_2 are constructed according to Definition 2, then

- (i) $S_k = V(C_1) \cup V(C_2);$
- (*ii*) $|S_k| = |C_1| + |C_2| = 2|V(O_{k-1})| > 0.5|V(O_k)|.$

Lemma 8 ([Mesquita et al.(2014)]). It holds that $|T_k| = |V(O_{k-1})|$.

Theorem 9 ([Mesquita and Bueno(2013), Mesquita et al.(2014)]). If there exists a hamiltonian cycle $C = (v_1, \ldots, v_q)$ in O_{k-1} , then O_k has a cycle C' such that $|C'| > 0.75|V(O_k)|$.

Proof. Construct C_1 and C_2 according to Definition 2. Notice that there are q vertices $0\overline{v_j}0$ connecting $0v_j1$ to $1v_j0$, where $0v_j1 \in S_k$, $1v_j0 \in S_k$ and $v_j \in C$ for $1 \leq j \leq q$, since the complement $\overline{v_j}$ of a vertex $v_j \in C$ has k 1's and (k-1) 0's. Therefore, $0\overline{v_j}0 \in V(O_k)$. Construct q paths with 3 vertices by combining the vertices of C_1 , C_2 and T_k :

$$Q_1 = 0v_1 1, 0\overline{v_1} 0, 1v_1 0$$

 $Q_2 = 1v_20, 0\overline{v_2}0, 0v_21$ \vdots $Q_q = 1v_q0, 0\overline{v_q}0, 0v_q1, \text{ if } q \text{ is even or}$ $Q_q = 0v_q1, 0\overline{v_q}0, 1v_q0, \text{ if } q \text{ is odd.}$

For Q_j , $1 \leq j \leq q$, the first vertex of Q_j is in C_1 , the second one is in T_k and the third one is in C_2 . The q vertices $0\overline{v_j}0$, for $v_j \in C$, are distinct, since C is a hamiltonian cycle in O_{k-1} and, therefore, the complement of the vertices of C are distinct as well and, by Lemmas 8, consist of all vertices of T_k . Denote by \overleftarrow{Q} a path Q traversed from the last to the first vertex. Concatenate the q paths Q_j , for $1 \leq j \leq q$, as follows:

$$C' = Q_1 \circ \overleftarrow{Q}_2 \circ Q_3 \circ \overleftarrow{Q}_4 \circ \ldots \circ \overleftarrow{Q}_q, \text{ if } q \text{ is even and}$$

$$C' = Q_1 \circ \overleftarrow{Q}_2 \circ Q_3 \circ \overleftarrow{Q}_4 \circ \ldots \circ Q_q, \text{ if } q \text{ is odd.}$$

Since O_k is hamiltonian for $3 \le k \le 13$ [Shields and Savage(2004)], Theorem 9 gives a cycle in O_{14} with at least 75% of the vertices of the graph. Lemmas 7, 8 and Theorem 9 imply that C' has all vertices of S_k and T_k . Therefore, to make C' a hamiltonian cycle or path in O_k , it remains to add the vertices of R_k to C'.

Modular matchings were proposed in [Duffus et al.(1994)] for the middle-levels graph B_k . Let A be a k-subset of $\{1, \ldots, 2k + 1\}$. In a matching m_i , for $i = 1, \ldots, k + 1$, A is adjacent to the set $A \cup \{\overline{a}_i\}$, where

$$j\equiv i+\sum_{a\in A}a \pmod{k+1},$$

and \overline{a}_j is the *j*-th largest element in \overline{A} . It was proved that m_i is a perfect matching in B_k [Duffus et al.(1994)] and that m_i can be projected onto the graph O_k by replacing each (k + 1)-set A by its complement $\overline{A} = \{1, \ldots, 2k + 1\} \setminus A$, resulting in either a 2-factor or a perfect matching in O_k [Johnson and Kierstead(2004)]. Notice that \overline{A} is a *k*-set and, therefore, a vertex of O_k .

3. Main Results

In this section, we show how to obtain a spanning even cactus in O_k from a spanning even cactus in O_{k-1} . Since O_k has a hamiltonian cycle for $3 \le k \le 13$, it suffices to prove the statement for $k \ge 14$.

Definition 10. A peyote is a spanning even cactus of O_k such that all vertices of S_k and T_k form an even cycle and each vertex of R_k is connected to that cycle by an edge (Figure 4(a)).

Lemma 11 ([Mesquita et al.(2014)]). If there exists a hamiltonian cycle $C = (v_1, \ldots, v_q)$ in O_{k-1} such that |C| is even, then O_k has a peyote.

