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Abstract

Given a graph, the simple max-cut problem asks to �nd a partition of its vertex
set into two disjoint sets, such that the number of edges having one endpoint in each
set is as large as possible. It is known that the simple max-cut decision problem is
NP-complete for general graphs and there is a polynomial time (1/2)-approximation
algorithm to solve this problem. In particular, Bodlaender and Jansen proved that
this problem remains NP-complete for split graphs. A split graph is a graph whose
vertex set admits a partition into a stable set and a clique. Goemans and Williamson
developed a semide�nite programming approximation algorithm with approximation
ratio of 0,87856 to solve the simple max-cut problem for general graphs. In this
paper we show a polynomial time (2/3)-approximation algorithm for simple maxcut of
split graphs and deterministic algorithms for simple maxcut of full (k,n)-split graphs
using only simple combinatorial methods.
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1 Introduction

The max-cut problem is a combinatorial graph problem in which we have a weighted
graph G = (V,E) and we look for a partition of the vertices set V of G into two disjoint
sets A and B such that the sum of the weights of the edges with one endpoint in A and
the other in B is as large as possible. In the simple max-cut problem, we consider the
variant where all edges have weight one. The subset of the edges with one endpoint in A an
the other in B is denoted by [A,B] and is called an edge cut of G and the edges of [A,B]
are called cut edges. The size of the cut [A,B] is the number of cut edges of [A,B] which is
represented by |[A,B]|.

We can see in �gure 1 an example of a graph G and an edge cut of G.

The simple max-cut problem can be formulated as a decision problem as stated bel-
low:
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simple max-cut problem

Instance: Undirected graph G = (V,E) , k ∈ N.
Question: Does there exist a set S ⊂ V , such that the number of edges
with one end point in S and the other one in V \S is greater than or
equal to k ?

Karp (1972) proved that this decision problem is NP-complete for general graphs using a
reduction from partition problem. Karp proved in his article "Reducibility among combi-
natorial problems" that 21 speci�ed combinatorial problems are NP-complete starting from
satisfiability. Goemans & Williamson (1995) developed the �rst semide�nite program-
ming approximation algorithm to solve the simple max-cut problem for general graphs
with approximation ratio of 0,87856. Later, Bodlaender, Jansen & Forschungsgemeinschaft
(2000) proved that the simple max-cut problem is NP-complete for some special graph
classes such as chordal graphs, undirected path graphs, split graphs, tripartite graphs, and
graphs that are the complement of a bipartite graph.

In this paper we present an approximation algorithm to determine the simple max-

cut of a split graph with approximation ratio of 2
3 . Although the ratio given by Goemans-

Williamson algorithm is better than 2
3 , it is based on semide�nite programming. In this

paper we give a simple combinatorial method to �nd an approximation of the max-cut.
Considering the time complexity, Goemans-Williamson algorithm runs in polynomial time
in the input and log 1

ε . Given any ε > 0, semide�nite programs can be solved within an
additive error of ε in polynomial time (ε is part of the input, so the running time dependence
on ε is polynomial in log 1

ε ).Vega (1996) gives,for any given 0 < α < 1,ε > 0, a randomized
algorithm which runs in a polynomial time and which, when applied to any given graph G
on n vertices with minimum degree ≥ αn, outputs a cut of G that has probability greater
or equal to 1− 2−n to have size greater or equal to (1− ε)|MC(G)|, where |MC(G)| is the
size of the maximum cut of G.
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Figure 1: (a) A graph G and (b) An edge cut of G

Later, Feige, Karpinski & Langberg (2002) used the Goemans-Williamson algorithm
with an improvement local step and got for graphs with degree at most ∆, an approximation
ratio of at least α + ε, where α = 0.87856 and ε > 0 depends only on ∆. Using computer
assisted analysis, Feige shows that for graphs of maximal degree 3 his algorithm obtains an
approximation ratio of at least 0.921, and for 3-regular graphs the approximation ratio is at
least 0.924. Our algorithm is deterministic with linear time and in some cases, gives exactly
the maximum cut of the considered graph.
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2 Preliminaries

A split graph G = (S,K) is a graph that has the vertices set V = S ∪K where S is a
stable set and K is a maximal clique. If all vertices of S have the same degree k, we call G
a k-split graph. A (k, n)-split graph is a k-split graph where the maximal clique K has n
vertices. Note that k < n, otherwise the clique K is not a maximal clique since it can be
increased. In �gure 2 we present examples of a split graph and a (2, 4)-split graph.

