
Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

SOLVING THE ARC ROUTING PROBLEM WITH A HYBRID ELECTROMAGNETIC 
MECHANISM ALGORITHM  

 
Carlos Muñoz-Castro1, Sergio González-Martin2, Alfredo Candia-Véjar1, Angel A. Juan2 

 
(1)  Modeling and Industrial Management Department, University of Talca, Curicó, Chile. 

cmunhozcastro@gmail.com, acandia@utalca.cl 

(2)  Computer Science Dept., IN3-Open University of Catalonia, Barcelona, Spain 
{sgonzalezmarti, ajuanp}@uoc.edu 

 

ABSTRACT 

Over the last decade the interest on Hybrid Electromagnetic-like Mechanism (HEM) 
algorithms has grown considerably due to the promising results obtained when it is applied to 
different problems from several areas.  This paper presents an algorithm based on the HEM to solve 
the Capacitated Arc Routing Problem (CARP), a well-known NP-hard combinatorial optimization 
problem. The goal in this problem is to find a set of minimum cost routes that serve a given set of 
customers in a network. The proposed HEM algorithm is based on two key concepts: the first one is 
inspired on the theory of electromagnetism and its action and repulsion effects, the second one relies 
on the use of biased randomization and a divide-and-conquer strategy. The efficiency of the proposed 
method is tested by comparison with other similar approaches in the literature.  
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1. Introduction  
The Capacitated Arc Routing Problem (CARP), a NP-hard problem (Lenstra & Rinnooy, 

1981), is a well-known combinatorial optimization problem in which a fleet of homogeneous 

minimum cost without violating the loading capacity of each individual vehicle. In the CARP, the 
road network is a non-complete graph, so not all pairs of nodes have a direct connection. Also, it is 

capacity restriction refers to the maximum load that each vehicle can carry.  
This paper introduces a new hybrid metaheuristic, based on a Hybrid Electromagnetic 

Mechanism (HEM) to solve the CARP. The electromagnetic mechanism (EM) was proposed and 
developed by Birbil & Fang (2003), being initially used for global optimization.  The mechanism 
stimulates the points of convergence to an attractive valley in the solution space, and discourages the 
points to keep moving away from the steeper, corresponding to the optimal problem hills.  This 
principle is analogous to the mechanism of action and repulsion of the theory of electromagnetism, 
and has been implemented in combinatorial optimization problems such as: Single-machine 
scheduling (Sels & Vanhoucke, 2014), p-hub Median problem (Kratica, 2013), Knapsack problem 
(Bonyadi & Li, 2012), Periodic job-shop scheduling problem (Jamili et al., 2011), Traveling 
salesman problem (Javadian et al., 2008; Peitsang et al., 2012), Vehicle routing problem (Peitsang et 
al., 2007), and Multi -depot vehicle routing problem (Huang, 2006). 

The article is structured as follows: in Section 2 introduces a review of the existing 
literature; Section 3 describes in detail the HEM algorithm adapted to the CARP; Section 4 presents 
the results obtained for different problem sets extracted from the literature; finally, Section 5 presents 
the main conclusions of this article as well as some future work. 

2. Literature Review 
The CARP was formally proposed by Golden & Wong (1981).  This problem has presented 

a number of variations and applications during the last decades: garbage collection (Candida & 
Amado, 2005; Zuhaimy & Mohammad, 2011), distribution of salt on the streets in order to avoid 
large amounts of snow (Muyldermans et al., 2002) and mobile units assignment (Vansteenwegen et 
al., 2010).  Some of these examples incorporate CARP variants, for example: CARP defined on a 
digraph (DCARP), Maniezzo & Roffilli (2008); CARP defined over a mixed graph or Mixed CARP 
(MCARP), Belenguer et al. (2006), CARP-like problem with several vehicles but without capacity 
constraints (k-CPP), Ahr & Reinelt (2000) and CARP with vehicle/site dependencies (CARP-VSD), 
Sniezek & Bodin (2006). More insight can be found in Wohlk (2005) and Mei et al. (2010). 

Considering exact methods, which not only find the total optimal solutions but also proving 
its optimality, the most common approaches in CARP are:  Branch and Bound Hirabayashi et al. 
(1992); Cutting Planes, Belenguer & Benavent (2003); Branch and Cut, Baldacci & Maniezzo 
(2006); Cutting Plane and Column Generation, Belenguer et al. (2005); Branch and Cut and Price, 
Longo et al. (2006) and Letchford & Oukil (2009), Column Generation, Martinelli et al. (2009); 
Branch and Price, Christiansen et al. (2009) and Cut and Branch and Price, Bode & Irnich (2012). 
Some used transformations to graph, others are based on a simple ILP formulation. During the early 
1980s, problem specific heuristics were the most common method for solving the CARP. Classical 
ARP heuristics include the Construct Strike procedure, the Path Scanning method and the Augment 
Merge method. The methods are designed for fast generation of   usually not even 
pseudo-optimal  for the given problem. See Dror (2000) for a survey. 

