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ABSTRACT
We consider some simple polynomial uncapacitated lot-sizing problems with sales. We

first consider a single level uncapacitated lot-sizing problem with sales and zero demands and show
that, differently from the general problem in which demands are considered, the projection of the
multicommodity formulation into the original space gives the convex hull of solutions. We then
treat the uncapacitated two-level lot-sizing with sales problem for which we present a dynamic
programming algorithm and a resulting extended formulation and show how the result can be ex-
tended to a generalization of the problem, namely the two-echelon lot-sizing problem in series with
intermediate demands and sales.
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1. Introduction

Production planning problems have been studied extensively in the last decades both in a
theoretical and in a practical point of view, see Pochet and Wolsey [6] for a survey. Many of the
studied problems are extensions of the basic polynomially solvable uncapacitated lot-sizing prob-
lem. The presence of potential sales which are limited by some technical or commercial constraints
is a characteristic that often appears in industrial settings and this is therefore an interesting area to
study.

In a seminal paper in the production planning literature Wagner and Whitin [7] studied
the economic lot-size problem and characterized the structure of optimal solutions for the problem
in order to devise a polynomial time algorithm.

Loparic et al. [2] studied the uncapacitated lot-sizing with sales problem. The authors
give an extended formulation whose projection into the space of original variables describes the
convex hull of solutions. In addition, they also describe a family of valid inequalities implied by
this projection. Some more general problems with sales were treated for example in Melo and
Wolsey [4] and Park [5].

The uncapacitated two-level lot-sizing was studied in Melo and Wolsey [3] and the au-
thors proposed an O(NT 2 logNT ) algorithm from which an extended formulation with O(NT 3)
variables and O(NT 2) constraints (O(NT 3) if we consider the nonnegativity constraints) could be
obtained using Eppen and Martin’s [1] approach. Zhang et al. [8] considered the two-echelon unca-
pacitated lot-sizing problem in series and presented an O(NT 4) dynamic programming algorithm
with a resulting extended formulation with O(NT 4) variables and O(NT 3) constraints (O(NT 4)
if we consider the nonnegativity constraints). They also presented a partial description of the con-
vex hull of solutions and used the results in order to treat computationally some extensions of the
problem.

In Section 2 we consider the single-level uncapacitated lot-sizing problem with sales and
zero demands and show that the projection of the well known multicommodity formulation into
the original space gives the convex hull of solutions, which is not the case for the more general
problem with nonzero demands. In Section 3 we treat two variants of the two-level lot-sizing with
sales that were not yet considered in the literature. In subsection 3.2 we give an O(NT 4) dynamic
programming algorithm and a resulting tight extended formulation with O(NT 4) variables and
O(NT 3) constraints for the uncapacitated two-level lot-sizing with sales problem. In subsection 3.3
we consider an extension of the two-echelon lot-sizing in which production and sales can happen on
both levels and provide an algorithm with the same asymptotic complexity of the special case which
can be used to generate a resulting tight extended formulation with the same order of variables and
constraints.

2. The single-level uncapacitated lot-sizing with sales and zero demand

In this section we consider a special case of the problem studied in Loparic et al. [2],
namely the one in which the demand at each period is equal to zero. The goal is to show that the
multicommodity formulation gives the convex hull of the solutions, situation that does not happen
for the general problem in which demands are present.

In the single-level uncapacitated lot-sizing with sales and zero demand, there is a single
item that can be produced for sale over a discrete horizon of NT time periods. Each sold unit
produces a revenue (et). A fixed set-up cost (ft) as well as a per unit production cost (pt) are
implied at each period in case production occurs. At each time period, the amount that can be sold
is limited by an upper bound (ut) and the production is unrestricted (uncapacitated). The goal is to
maximize the total revenue minus production cost.

Consider the variables xt to be the amount produced in period t, yt to be equal to 1 in case
production occurs in period t and 0 otherwise and vt to be the amount to sell in period t. A standard
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formulation for the problem is given by LS0− STD.

