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ABSTRACT

Combinatorial Scientific Computing is an important interdisciplinary field combining issues from
Combinatorial Optimization to solve efficiently Scientific Computing problems. In this work, we
solve a 2D and a 3D nonlinear problem using a Newton-type method that requires, at each step,
the evaluation of a sparse matrix and the solution of a linear system. The matrix evaluation is
optimized using graph coloring techniques and a matrix reordering scheme is used to accelerate the
convergence of the preconditioned iterative GMRES solver.
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OC - Combinatorial Optimization

3236



Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

1 Introduction

This work focuses on applying combinatorial techniques to efficiently solve a benchmark nonlinear
heat transfer problem, considering two and three-dimensional examples. To obtain an approximate
solution for the problem, the Newton’s method is utilized. This iterative method requires, at each
step, the evaluation of a Jacobian matrix and the solution of a linear system. We employ the finite
differences method to estimate the Jacobian matrix, and the non-stationary iterative method called
GMRES to solve the linear system.

Our goal is to take advantage of known optimization techniques to reduce the computational
effort of both processes. As shown in Fig. 1, the Jacobian evaluation is optimized using a graph
coloring algorithm and a matrix reordering scheme is used to accelerate the convergence of the
preconditioned iterative GMRES solver.

Nonlinear
problem

Newton’s
method

Jacobian evaluation
Graph coloring

Preconditioned GMRES
Matrix reordering

Figure 1: Problem flow and optimizations (in blue) scheme.

The problem of optimizing the evaluation time of a sparse Jacobian matrix leads to the prob-
lem of partitioning its columns into the fewest groups, each consisting of structurally orthogonal
columns (i.e., columns that do not have a nonzero in the same row). Curtis, Powell, and Reid
(1974) were the first to exploit sparsity in this way, followed by Coleman and Moré (1983), that
modeled the matrix partitioning problem as a graph coloring problem. Later, Gebremedhin et al.
(2005) proposed a different graph coloring formulation. We can find some techniques to obtain the
partitioning, such as stencil-based ones, that reach the optimum number of partitions for specific
problems (Goldfarb and Toint, 1984) (Lülfesmann and Kawarabayashi, 2014).

The matrix reordering problem can be treated as a graph labeling problem. Algorithms such as
RCM (Cuthill and McKee, 1969), GPS (Gibbs, Poole, and Stockmeyer, 1976) and Sloan (Sloan,
1986) are based on search strategies in graphs and provide good solutions. Ghidetti et al. (2011),
Ghidetti et al. (2010a), Ghidetti et al. (2010b) and Lugon and Catabriga (2013) compared, besides
those already mentioned, a set of reordering algorithms such as Spectral (Barnard et al., 1993),
AMD (Davis et al., 1994) and Nested Dissection (George, 1973), evaluating their impact on CPU
time when applying an ILU(p) preconditioned GMRES solver.

This paper has been structured in seven distinct sections. Section 2 provides some background
information about the Inexact Newton-Krylov Method. In Section 3, the Jacobian evaluation is
briefly explained and its correspondent optimization detailed. Section 4 presents the precondi-
tioned GMRES followed by its optimization technique. Section 5 defines the problem used for the
numerical experiments, whose results are shown and discussed in Section 6. Finally, in Section 7
we share our conclusions and point to future work in the field.

2 Inexact Newton-Krylov Method

The nonlinear system of equations defined by:

F(u1, u2, . . . , uN ) =

 f1(u1, u2, . . . , uN )
...

fN (u1, u2, . . . , uN )

 =

 0
...
0

 (1)

can be solved by Newton’s method, that is an iterative method for nonlinear equations that approx-
imate the function F at a given point u = (u1, u2, . . . , uN )t by a linear function. The Jacobian
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matrix J represents the variation of the function F with respect of u. Each iteration of the Newton’s
method is given by

uk+1 = uk + sk , (2)

where sk is calculated by the solution of the linear system:

J(uk)sk = −F(uk) . (3)

We may terminate the iteration when the relative nonlinear residual ‖F(uk)‖2/‖F(u0)‖2 is small,
i.e., when ‖F(uk)‖2 < τres‖F(u0)‖2 for a given tolerance τres.