Proof (Sketch). From a hamiltonian cycle C in O_{k-1} such that |C| is even, Theorem 9 constructs a cycle C' with all vertices of S_k and T_k such that |C'| is even. It remains to connect the vertices of R_k to C'. By Lemma 6, $|T_k| > |R_k|$. Therefore, a modular matching provides a matching M in the bipartite subgraph (T_k, R_k) that saturates all vertices of R_k . The subgraph formed by the cycle C' and the matching M is a peyote of O_k .

Definition 12 ([Mesquita et al.(2014)]). A cactoid is a spanning even cactus of O_k such that all vertices of S_k and X, where $X \subseteq T_k$, form an even cycle, all vertices of $T_k \setminus X$ are connected to that cycle by an edge, and each vertex of R_k is connected by an edge to some vertex of T_k (Figure 4(b)).

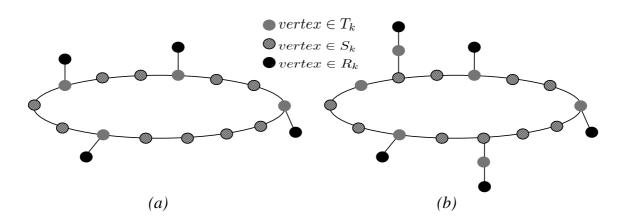


Figure 4: Illustration of (a) a peyote and (b) a cactoid where $X \subsetneq T_k$.

Notice that every peyote is a cactoid where $X = T_k$. Besides, since the even cycle in a cactoid only has vertices of S_k and T_k , each vertex of $T_k \setminus X$ is connected to the cycle by an edge to some vertex of S_k . Finally, the vertices of R_k are connected to the vertices of X or $T_k \setminus X$. In the last case, instead an edge connected to the even cycle, there is a path of length 2.

Theorem 13 ([Mesquita et al.(2014)]). If there exists a cactoid in O_{k-1} , then O_k has a cactoid.

Proof (Sketch). Consider that O_{k-1} has a peyote and let $C' = (v_1, v_2, \ldots, v_q)$ be its even cycle. Construct C'_1 and C'_2 from C' according to Definition 2: $C'_1 = (0v_11, 1v_20, \ldots, 1v_q0)$ and $C'_2 = (1v_10, 0v_21, \ldots, 0v_q1)$. For a vertex v_i in C', $1 \le i \le q$, that is adjacent to a vertex w of R_{k-1} in the peyote, add to C'_1 and C'_2 the edges $\{1w0, 0v_i1\}$ and $\{0w1, 1v_i0\}$. As in Theorem 9, construct q paths by combining the vertices of C'_1 , $C'_2 \in T_k$:

- (i) If the vertex v_i is not adjacent in C' to a vertex of R_{k-1} , then construct a path with three vertices: $(0v_i 1, 0\overline{v_i} 0, 1v_i 0)$;
- (ii) If the vertex v_i is adjacent in C' to a vertex w of R_{k-1} , then construct a path with five vertices: $(0v_i1, 1w0, 0\overline{w}0, 0w1, 1v_i0)$.

Proceed the concatenation of the q paths as in the proof for Theorem 9, obtaining a cycle C'' that has even length. Add the remaining vertices of T_k to C'' by joining them to one of its neighbours in S_k . By Lemma 6, a modular matching provides a matching M in the bipartite subgraph (T_k, R_k) that saturates all vertices of R_k . Therefore, the subgraph formed by the cycle C'' and the matching M is a cactoid of O_k .

If O_{k-1} has a cactoid that is not a peyote, then the path between $0v_i1$ and $1v_i0$ can be a path with seven vertices: $(0v_i1, 1u0, 0w1, 0\overline{w}0, 1w0, 0u1, 1v_i0)$, where $u \in T_{k-1}$, $w \in R_{k-1}$ and $v_i \in S_{k-1}$. Even so the cycle C'' has even length. \Box

Corollary 14 ([Mesquita et al.(2014)]). The prism over the odd graph O_k , $k \ge 14$, is hamiltonian.

Proof. Since O_{13} is hamiltonian and $|V(O_{13})|$ is even, by Lemma 11 and Theorem 13, for $k \ge 14$, the odd graph O_k has a cactoid. Therefore, by Proposition 1, O_k is prism-hamiltonian.

Theorem 15 ([Mesquita et al.(2014)]). The odd graph O_k , $k \ge 14$, has a cycle with at least $.625|V(O_k)|$ vertices.

[Horák et al.(2005)] proved that the graph B_k is prism-hamiltonian by determining a spanning 3-connected 3-regular subgraph in B_k , since [Paulraja(1993)] proved that graphs with such a spanning subgraph are prism-hamiltonian. We provided an alternative proof for B_k , by relating a cactoid in O_k to a spanning even cactus in B_k [Mesquita et al.(2014)].