(LS0− STD) zD = max
∑NT

t=1 etvt −
∑NT

t=1 ptxt −
∑NT

t=1 ftyt (1)∑t
k=1 xk ≥

∑t
k=1 vk for 1 ≤ t ≤ NT, (2)

0 ≤ vt ≤ ut for 1 ≤ t ≤ NT, (3)

xt ≤Myt for 1 ≤ t ≤ NT, (4)

xt ∈ R1
+ for 1 ≤ t ≤ NT, (5)

yt ∈ {0, 1} for 1 ≤ t ≤ NT. (6)

The objective function maximizes the total revenue minus production cost. Constraints (2) guaran-
tees the production is greater than or equal to the total amount for sale. Constraints (3) limit the
amount for sale in each period. Constraints (4) set the fixed set-up variables to 1 in case production
occurs. Constraints (5) and (6) are non-negativity and integrality constraints on the variables.

A multi-commodity extended formulation can be obtained by considering the variables
wkt to be the amount produced in period k to be sold in period t.

(LS0−MC) zD = max
∑NT

t=1 etvt −
∑NT

t=1 ptxt −
∑NT

t=1 ftyt (7)∑t
k=1wkt ≥ vt for 1 ≤ t ≤ NT, (8)

0 ≤ vt ≤ ut for 1 ≤ t ≤ NT, (9)

wkt ≤ utyk for 1 ≤ k ≤ t ≤ NT, (10)∑NT
t=k wkt = xk for 1 ≤ k ≤ NT, (11)

wkt ∈ R1
+ for 1 ≤ k ≤ t ≤ NT, (12)

yt ∈ {0, 1} for 1 ≤ t ≤ NT. (13)

Constraints (8) guarantee the amount to be sold is produced. Constraints (9) limit the amount to be
sold in each period. Constraints (10) set the yk variables to 1 in case production occurs. Constraints
(11) link the multi-commodity variables to the original production variables. Constraints (12) and
(13) are non-negativity and integrality constraints on the variables.

Observation 1. When dt = 0, the (t, S,R) inequalities [2] simplify to∑
j∈T\S

xj +
∑
j∈S

uRjtyj ≥
∑
j∈R

vj . (14)

Loparic et al. [2] showed that (2)-(3) together with (14) describe conv(LS0−STD). We
now show that for this particular case of the problem with zero demand, the projection of the multi-
commodity formulation into the original space of variables gives the convex hull of the feasible
solutions.

Proposition 1. projx,y,vLS0−MC = conv(LS0− STD)

Proof. It is clear that conv(LS0 − STD) ⊆ projx,y,vLS0 −MC since LS0 −MC is a valid
formulation for the problem. We now want to show that projx,y,v(LS0 −MC) ⊆ conv(LS0 −
STD). Consider a feasible solution (ŵ, ŷ, x̂, v̂) of LS0−MC. We have

t∑
k=1

x̂k =
t∑

k=1

t∑
j=k

ŵkj =
t∑

j=1

j∑
k=1

ŵkj ≥
t∑

k=1

v̂k. (15)
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Therefore, (8) implies that (2) is satisfied. Summing (9) over t ≥ k for each k, we have that (3) is
satisfied. Now, for the (t, S,R) inequalities we have

∑
j∈T\S

x̂j +
∑
j∈S

uRjtŷj =
∑

j∈T\S

NT∑
k=j

ŵjk +
∑
j∈S

uRjtŷj ≥ (16)

∑
j∈T\S

t∑
k=j
k∈R

ŵjk +
∑
j∈S

t∑
k=j
k∈R

ukŷj ≥
∑

j∈T\S

t∑
k=j
k∈R

ŵjk +
∑
j∈S

t∑
k=j
k∈R

ŵjk = (17)

∑
j∈T

t∑
k=j
k∈R

ŵjk =
∑
k∈R

v̂k, (18)

what implies that the inequalities are also satisfied.

This implies that constraints (13) can be substituted by

yt ∈ [0, 1] for 1 ≤ t ≤ NT.

3. The two-echelon uncapacitated lot-sizing problem in series with sales
In this section we consider the two-echelon uncapacitated lot-sizing problem in series

with sales. The goal is to devise extended formulations obtained from dynamic programming algo-
rithms. After introducing the problem we characterize the extreme feasible solutions in subsection
3.1. In subsection 3.2 we treat a special case, namely, the uncapacitated two-level lot-sizing prob-
lem with sales for which we present a dynamic programming algorithm and an associated extended
formulation obtained using Eppen and Martin’s [1] approach. In subsection 3.3 we present a dy-
namic programming algorithm for the more general two-echelon uncapacitated lot-sizing problem
in series with sales.