When an iterative method is used to solve the system in Eq. (3) the Newton’s method is known
as the Inexact Newton method, that is especially well suited for large-scale problems and has been
used very successfully in many applications (Elias et al., 2004). Furthermore, when iterative Krylov
methods are used to solve the linearized system of the Newton-type scheme, the resulting methods
are known as Inexact Newton-Krylov methods (INK). They have been used to reduce the compu-
tational effort related to nonlinearities in many problems of computational fluid dynamics (Bodart
et al., 2011), offering a compromise between the accuracy and the amount of effort spent per itera-
tion. INK success depends mainly on three factors: (i) quality of initial Newton step, (ii) robustness
of Jacobian evaluation and (iii) proper forcing term choice (Kelley, 1995).

3 Jacobian Evaluation

Consider F : IRN → IRN , a continuously differentiable vector function. The Jacobian of F at the
point u is the N × N matrix J(u) of all first-order partial derivatives of F, i.e., the matrix whose
(i, j) entry J(u)ij = ∂fi(u)/∂uj , where f1(u), f2(u), ..., fN (u) are the components of F(u).

Computationally, this matrix can be obtained in two ways: through finite difference approxi-
mation or by exact computation, using tools based on automatic differentiation (Griewank, 2000),
denoted by AD. Employing a forward difference approximation, one can estimate the jth column
of J(u) through the following formula:

J(u)ej = ∂F(u)/∂uj ≈ [F(u + εej)− F(u)]/ε , 1 ≤ j ≤ N , (4)

where ej is the jth coordinate vector and ε > 0 is a small step size. The estimation of the entire
matrix requires N function evaluations, in addition to the evaluation of F(u).

The derivatives obtained on Eq. (4) are subject to round-off error, which does not occur when
they are computed analytically, as is the case with AD. In this technique, one sweep of the forward
mode of operation is used to calculate a column of J(u), thereforeN sweeps are necessary, in total,
to compute the whole matrix.

The difference between the two numerical approaches is only a matter of accuracy. All the
same, in both cases sparsity in the derivative matrices can be exploited to compute the nonzero
entries efficiently. In the context of finite difference approximations, efficiency corresponds to
reducing the number of function evaluations required. In the context of AD, it means reducing the
total number of AD sweeps.

3.1 Graph Coloring Optimization

To introduce this subsection, some useful definitions follow. A group of structurally orthogonal
columns in a matrix is a group where no two columns have nonzeros in a common row, as columns
1 and 5 of the matrix depicted in Fig. 2. A partial distance-2 coloring of a bipartite graph Gb =
(V1, V2, E) is the coloring of the vertices in V2, such that any pair of vertices in this set at a distance
2 from each other receive different colors.
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Figure 2: A partitioning of a Jacobian and its representation as a graph coloring.

Curtis, Powell, and Reid (1974) showed that the problem of minimizing the number of function
evaluations required to calculate a Jacobian matrix is the problem of partitioning its columns into
the fewest groups of structurally orthogonal columns. This partitioning problem was later modeled
as a graph coloring problem by Coleman and Moré (1983), to which Gebremedhin et al. (2005)
proposed a new graph coloring formulation, declaring it to be superior to the original one. In this
work, the latter graph model is applied to solve the matrix partitioning problem.

First, we explain how the referred partitioning is employed to reduce the number of function
evaluations when estimating a Jacobian through finite differences. Suppose one has partitioned the
columns of a N ×N Jacobian matrix J into p groups of structurally orthogonal columns, where the
partitions are defined by column vectors dj , 1 ≤ j ≤ p, that have 1’s in components corresponding
to the columns in a partition and zeros in all other components. Consider a “compressed” version
of J, a N ×p matrix J′ = [Jd1 Jd2 ... Jdp], that continues to store all nonzero elements of J. Each
column of J′ can be estimated using:

J′dj = ∂F(u)/∂dj ≈ [F(u + εdj)− F(u)]/ε , 1 ≤ j ≤ p , (5)

where ε > 0 is a small step size. Eq. (5) allows the nonzeros of all columns in a given partition to be
simultaneously determined through one finite difference operation. It is easy to see that, if a good
partitioning can be obtained, we can improve the whole evaluation time of the matrix compared to
its regular computation. With automatic differentiation, the usage of the partitioning is analogous:
only one sweep of the forward mode must be performed to compute a whole group of structurally
orthogonal columns in J.

