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Abstract

We present an integer linear formulation that uses the so-called “dis-
tance variables” to solve the quadratic assignment problem (QAP). The
model involves O(n2) variables. Valid equalities and inequalities are addi-
tionally proposed. We further improved the model by using metric prop-
erties as well as an algebraic characterization of the Manhattan distance
matrices that Mittelman and Peng [15] recently proved for the special
case of problems on grid graphs. We numerically tested the lower bound
provided by the linear relaxation using instances of the quadratic assign-
ment problem library (QAPLIB). Our results are compared with the best
known lower bounds. For all instances, the formulation gives a very com-
petitive lower bound in a short computational time, improving seven best
lower bounds of QAPLIB instances for which no optimality proofs exist.

1 Introduction

The quadratic assignment problem (QAP ), first introduced by Koopmans and
Beckmann [13] in 1957, consists in assigning n entities to n locations, which
are denoted by k and l, respectively, and separated by a distance of dkl, which
may differ from dlk. Furthermore, entities i and j must exchange quantities of
a given product fij or fji. The cost of assigning i to k is denoted by cik. An
assignment also induces a product routing cost, which is assumed proportional
to the product quantities to be exchanged and to the distance that separates
the entities. The QAP is NP-hard [7]; it is considered one of the most difficult
problems in this category, especially for an exact solution. This difficulty is
illustrated by the lack of optimality proofs for the best known feasible solutions
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of the 32 instances of the quadratic assignment problem library (QAPLIB) col-
lected by Burkard, Çela, Karisch, and Rendl in 1997 [4].

Numerous methods have been used to address this problem; they may be
roughly subdivided into metaheuristic methods providing suboptimal solutions,
lower bounding techniques including linear or semidefinite programming (SDP )
relaxations, and exact methods consisting in branch-and-bound schemes. The
branch-and-bound and lower bounding techniques are highly interconnected be-
cause the former uses the bound provided by the latter.

Our study aims to propose a linear formulation of the QAP that also induces
additional O(n2) variables. The formulation is based on the so-called “distance
variables” previously used by Caprara and Salazar-Gonzàlez [6] and by Caprara,
Letchford, and Salazar-González [5] for the linear arrangement problem, a par-
ticular case of QAP . We have extended the use of these variables to QAP s and
are able to present extensive numerical results.

This paper is actually a shorter version of an article submitted to the Eu-
ropean Journal Of Computational Optimization. As a consequence, we do not
give the proofs of lemmas and theorems, and parts of the initial paper have been
omitted.

2 A linear formulation with O(n2) variables

For all entities i and j, the distance variables Dij are defined as

Dij =
n∑

k=1

n∑

l=1

dklxikxjl, ∀ i, j = 1, 2, ..., n. (1)

Note that, for all fixed locations k0 and l0, taking xik0
= 1 and xjl0 = 1

implies Dij = dk0l0 . Thus, Dij represents the distance between entities i and j,
which depends on their respective locations.

With these variables, the QAP may be formulated as the following mixed-
integer linear program:
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(MIP ) : Min
n∑

i=1

n∑

k=1

cikxik +
n∑

i=1

n∑

j=1
j �=i

fijDij (2)

such that
n∑

i=1

xik = 1 ∀ i = 1, ..., n (3)

n∑
k=1

xik = 1 ∀ k = 1, ..., n (4)

Dij ≥ dkl(xik + xjl − 1) ∀ i, j, k, l = 1, ..., n, i �= j, k �= l(5)

xik ∈ {0, 1} ∀ i, k = 1, ..., n (6)

Dij ≥ 0 ∀ i, j = 1, ..., n, i �= j, (7)

In fact, for any feasible solution, we can easily verify that the constraints
(5) imply that Dij is greater than the distance between i and j. Because we
are minimizing and because fij ≥ 0, Dij is precisely equal to this distance.
Our linear model for the quadratic assignment problem has a relatively small
number of (O(n2)) variables; there are, however, (O(n4)) number of constraints
(5) that should be reduced. In the following section, we strengthen the model
by reducing the number of constraints and by finding valid inequalities. In fact,
besides its low number of variables, the particular structure of our model makes
it easy to derive some of these inequalities.