In the two-echelon uncapacitated lot-sizing problem in series with sales there are two
levels of production (l ∈ {0, 1}), such that the production at level 1 depends on what was produced
at level 0, and a single item with time varying deterministic demand (dlt) for both levels over a
discrete horizon of NT time periods that have to be satisfied without backlogging. An additional
limited amount (up to ult) can be produced at level l for sale in order to get some extra revenue (elt
per unit). Production in period t at level l imply a fixed cost f lt plus a variable per unit cost plt. We
assume that there are no initial and end stocks and that all the data (d, e, f , p) is nonnegative.

Consider the variables xlt to be the production quantity at level l in period t, slt the stock
quantity at level l at the end of period t, ylt equal to 1 if production happens at level l in period t and
vlt the amount to be sold at level l in period t. A standard formulation for the problem is as follows.

(2LS − STD) max
1∑

l=0

NT∑
t=1

eltv
l
t −

1∑
l=0

NT∑
t=1

pltx
l
t −

1∑
l=0

NT∑
t=1

f lty
l
t

s0t−1 + x0t = d0t + v0t + x1t + s0t for 1 ≤ t ≤ NT, (19)

s1t−1 + x1t = d1t + v1t + s1t for 1 ≤ t ≤ NT, (20)

0 ≤ vlt ≤ ult for 0 ≤ l ≤ 1, 1 ≤ t ≤ NT, (21)

xlt ≤Mylt for 0 ≤ l ≤ 1, 1 ≤ t ≤ NT, (22)

xlt, s
l
t ∈ R1

+ for 0 ≤ l ≤ 1, 1 ≤ t ≤ NT, (23)

y0, y1 ∈ {0, 1}NT . (24)

The objective function maximizes the total revenue minus production cost. Constraints (19) are
balance constraints for level 0 and imply that the amount in stock at the beginning of a period plus
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what was produced in that period at level 0 is equal to the demand in that level plus the amount
sold plus the amount produced at level 1 plus what remains as stock at level 0. Constraints (20) are
balance constraints for level 1 and the description is similar to the previous one. Constraints (21)
restrict the amount of sales for each level and period. Constraints (22) set the setup variables to 1
in case production occurs. Constraints (23) and (24) are respectively nonnegativity and integrality
constraints.
3.1. Characterization of extreme feasible solutions

The problem has an associated fixed charge network flow in the form illustrated in Figure
1.

Figure 1: Network representation of the two-echelon uncapacitated lot-sizing problem in series with sales

Observation 2 presents a well known property of fixed charge network flow problems.

Observation 2. In a basic (or extreme) feasible solution of a fixed charge network flow problem the
variables strictly between their upper and lower bounds form an acyclic graph.

Observation 3 defines regeneration intervals and subintervals for the two-echelon unca-
pacitated lot-sizing problem without sales.

Observation 3 (Zhang et. al. [8]). The indices (1, i2, 1, j2) form a regeneration interval for 1 ≤
i2 ≤ j2 ≤ NT if x01 = d01i2 + d11j2 and s0i2 = s1j2 = 0 and s0k > 0 or d0k+1,i2

= 0 for 1 ≤ k ≤
i2 − 1. The indices (i1, i2, j1, j2) form a regeneration interval for 2 ≤ i1 ≤ i2 ≤ j2 ≤ NT and
i1 ≤ j1 ≤ j2 if x0i1 = d0i1i2 + d1j1j2 and s0i1−1 = s0i2 = s1j1−1 = s1j2 = 0 and s0k > 0 or d0k+1,i2

= 0
for i1 ≤ k ≤ i2 − 1. In addition, the indices (j1, j2) form a regeneration subinterval for level 1 if
x1j1 = d1j1j2 and s1j1−1 = s1j2 = 0 and s1k > 0 or d1k+1,j2

= 0 for j1 ≤ k ≤ j2 − 1.

Observation 4. In an extreme optimal solution every sales variable vlk assumes one of its bounds,
i.e., either vlk = 0 or vlk = ulk.