S K

(a) (b)

Figure 2: (a) A split graph and (b) A (2,4)-split graph

In the next section we present a polynomial time 2
3 -approximation algorithm to �nd the

maxcut of a split graph. We use the next lemma due to Bodlaender et al. (2004):

Lemma 2.1. In a complete graph Kn with n vertices the maximum cut has size dn2 eb
n
2 c and

the best partition (A,B) of V is anyone that have sizes |A| = dn2 e and |B| = b
n
2 c vertices.

The following lemma gives an upper bound for the cardinality of the maxcut of a split
graph G = (S,K).

Lemma 2.2. If G = (S,K) is a split graph where |K| = n, k =
∑

v∈S d(v)

|S| is the average

degree of S and [A,B] is an edge cut of G, then |[A,B]| ≤ dn2 eb
n
2 c+ k|S|.

Proof. Observe that according to lemma 2.1, the best cut possible for K has size dn2 eb
n
2 c

and all the edges from S to K can be added to this cut.

3 The Algorithm

Let G = (S,K) be a split graph and N(S) the neighborhood of the stable set S. We
observe that N(S) ⊂ K. We make a feasible solution to maxcut problem consisting of a
partition of the set V (G) into two disjoint subsets A and B such that the edges of the cut
are those connecting vertices from A to B.

Case 1: If |N(S)| ≤ bn2 c, then put all the vertices of N(S) in A, and we complete this
part with other vertices of K\N(S), if it is necessary, in order to obtain bn2 c vertices in part
A and put all the vertices of S and the remaining vertices of K in part B.

Case 2: If |N(S)| > bn2 c, then evaluate the average degree of the vertices of S: k =∑
v∈S d(v)

|S| . If k|S| ≤ 2dn2 eb
n
2 c, then choose randomly bn2 c vertices of N(S) and put them in

A. The remaining vertices of K put in B. For each vertex v ∈ S, if |N(v)∩A| ≥ |N(v)∩B|
put v in B, otherwise put v in A. If k|S| > 2dn2 eb

n
2 c then make A = S and B = K.

3232



Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

Theorem 3.1. If G = (K,S) is a split graph, the maxcut approximation algorithm has

ratio 2
3 .

Proof. Note that in Case 1, when |N(S)| ≤ bn2 c, we obtain a maximum cut of G, because
all the edges from S to K are edges in the cut and we get the maximum number dn2 eb

n
2 c of

edges of K in the cut placing bn2 c vertices into A and dn2 e vertices into B. Therefore there
are k|S|+ dn2 eb

n
2 c edges in the cut.

In Case 2, when |N(S)| > bn2 c, we have two subcases: k|S| ≤ 2dn2 eb
n
2 c and k|S| >

2dn2 eb
n
2 c.

If k|S| ≤ 2dn2 eb
n
2 c then the construction provides us a cut with at least k|S|

2 + dn2 eb
n
2 c

edges on the graph that has k|S|+ dn2 eb
n
2 c edges as an upper bound for the maxcut. Then

we have the approximation ratio 2
3 since k|S| ≤ 2dn2 eb

n
2 c implies k|S|

2 ≤ dn2 eb
n
2 c and then

3k|S|
2 + 3dn2 eb

n
2 c ≥ 2k|S|+ 2dn2 eb

n
2 c what gives us

k|S|
2

+dn
2
ebn

2
c

k|S|+dn
2
ebn

2
c ≥

2
3 .

If k|S| > 2dn2 eb
n
2 c then the construction provides us a cut with exactly k|S| edges. The

approximation ratio is still 2
3 since k|S| > 2dn2 eb

n
2 c implies 3k|S| > 2k|S| + 2dn2 eb

n
2 c and

then k|S|
k|S|+dn

2
ebn

2
c >

2
3 .