3 Valid Inequalities

We can now introduce the first valid inequalities of conv(P).

Theorem 1. The following equalities are valid inequalities for the above for-
mulation:

Dij ≥
n∑

l=1

dklxjl +
n∑

k
′
=1

k
′ �=k

λkk′xik′ , ∀ i �= j, k, (8)

where λkk′ = Min
1≤k′ �=l′≤n

dk′ l′ − dkl′ .

Theorem 2. Let dk =
n∑

l=1

dkl, ∀ k = 1, 2, ..., n are valid equalities.

Up to this point, we have not made any assumptions concerning the structure
of the distance matrix d = {dkl}1≤k �=l≤n. We now consider that d represents
Manhattan distances on a grid graph for the following reasons. The first reason
concerns finding new facets (or valid inequalities) with the help of well-defined
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structures. This is a more difficult task if we consider a general problem. The
second reason, mentioned in the beginning of this paper, concerns viewing the
linear arrangement problem (studied by Caprara et al. [5]) as a special case of
QAP in which the assignment has to be made on a line (a grid graph with one
line). Thus, it seems logical to extend some of the known polyhedral results to
any grid.

4 The Manhattan distance matrix

We now assume that d represents Manhattan distances of a rectangular grid
graph.

Theorem 3. Let i, j, h satisfy 1 ≤ i < j < h ≤ n. The following triangular
inequalities are facets of:

Dij ≤ Dih +Djh, (9)

Dih ≤ Dij +Djh, (10)

Djh ≤ Dij +Dih. (11)

Theorem 4. Let i, j, h satisfying 1 ≤ i < j < h ≤ m. The following inequalities
are facets:

Dij +Dih +Djh ≥ 4. (12)

5 Numerical experiments on (MIP++)

Our aim is to evaluate the quality of the lower bound corresponding to the linear
relaxation of (MIP++). We compare our results with the currently published,
best known lower bounds obtained with QAPLIB instances [4] for which the
distance matrix is given by the shortest path in a grid graph.

For each problem, a best feasible solution and the best lower bound of the
optimal value are known for the current standard instances. The equality be-
tween these two values leads to an optimality proof. When the two values differ,
a branch-and-bound scheme is necessary whose size and computational time de-
pend on the relative deviation between the lower and the upper bound at the
root node. No solution was proved optimal for the Skorin-Kapov [20] and the
Wilhelm & Ward [22] instances, and only one Thonemann & Bölte [21] instance
was solved.

Results are reported in Table 1, where Prob denotes the instance name,
n is the number of nodes of the grid, UB is the best known upper bound,

and V (MIP
++

) is our lower bound with its corresponding computational time

CPU(sec.). We solved MIP
++

with the IBM Ilog Cplex 12.2 on a DELL R510
server equipped with 125GB of memory and an Intel R© Xeon R© 64-bit processor
with two cores of 2.67GHz each.
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We compared our bound with a large set of other bounds:

• SDP bounds by Mittelman and Peng (SDPMittelmanPeng) [15], Rendl &
Sotirov (SDPRendlSotirov) [17], and Zhao et al. (SDPZhaoetal) [23],

• the triangular decomposition method (TD) [12],

• level-1, level-2, and level-3 reformulation linearization technique bounds
(resp. RLT1[2], RLT2 [1], and RLT3 [11]),

• a level-3 RLT, performed by parallelization in a distributed environment
using up to 100 host machines (RLT3Dist) [9],

• the lift and project approach (L− P ) by Burer & Vandenbussche [3],

• the interior point method (IP ) by Resende, Ramakrishnan, and Drezner
[18],

• the Gilmore & Lawler bound (GLB) [8] [14],

• and the projection method bound (PB) [10].
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Table 1: Global algorithm results
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