To verify Observation 4 note that all the variables in the network are uncapacitated with
exception of the sales variables, therefore there is a path from the source to node (l, k) formed by
basic variables whenever dlk + vlk > 0 for a period k at level l. Assume by contradiction that we
have an extreme optimal solution with 0 < vlk < ulk for some l and k. This implies that the arc
corresponding to vlk forms a cycle with the basic variables on the path from the source to node (l, k),
see Figure 2. Therefore the solution is not extreme optimal and we have a contradiction.

Observation 5. In an extreme optimal solution if production occurs at level l in a period kl, then
the amount produced is used to completely satisfy demand and possible additional sales for an
interval of consecutive periods {kl, . . . , tl}.

Observation 5 is a direct implication of Observations 2, 3 and 4.
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Figure 2: Cycle formed by a vlk variable that does not assume one of its bounds

3.2. The special case without intermediate demands
When the intermediate demands and sales are not present (d0t = 0 and v0t = u0t = 0 for

every t), the problem is the sales version of the uncapacitated two-level lot-sizing studied in Melo
and Wolsey [3].

3.2.1. A dynamic programming algorithm
In order to generate a dynamic programming recursion, let the following values be defined

as:

• V (i, a, w): value of the optional revenue for producing the amount u1w at level 0 in period i
and at level 1 in period a, calculated as

V (i, a, w) = max{0, (e1w − p0i − p1a)u1w}. (25)

In the solution represented by Figure 3, V (1, 1, 1) and V (u, j + 1, t) take nonzero values.

• B(i, a, b): revenue minus cost from satisfying the demands (plus possible additional sales)
from periods a to b when the quantity

∑b
j=a(d

1
j + vj) is produced at level 0 in period i and

at level 1 in period a, calculated as

B(i, a, b) =

b∑
w=a

V (i, a, w)− (p0i + p1a)d
1
ab. (26)

In the solution represented by Figure 3,B(1, 1, j−1),B(u, j, j) andB(u, j+1, t) contribute
to the revenue minus cost.

• H(i, j, k): maximum revenue minus cost from satisfying the demands (plus possible addi-
tional sales) from periods j to k when

∑k
w=j(d

1
w+vw) units are produced at level 0 in period

i, calculated as

H(i, j, k) = max
j≤w≤k

{H(i, j, w − 1) +B(i, w, k)− f1w}, (27)

withH(i, j, j−1) = 0. In the solution depicted in Figure 3, we haveH(u, j, t) = H(u, j, j)+
B(u, j + 1, t)− f1j+1}.

• G(k): optimal revenue for periods 1 to k, calculated as

G(k) = max
1≤i≤j≤k

{G(j − 1) +H(i, j, k)− f0i }, (28)

with G(0) = 0. In the solution represented by Figure 3, G(t) = G(j − 1) +H(u, j, t)− f0u .
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Figure 3: Part of a solution to illustrate the values G(k), H(i, j, k), B(i, a, b) and V (i, a, w).

Proposition 2. There is an O(NT 4) algorithm for solving the uncapacitated two-level lot-sizing
with sales problem.

Proof. Such an algorithm can be obtained by using a straightforward calculation of the complete set
of values involved. All the V (i, a, w) values can be calculated inO(NT 3). All theB(i, a, b) values
can be calculated in O(NT 3). The calculation of H(i, j, k) for all i, j and k can be performed in
O(NT 4). The values ofG(k) for all k can be calculated inO(NT 3). Therefore, the overall running
time of the algorithm is O(NT 4).

3.2.2. An extended formulation
In this section we use the approach of Eppen and Martin [1] to generate a compact ex-

tended formulation whose projection into the original space gives the convex hull of solutions.Using
the DP recursion given by (25), (26), (27) and (28) we can write the following DP formulation.

zDPS = minG(NT )

V (i, a, w) ≥ (e1w − p0i − p1a)u1w for 1 ≤ i ≤ a ≤ w ≤ NT, (29)

B(i, a, b) ≥
∑b

w=a V (i, a, w)− (p0i + p1a)d
1
ab for 1 ≤ i ≤ a ≤ b ≤ NT, (30)