4 Full (k, n)-split graphs

A special subclass of (k, n)-split graphs is the class of full (k, n)-split graphs. A full

(k, n)-split graph can be simple or multiple.
A graph is a simple full (k, n)-split graph if for each subset of k vertices of K there is

a vertex u ∈ S adjacent to all these k vertices. Thus |S| =
(
n
k

)
and

∑
v∈S d(v) = k

(
n
k

)
.

For k ≥ 2 the number of edges with one endpoint in S and the other in K is at least twice
the number of edges in K, that is, according to the algorithm, the cut obtained is A = S
and B = K. We show that this is the best cut possible, i.e., the maximum cut.

A graph is a multiple full (k,n)-split graph if for each subset of k vertices of K there is at
least a vertex u ∈ S adjacent to all these k vertices. For each subset W = {vi1 , vi2 , · · · , vik}
of K with i1 < i2 < · · · < ik there is a set of vertices U =

{
u1i1i2···ik , · · · , u

m
i1i2···ik

}
in S such

that N(uji1i2···ik) = W for all uji1i2···ik ∈ U . The integer m is the multiplicity of the set W .

Call p =

(
n
k

)
the number of subsets of K with k vertices. Let W1,W2, · · · ,Wp be all these

subsets and m1,m2, · · · ,mp their respective multiplicities. We have |S| =
∑

1≤i≤pmi and∑
v∈S d(v) = k|S|. As we show below, the best cut possible is [S,K].

Theorem 4.1. For a multiple full (k, n)-split graph with k ≥ 2 the partition (S,K) gives a

maximum cut of size k|S|.

Proof. Let G = (S,K) be a multiple full (k,n)-split graph. Call v1, v2, · · · , vn the vertices
of K. For each subset W = {vi1 , vi2 , · · · , vik} of K with i1 < i2 < · · · < ik there is a vertex

set U =
{
u1i1i2···ik , · · · , u

m
i1i2···ik

}
in S such that N(uji1i2···ik) = W for all uji1i2···ik ∈ U . All

the vertices of S have degree k and the number of edges with one endpoint in S and the
other in K is k|S|. For each vertex vi ∈ K the number of edges connecting vi with vertices

of S is the sum Ti =
∑

1≤j≤qmij where q =

(
n− 1
k − 1

)
is the number of subsets of K with

exactly k vertices such that vi belongs to these subsets and mij is the multiplicity of the set
Wij which contains vi. Obviously Ti ≥ q for each vi ∈ K. Consider the original partition
(S,K). If we place a vertex of S in B = K we miss k edges in the cut. On the other hand,
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(a) (b)

Figure 3: (a) A simple full (3,4)-split graph and (b) A multiple full (3,4)-split graph

if we place a vertex of K in A = S we miss at least

(
n− 1
k − 1

)
− n + 1 edges in the cut. So

any change in the partition (S,K) yields a new partition with a smaller number of edges in
the cut.

Corollary 4.2. For a simple full (k, n)-split graph with k ≥ 2,the partition (S,K) gives a

maximum cut of size k

(
n
k

)
.

Proof. Let G = (S,K) be a simple full (k, n)-split graph. Call v1, v2, · · · , vn the vertices of
K. For each subset W = {vi1 , vi2 , · · · , vik} of K with i1 < i2 < · · · < ik there is a vertex
ui1i2···ik in S such that N(ui1i2···ik) = W . Of course all the vertices of S have degree k and

the number of edges with one endpoint in S and the other in K is k

(
n
k

)
. For each vertex

vi ∈ K the number of edges connecting vi with vertices of S is the number of subsets of K

with exactly k vertices such that vi belongs to these subsets, that is

(
n− 1
k − 1

)
. So the degree

of vi is d(vi) =

(
n− 1
k − 1

)
+ n − 1 for all i ∈ {1, 2, · · · , n}. Consider the original partition

(S,K). If we place a vertex of S in B = K, then we miss k edges in the cut. On the other

hand, if we place a vertex of K in A = S, then we miss

(
n− 1
k − 1

)
− n+ 1 edges in the cut.

So any change in the partition (S,K) yields a new partition with a smaller number of edges
in the cut.
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