Now we can detail how to obtain a structurally orthogonal partitioning of the columns in a
matrix, using the bipartite graph representation proposed by Gebremedhin et al. (2005). The first
step is to represent the sparsity structure of a Jacobian as a bipartite graph. Given a N ×N matrix
J, the bipartite graph of J is defined as Gb(J) = (V1, V2, E), where V1 and V2 correspond to the
rows and columns of J, respectively, and an edge connects row ri to column cj whenever jij is a
nonzero. The next step is to color the graph. The partial distance-2 coloring of this bipartite graph
provides a partition of the column vertices into groups of structurally orthogonal columns. Fig. 2
exemplifies this matrix-to-graph equivalence.

The optimum coloring of Gb shall provide the minimum number of partitions. As the graph
coloring problem is NP-hard (Lin and Skiena, 1995), an heuristic is utilized to perform the coloring,
that proved to be practically effective. We must remember the focus in this work is to reduce the
evaluation time, and we wish to find - in feasible time - a good structurally orthogonal partitioning
to decrease the number of function evaluations from N to p, where p is the number of column
partitions. It is not imperative that we achieve the chromatic number of Gb, but an acceptable
p << N , and the simple greedy heuristic adopted, described in Algorithm 1 (where N1(v) is the
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set of vertices adjacent to vertex v), has provided a good enough coloring for the problem and
instances considered here.

Algorithm 1: Partial Distance-2 Coloring (Gebremedhin et al., 2005)

1 Input: Gb = (V1, V2, E)
2 Initialize forbiddenColors with some value a 6∈ V2
3 foreach v ∈ V2 do
4 foreach w ∈ N1(v) do
5 foreach colored vertex x ∈ N1(w) do
6 forbiddenColors[color[x]] = v
7 end
8 end
9 color[v] = min{c > 0 : forbiddenColors[c] 6= v}

10 end

4 Preconditioned GMRES

The generalized minimal residual (GMRES) method (Saad and Schultz, 1986) is a non-stationary
iterative method used to determine the approximate solution of a linear system of the form Ax = b,
as the system in Eq. (3). Being x0 the initial solution, {vj}j=1,N vectors in the Krylov basis and
y1, y2, ..., yN terms of a linear combination, the solution of the system can be represented by:

x = x0 +
∑

j=1,N

yjvj . (6)

To reduce de number of floating-point operations and control storage requirements, this work con-
siders a restarted GMRES, also called GMRES(k). This technique, developed by Saad and Schultz
(1986), generate new vectors in the Krylov basis with k elements for each k iterations. Thus, the
new approximation can be represented by:

xi+k = xi +
∑
j=1,k

yjvj . (7)

Preconditioning is a good choice for accelerating iterative methods such as GMRES. The main
idea is to transform the original system Ax = b into the preconditioned system M−1Ax = M−1b,
whereM is the preconditioner matrix and must be a good approximation ofA. The preconditioning
technique used in this work is based on approximate factorization of M = L̃Ũ , called incomplete
LU factorization and denoted ILU(p), where p is the level of fill used to control the number of new
elements generated during the process (Saad, 2003).

4.1 Matrix Reordering Optimization

Some important concepts from graph theory and matrix reordering are useful to understand the fol-
lowing algorithm and it is appropriate to state some basic definitions. Being A a matrix structurally
symmetric, the bandwidth of A can be defined by:

bw(A) = max
i=1,..,N

{bi} (8)

bi = (i− j) ∀ aij 6= 0, i = 1, ..., N. (9)
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And the envelope of A can be defined by:

env(A) =
N∑
i=1

bi. (10)

The level structure rooted at a vertex emay be expressed as L(e) = {l1(e), l2(e), ..., lh(e)}where h
is the total number of levels of a tree rooted on e. Considering the vertices v, w, the distance d(v, w)
is the length of the shortest path between v and w. The eccentricity of a vertex v is the greatest
distance between v and any other vertex. The diameter of a graph is the maximum eccentricity
of any vertex in the graph and the pseudo-diameter is a high eccentricity, but not necessarily the
largest. Finally, the pseudo-peripheral vertices are vertices that achieve the pseudo-diameter.

A sparse matrix reordering scheme with the purpose of minimizing its bandwidth is imple-
mented in this work, as alternative to speed up the convergence of the preconditioned GMRES
method. The preconditioning calculations are optimized when we use a reordering, once with the
reduced bandwidth, less floating-point operations are made.

For the computational tests we adopted the Sloan reordering, described in Sloan (1986). In
preliminary tests, this algorithm reached good solutions for the matrices generated in our specific
problem. The method aims to reduce the envelope and the bandwidth of structurally symmetric
sparse matrices. The algorithm works assigning priorities and status to each vertex, maintaining
a queue that is being updated with informations of the graph. Algorithm 2 describes the steps for
labeling a graph with N vertices.