H(i, j, k) ≥ H(i, j, w − 1) +B(i, w, k)− f1w for 1 ≤ i ≤ j ≤ w ≤ k ≤ NT, (31)

G(k) ≥ G(j − 1) +H(i, j, k)− f0i for 1 ≤ i ≤ j ≤ k ≤ NT, (32)

V ∈ RNT 3

+ , B ∈ RNT 3
, H ∈ RNT 3

, G ∈ RNT . (33)

We present the dual formulation of DP followed by the interpretation of its variables.
Associate variables α, β, γ and θ respectively to constraints (29), (30), (31) and (32).

zDDPS = max
∑

i,j,k αijk(e
1
k − p0i − p1j )u1k −

∑
i,j,k βijk(p

0
i + p1j )d

1
jk−∑

i,j,w,k γi,j,w,kf
1
w −

∑
i,j,k θijkf

0
l

αiaw −
∑NT

j=w βiaj ≤ 0 for ≤ i ≤ a ≤ w ≤ NT (34)

βijk −
∑j

w=i γiwjk = 0 for 1 ≤ i ≤ j ≤ k ≤ NT, (35)∑k
w=j γijwk −

∑NT
w=k+1 γij,k+1,w − θijk = 0 for 1 ≤ i ≤ j ≤ k ≤ NT, (36)∑k

i=1

∑k
j=i θijk −

∑k+1
i=1

∑NT
j=k+1 θi,k+1,j = 0 for 1 ≤ k ≤ NT, (37)∑NT

i=1

∑NT
j=i θij,NT = 1, (38)

α ∈ RNT 3

+ , β ∈ RNT 3

+ , γ ∈ RNT 4

+ , θ ∈ RNT 3

+ . (39)

We use an abuse of notation and denote ‘total demand’ of an interval [j, k] as
∑k

i=j(d
1
i +

v1i ). The variables in the formulation can be interpreted as follows (and are illustrated in Figure 4):
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• αiaw: is equal to one (if the variable takes a positive value, then constraint (34) will be tight
and therefore this positive value will be 1) if v1w = u1w with production in period i at level 0
and in period a at level 1 (associated with constraints (29)),

• βiab: is equal to one if the ‘total demand’ for the interval [a, b] is produced in period i at level
0 and in period a at level 1 (associated with constraints (30)),

• γijwk: is equal to one if the ‘total demand’ for the interval [w, k] is produced in i at level 0 as
part of the ‘total demand’ of an interval starting in period j (associated with constraints (31)),

• θijk: is equal to one if the ‘total demand’ of interval [j, k] is produced in period i at level 0
(associated with constraints (32)).

Figure 4: Solution with α111 = α244 = β112 = β233 = β244 = γ1112 = γ2333 = γ2344 = θ112 = θ234 =

1

Constraints (34) link the sales with the production. Constraints (35) state that if a batch [j, k] was
produced in period l at level 0 then it is part of a production batch at level 1 starting no later than
period j. Constraints (36) indicate that if there is a subbatch [w, k] produced at level one as part of
a batch [j, q] at level zero for some w between j and k (

∑k
w=j γijwk = 1), then either k = q and

[w, k] was the last subbatch of [j, q] (θijk = 1), or there is a following subbatch [k + 1, w] of [j, q]
(
∑NT

w=k+1 γi,j,k+1,w = 1). Constraints (37) and (38) are shortest path constraints for level zero.
We can link the variables of the formulation DDPS to the original (x, y0, y1, v) variables

to get the following formulation:

(DDPS′) max
NT∑
t=1

e1t v
1
t −

1∑
l=0

NT∑
t=1

pltx
l
t −

NT∑
t=1

f0t y
0
t −

NT∑
t=1

f1t y
1
t

(34)− (39)
NT∑
j=t

NT∑
k=j

θtjk ≤ y0t for 1 ≤ t ≤ NT, (40)

NT∑
j=t

NT∑
k=j

βtjkd
1
jk = x0t for 1 ≤ t ≤ NT, (41)

k∑
l=1

k∑
j=l

NT∑
w=k

γljkw ≤ y1k for 1 ≤ k ≤ NT, (42)

k∑
j=1

NT∑
t=k

βjktd
1
kt = x1k for 1 ≤ k ≤ NT, (43)

x0, x1 ∈ RNT
+ , v ∈ RNT , y0, y1 ∈ [0, 1]NT . (44)
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Let QS be the polyhedron described by the constraints (34)-(44). The following theorem
is a direct implication of Eppen and Martin’s approach.