4. Conclusion

In our work, published in [Mesquita et al.(2014)], we proved that there exists a hamiltonian cycle in the prism over each odd graph O_k . Previously, it was known that O_k is prism-hamiltonian only for even k [Bueno and Horák(2011)]. Also, we improved the lower bound on the length of the longest cycle of O_k by providing a cycle with at least $.625|V(O_k)|$ vertices. Previously, the best lower bound provided a cycle with less than 3% of the vertices of O_k for $k \ge 10$ [Babai(1979)].

About the contribution of the undergraduate student, our work used Lemma 7 and Theorem 9, two results obtained by the student in a research project from 2011 October to 2012 July, which were presented in SBPO 2013 [Mesquita and Bueno(2013)]. The remaining results were determined by the student in a research project from 2012 August to 2013 July and were presented in the 11^{th} Latin American Theoretical INformatics Symposium (LATIN 2014) [Mesquita et al.(2014)]. All results were found by the student under supervision of Letícia R. Bueno and a collaboration with Rodrigo A. Hausen in the proof of Theorem 15.

Acknowledgments

The first author would like to thank Universidade Federal do ABC and the Brazilian agency CNPq by financial support (grant n. 144005/2012-3). This research was supported by CNPq Universal 14/2013 (proc. 478778/2013 - 9).

References

- **Babai, L.** (1979). Long cycles in vertex-transitive graphs. Journal of Graph Theory, 3(3):301–304.
- Biggs, N. (1979). Some odd graph theory. Annals of the New York Academy of Sciences, 319:71–81.
- Bueno, L. R., Faria, L., Figueiredo, C. M. H., and Fonseca, G. D. (2009). Hamiltonian paths in odd graphs. *Applicable Analysis and Discrete Mathematics*, 3(2):386–394.
- Bueno, L. R. and Horák, P. (2011). On hamiltonian cycles in the prism over the odd graphs. *Journal of Graph Theory*, 68(3):177–188.
- Čada, R., Kaiser, T., Rosenfeld, M., and Ryjáček, Z. (2004). Hamiltonian decompositions of prisms over cubic graphs. *Discrete Mathematics*, 286:45–56.
- **Duffus, D. A., Kierstead, H. A., and Snevily, H. S.** (1994). An explicit 1-factorization in the middle of the boolean lattice. *Journal of Combinatorial Theory Series A*, 65:334–342.
- Havel, I. (1983). Semipaths in directed cubes. In Fiedler, M., editor, Graphs and other Combinatorial Topics, pages 101–108, Teubner, Leipzig. Teubner-Texte Math.
- Horák, P., Kaiser, T., Rosenfeld, M., and Ryjáček, Z. (2005). The prism over the middle-levels graph is hamiltonian. *Order*, 22(1):73–81.
- Johnson, J. R. (2004). Long cycles in the middle two layers of the discrete cube. Journal of Combinatorial Theory Series A, 105(2):255–271.

- Johnson, J. R. and Kierstead, H. A. (2004). Explicit 2-factorisations of the odd graph. *Order*, 21:19–27.
- Kaiser, T., Ryjáček, Z., Král, D., Rosenfeld, M., and Voss, H.-J. (2007). Hamilton cycles in prisms. *Journal of Graph Theory*, 56:249–269.
- Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85–103, New York. Plenum Press.
- Lovász, L. (1970). Problem 11. In *Combinatorial Structures and their Applications*. Gordon and Breach.
- Mesquita, F. C. and Bueno, L. R. (2013). Ciclos e caminhos hamiltonianos em grafos ímpares. In XLV Simpósio Brasileiro de Pesquisa Operacional (SBPO), Natal/RN-Brazil, pages 3006–3013.
- Mesquita, F. C., Bueno, L. R., and Hausen, R. A. (2014). Odd graphs are prismhamiltonian and have a long cycle. In *LATIN 2014: Theoretical Informatics*, volume 8392 of *Lecture Notes in Computer Science*, pages 379–390. Springer Berlin Heidelberg.
- Paulraja, P. (1993). A characterization of hamiltonian prisms. Journal of Graph Theory, 17:161–171.
- Savage, C. D. and Winkler, P. (1995). Monotone gray codes and the middle levels problem. *Journal of Combinatorial Theory Series A*, 70(2):230–248.
- Shields, I. and Savage, C. D. (2004). A note on hamilton cycles in Kneser graphs. Bulletin of the Institute for Combinatorics and Its Applications, 40:13–22.
- Shields, I., Shields, B. J., and Savage, C. D. (2009). An update on the middle levels problem. *Discrete Mathematics*, 309(17):5271–5277.
- Shimada, M. and Amano, K. (2011). A note on the middle levels conjecture. *CoRR*, abs/0912.4564.