Algorithm 2: Sloan

1 Enter with pseudo-peripheral vertices (Sloan, 1986), initial vertex s and end vertex e.
2 Generate the level structure rooted at the end vertex, L(e) = l1, l2, ..., lh(e) and compute the

distance δi of each vertex i from the end vertex e, using a BFS algorithm.
3 Assign each vertex in the graph G an inactive status and an initial priority Pi according to
Pi ←W1 ∗ δi−W2 ∗ (di + 1) where W1 and W2 are integer weights and di is the degree of i.

4 Insert the starting vertex, s, in the queue of eligible vertices and assign it a preactive status.
5 While the queue of eligible vertices is not empty, do steps 6-9.
6 Search the queue of eligible vertices and select the vertex with the highest priority. Let it be i.
7 Delete vertex i from the queue. If i is not preactive, go to step 8. Else, examine each vertex j

which is adjacent to i and set Pj = Pj +W2. If vertex j is inactive, then insert it in the
priority queue with a preactive status.

8 Label vertex i with its new label and assign to it a postactive status.
9 Examine each vertex j which is adjacent to vertex i. If vertex j is not preactive, take no

action. Else, assign vertex j an active status, set Pj = Pj +W2 and examine each vertex k
which is adjacent to vertex j. If vertex k is not postactive, increment its priority according to
Pk = Pk +W2. If vertex k is inactive, insert it in the priority queue with a preactive status.

10 Exit with the new vertex labels.
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5 Test Problems

For the numerical experiments conducted in this work, we use the two-dimensional and the three-
dimensional variations of the heat transfer problem defined by the following nonlinear differential
equation:

−∇ · (K(u)∇u) = 0 in Ω (11)

where u is the temperature and the thermal conductivity is considered as K(u) = 0.0000002u2 +
0.00001u+ 0.001. The definitions, for each domain, are:

• for the two-dimensional problem, the boundary conditions are u(x, 0) = u(1, y) = 10 and
u(x, 1) = u(0, y) = 100, with Ω = (0, 1) × (0, 1) discretized into an uniform grid with
N = n×m unknowns points, respectively, in the x, y directions.

• for the three-dimensional problem, the boundary conditions are u(x, y, 0) = u(x, 0, z) =
u(1, y, z) = 10 and u(x, y, 1) = u(x, 1, z) = u(0, y, z) = 100, with Ω = (0, 1) × (0, 1) ×
(0, 1) discretized into an uniform grid with N = n ×m × l unknowns points, respectively,
in the x, y, z directions.

We approximate the derivatives by combining forward, backward and centered finite differences,
arriving to the nonlinear system of equations F(u) = 0, where F : IRN → IRN is a nonlinear
vector function, u = (u1, u2, . . . , uN )T is the unknown vector. For the two-dimensional case,
each component of F depends only on the five unknowns uI−n, uI−1, uI , uI+1, uI+n for I =
1, 2, . . . , N and the resulting matrix has a pentadiagonal structure. For the three-dimensional case,
each component of F depends only on the seven unknowns uI−m∗n, uI−n, uI−1, uI , uI+1, uI+n,
uI+m∗n for I = 1, 2, . . . , N and the resulting matrix has a heptadiagonal structure. Fig. 3 shows
the temperature distribution for a mesh with 100.000 unknowns.

(a) 2D problem solution - 1000x100 mesh (b) 3D problem solution - 100x50x20 mesh

Figure 3: Temperature distribution for a 100.000 mesh.
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6 Experimental Results

For the heat transfer problem described in Section 5, we developed programs in the C language
(compiled with GCC 4.6.3). All computational tests were performed on an Intel Core i5-2400
3.10GHz × 4 machine with 4GB of RAM under Ubuntu 12.04 operating system. To store the
sparse matrices derived from the problem we use an optimized storage scheme called Compressed
Sparse Row (CSR), that places the subsequent nonzeros of the matrix rows in contiguous memory
locations.

In the following subsections, eight problem instances are considered for each two and three-
dimensional domains. The results in Tables 1 and 3 show, for each instance I , the size N of the
problem, the p parameter to the ILU(p) preconditioner and the CPU time, in seconds, for com-
puting the solution with no optimization (NO), with optimized Jacobian evaluation (JE), with
matrix reordering (MR) and with both optimizations (OP). The CPU times for each optimized
case (JE, MR, OP) are followed by the percentage time reduction (red) from time NO, given by
red = 1− time([JE|MR|OP])/time(NO).