Theorem 3. The linear program

max{ev − px− fy : (x, y, v, α, β, γ, θ) ∈ QS}

solves the two-level problem with sales. Projx,y,v(QS) is the convex hull of the set of points (x, y, v)
for which there exists an s with (x, y, v, s) satisfying (19)-(24).

3.3. An algorithm for the general problem
We now give a dynamic programing recursion for the general two-echelon lot-sizing prob-

lem in series with intermediate demands and sales. Let the following values be defined as:

• V (i, a, w): value of the optional revenue for producing the amount u1w at level 0 in period i
and at level 1 in period a, calculated as

V (i, a, w) = max{0, (e1w − p0i − p1a)u1w}. (45)

• B(i, a, b): revenue minus cost from satisfying the demands (plus possible additional sales)
from periods a to b when the quantity

∑b
j=a(d

1
j + v1j ) is produced at level 0 in period i and

at level 1 in period a, calculated as

B(i, a, b) =

b∑
w=a

V (i, a, w)− (p0i + p1a)d
1
ab. (46)

• H(i, j, k): maximum revenue minus cost from satisfying the demands (plus possible addi-
tional sales) from periods j to k when

∑k
w=j(d

1
w+v1w) units are produced at level 0 in period

i, calculated as

H(i, j, k) = max
j≤w≤k

{H(i, j, w − 1) +B(i, w, k)− f1w}, (47)

with H(i, j, j − 1) = 0.

• W (i, b): value of the optional revenue for producing the amount u0b in period i calculated as

W (i, b) = max{0, (e0b − p0i )u0b} (48)

• A(i, k): revenue minus cost from satisfying the demands (plus possible additional sales) at
level 0 from periods i to k.

A(i, k) =
k∑

b=i

W (i, b)− p0i d0ik (49)

• G(j, k): optimal revenue for level 0 until period j and for level 1 until period k, calculated as

G(j, k) = max
1≤w≤h≤k

{G(w − 1, h− 1) +A(w, j) +H(w, h, k)− f0w}, (50)

Proposition 4. There is an O(NT 4) algorithm for solving the two-echelon lot-sizing problem in
series with intermediate demands and sales.
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Proof. As for the special case considered in Section 3.2, this can be achieved via a straightforward
calculation of the different possible values. All the V (i, a, w) can be calculated in O(NT 3). All
the B(i, a, b) can be calculated in O(NT 3). All the H(i, j, k) can be calculated in O(NT 4). All
the W (i, b) can be calculated in O(NT 2). All the A(i, k) can be calculated in O(NT 2). And all
G(j, k) can be calculated in O(NT 4).

Using the approach of Eppen and Martin [1], as it was done in subsection 3.2.2, an ex-
tended formulation with O(NT 4) variables and O(NT 3) constraints (not considering the nonneg-
ativity constraints) can be obtained whose projection into the original space gives the convex hull
of solutions.
4. Final Remarks

We considered different uncapacitated production planning problems involving sales and
presented polynomial time algorithms and extended formulations. We first showed that for the
single-level uncapacitated lot-sizing with sales and zero demand problem the projection of the mul-
ticommodity formulation into the original space gives the convex hull of solutions.

We then treated the uncapacitated two-level lot-sizing with sales problem and provided
an O(NT 4) algorithm for it. The approach could be extended to the more general two-echelon
lot-sizing problem in series with intermediate demands and sales for which an algorithm with the
same complexity could be obtained, meaning that it can be solved using an algorithm with the
same asymptotic complexity of the variation without sales. Polynomial size extended formulations
solving the problem could be obtained using the proposed algorithms. The description of families of
strong valid inequalities in the original space of variables is a possible direction for further analysis
although we believe that a complete description of the convex hull may be a much more difficult
task. It remains an open question whether there are and how to devise polynomial time algorithms
for different variants of the problem when capacities on production are considered.

We call the attention to the fact that the results presented here are theoretical and there-
fore computational experiments should be performed in order to evaluate the practical value of the
proposed approaches.
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