In the GMRES algorithm, the number of vectors in the Krylov basis is 100 and its stopping
tolerance is 1×10−7 for all instances. The step size ε for the finite difference operations is 1×10−9,
and the tolerance in the Newton’s method is τres = 10−6.

6.1 Two-dimensional problem

For all instances, the coloring number achieved for the graph associated with the problem matrix
was 6, which means that the optimized Jacobian evaluation performed 6 finite difference operations.
The experimental results and analysis for the two-dimensional heat transfer problem are shown in
Tables 1 and 2. Fig. 4 shows the percentage reduction for each problem size.

NO JE MR OP

I N (n×m) p time(sec) time(sec) red(%) time(sec) red(%) time(sec) red(%)

1 10.000 (200×50) 5 13,0 2,1 84,2 12,6 2,7 1,7 86,9
2 10.000 (200×50) 10 13,8 3,0 78,5 12,8 7,2 1,9 86,6
3 50.000 (500×100) 5 324,7 42,1 87,0 316,4 2,5 36,2 88,8
4 50.000 (500×100) 10 327,3 44,6 86,4 317,4 3,0 36,3 88,9
5 100.000 (1000×100) 5 1.294,4 159,0 87,7 1.263,7 2,4 137,9 89,4
6 100.000 (1000×100) 10 1.296,9 165,0 87,3 1.262,9 2,6 138,2 89,3
7 300.000 (1500×200) 5 11.625,8 1.342,8 88,4 11.447,8 1,5 1.221,5 89,5
8 300.000 (1500×200) 10 11.645,8 1.337,1 88,5 11.447,2 1,7 1.213,4 89,6

Table 1: Set of chosen parameters and computational results for the two-dimensional problem.

Analyzing the results in Table 1, we first observe that the combination of the Jacobian opti-
mization and the matrix reordering scheme achieved a reduction of over 86%, for all instances
considered. Moreover, the biggest contribution (by a large margin) came from the Jacobian opti-
mization, as can be seen in Fig. 4. If we focus on the level of fill-in, p = 5 and p = 10, for each
problem size its variation did not affect significantly the computation time, although the ILU(10)
preconditioner produced a slightly larger reduction than the ILU(5) (see green lines on Fig. 4).
However, as seen in Table 1, the ILU(10) spent a higher overall CPU time for almost all instances.

The impact of the reordering strategy in the total computation time was small for both pre-
conditioners, although the number of GMRES iterations and the total time consumed by them do
decrease when we use the reordering scheme (see NO and MR for each ILU(p) in Table 2). The
overall time for solving the linear system, on the other hand, does not change much, even though
the bandwidth is reduced. This happens because the time to calculate the preconditioner remains
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TJ (sec) TP (sec) TG (sec) GMRES iter.

NO 10.286,8 1.186,1 152,9 1135
ILU(5) JE 0,4 1.187,0 155,2 1135

MR 10.224,4 1.183,5 36,7 363
OP 0,3 1.180,4 37,1 363

NO 10.295,4 1.226,4 123,9 719
ILU(10) JE 0,4 1.211,6 124,8 719

MR 10.234,9 1.192,3 16,8 191
OP 0,4 1.192,5 16,9 191

Table 2: Detailed information for each execution case (NO, JE, MR and OP) of the instance with size
300.000, displaying the total time consumed in Jacobian evaluations (TJ ), preconditioner calculations (TP ),
GMRES solver (TG), and the total number of GMRES iterations.

high, showing that the operations required to obtain the L and U factors prevail over the time spent
on the GMRES iterations.

(a) ILU(5) (b) ILU(10)

Figure 4: Percentage time reduction for each problem size.

6.2 Three-dimensional problem

For all instances of this problem case, the coloring number achieved was 13. The experimental
results and analysis for the three-dimensional heat transfer problem are shown in Tables 3 and 4.
Fig. 5 shows the percentage reduction for each problem size.

For all instances, the optimization techniques were able to reduce the final computation time
in over 78%. Examining Table 3, we observe a higher level of fill-in (p = 10) induces a higher
contribution of the reordering strategy on the final time reduction, while on the lower level (p = 5,
which has better final runtime) the graph coloring strategy is responsible for the biggest improve-
ment. Furthermore, by increasing the dimension of the problem but maintaining the same level of
fill-in, the reduction achieved by the Jacobian optimization increases while the reduction achieved
by the reordering decreases. Those behaviors can be clearly observed in Fig. 5.

While in the two-dimensional problem the matrix reordering did not contribute significantly on
the time reduction, for the three-dimensional case the Sloan algorithm proved to be effective. Table
4 shows that the time for both preconditioner computation and GMRES iterations notably decreased
from NO to MR. The improvement accomplished by each optimization technique varies, depending
whether the Jacobian evaluation or the preconditioned GMRES demands the biggest computational
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NO JE MR OP

I N (n×m× l) p time(sec) time(sec) red(%) time(sec) red(%) time(sec) red(%)

1 10.000 (100×10×10) 5 23,8 12,5 47,5 16,4 31,1 5,1 78,6
2 10.000 (100×10×10) 10 196,7 184,9 6,0 42,7 78,3 31,3 84,1
3 50.000 (200×50×5) 5 340,6 84,8 75,1 300,7 11,7 45,6 86,6
4 50.000 (200×50×5) 10 1.911,9 1.655,9 13,4 354,9 81,4 99,7 94,8
5 100.000 (100×50×20) 5 1.784,0 255,4 85,7 1.698,8 4,8 179,3 90,0
6 100.000 (100×50×20) 10 6.027,5 4.508,2 25,2 2.255,8 62,6 733,5 87,8
7 300.000 (200×50×30) 5 15.991,3 1.592,7 90,0 15.679,1 2,0 1.349,5 91,6
8 300.000 (200×50×30) 10 29.148,3 14.712,9 49,5 17.522,7 39,9 3.184,2 89,1

Table 3: Set of chosen parameters and computational results for the three-dimensional problem.

TJ (sec) TP (sec) TG (sec) GMRES iter.

NO 14.405,1 1.535,5 50,7 182
ILU(5) JE 1,0 1.540,1 51,1 182

MR 14.328,3 1.303,6 18,5 103
OP 0,9 1.301,0 18,1 103

NO 14.412,6 14.661,4 74,1 117
ILU(10) JE 1,0 14.637,0 74,3 117

MR 14.335,4 3.134,6 23,7 57
OP 0,9 3.130,3 23,3 57

Table 4: Detailed information for each execution case (NO, JE, MR and OP) of the instance with size
300.000, displaying the total time consumed in Jacobian evaluations (TJ ), preconditioner calculations (TP ),
GMRES solver (TG), and the total number of GMRES iterations.

effort. Nevertheless, the final time reduction is roughly the same, showing the strength in the use of
the optimization strategies.

(a) ILU(5) (b) ILU(10)

Figure 5: Percentage time reduction for each problem size.

7 Conclusions and Future Work

The preliminary results obtained in this work show that the optimization strategies imposed on
the Jacobian evaluation and on GMRES solver significantly reduced the final execution time for the
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benchmark nonlinear heat transfer problem. Comparing the two-dimensional and three-dimensional
problems, the former took less time overall, as the problem matrix associated is sparser and less op-
erations are performed. Also, the computational gains were definitely better in the three-dimensional
case. The 2D problem, for its simpler structure, has less to benefit from the reordering scheme -
with ILU(5) and ILU(10) - than the 3D problem, that has a more complicated structure, with two
more diagonals of nonzero elements.

Regarding the optimization techniques, the coloring scheme influences the task of evaluating
the Jacobian matrix, by reducing the number of required finite difference operations, whereas the
Sloan algorithm utilized for the matrix reordering has effects in the preconditioner calculations and
in the convergence time of the GMRES method. The bandwidth in both problem cases was always
significantly reduced, but only on the three-dimensional case there was an actual impact on the
overall computation time. This strongly suggests the matrix reordering optimization has a better
use for problems where the matrix has a non-trivial sparsity pattern.

There is further work to be done. We aim to investigate the following directions: (i) perform
computational tests considering problems of a higher complexity, whose resulting matrices have
non-trivial sparsity patterns; (ii) implement an algorithm that finds the minimum structurally or-
thogonal partitioning; (iii) apply automatic differentiation as an alternative to the finite differences
method for the Jacobian evaluation; (iv) calibrate the p parameter to the ILU(p) in order to improve
the matrix reordering impact on the CPU time consumed by the GMRES solver and (v) implement
different matrix reordering schemes.
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