In recent years, most new approaches for solving the CARP are based on metaheuristics: 
Genetic Algorithm Hybrid by Lacomme et al. (2001), Simulated Annealing by Wøhlk (2005), Tabu 
Search by Brandão & Eglese (2008), Memetic Algorithm by Tang et al. (2009), Ant Colony by 
Santos et al. (2010), Adaptative Large Neighbourhood Search by Laporte et al. (2010) and Grasp 
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with Evolutionary Path-Relinking by Usberti et al. (2013).  
As regards as the Electromagnetic Mechanism (EM), this was designed to solve continuous 

optimization problems.  However, the approach was also extended to (discrete) combinatorial 
optimization problems.  When the algorithm is extended, the first step is the representation of the 
solution, as illustrated in the work of Bean (1994).  EM has been applied to various combinatorial 
optimization problems (Norman & Bean, 1999; Snyder & Daskin, 2006).  There even some recent 
applications of this approach to routing problems, e.g.: TSP (Peitsang et al., 2012), VRP (Peitsang et 
al., 2007) and Multi-depot VRP (Huang, 2006).  Even when the aforementioned works are interesting 
in the sense that they show how EM principles can be used to solve combinatorial optimization 
problems, none of them has been able to generate state-of-the-art solutions to this problems. 

3. The Hybrid Electromagnetic Algorithm  
Considering the principle of action and repulsion in EM (Birbil & Fang, 2003), each 

solution corresponds to a charged point that is free in space, this charge being related to the value of 
the objective function. The charged point determines the attraction or repulsion of the points on the 
sample population. While better the value of the objective function is greater the value of attraction.  

In its simplest version, the metaheuristic based on EM consists on 4 phases: (i)  
initialization; (ii) local search; (iii) calculation of forces; and finally (iv), movements. Particularly, in 
this work is proposed a hybridization of the EM (HEM), where the local search procedure is 
modified, a new step called splitting is added just after the local search for solution refinement 
purposes, and also, includes a rule for movement of the particles. Further details of every phase of 
the algorithm will follow in this section. Table 1 summarizes the parameters required by the HEM 
proposal. 

Table 1: Parameters of HEM 
     

  
  

  

 
Algorithm 1 presents the general outline of HEM used to solve  CARP. 

Algorithm 1: General scheme of HEM for the CARP 

HEM Algorithm 
1:                           
2:                                             
3:       
4:           
5:                 
6:                          
7:                                 
8:          
9:    

 
 
 
3.1. Representation of the solution 
 

Considering the representation based on the concept of Random Key (Bean, 1994), and in 
the context of vehicle routing, TSP (Peitsang et al. (2012)) and VRP (Peitsang et al. (2007)),  it is 
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possible to represent a solution for the CARP. An example is shown in Table 2, a problem with 8 
required edges, with an unit demand for each edge and a maximum capacity of 3 units per vehicle. 
 

Table 2: Representation of the CARP solution 

 
In accordance to this representation of the CARP solution, the example shows three routes 

that do not exceed the vehicle capacity on the route. These routes start and terminate in a node called 
depot. In the first row required edges, the connection of these edges to form a route is determined by 
a new way problem called Shortest Path Problem (in this case using the Floyd-Warshall algorithm). 
Following in the first row, for the example, the numbers 1, 11 and 4 represent directed edges. Finally, 
in row 2, it is shown that each edge has an associated quantity called "position", which is determined 
in the initialization of EM and subsequently modified during the remaining phases. Noting that the 
positions for the required edge correspond to coordinates in space for a solution or particle. 
 
3.2. Initialization   

Since the behavior of the EM algorithm is strongly influenced by the quality of the initial 
solution (Jamili et al. (2011)), we considered an initial solution given by the metaheuristic 
RandSHARP (González et al. (2012)). The RandSHARP procedure is based on the Savings Heuristic 
for the Arc Routing Problem (SHARP). The SHARP is an adaption to the CARP of the well known 
Clarke and Wright Saving (CWS) heuristic introduced by Clarke & Wright (1964) for the CVRP. 
This solution is further improved by applying a splitting method repeatedly (with a limit number of 
iterations without improvements, wImprov).  This solution is then differentiated, an amount equal to 
the number of points in the problem (subtracting the first), through the acceptance of changes that do 
not necessarily reflect an improvement of splitting method. Already having determined the initial 
population of points for EM, subsequently, each coordinate of the points is initialized assuming a 
uniform distribution between the corresponding upper limit and lower limit. Then the points are 
presented in the space, with a similar value in the objective function and identifying the best point. 
3.3. Local search   

This simple procedure is used in order to gather local information for the point . The 
single parameter that help this process is LSITER, indicating the number of iterations in the local 
search. The procedure takes point by point of the population ( ), for each of these, the first route 
and a new randomly route are selected (completing a set of iterations LSITER, later the second, third, 
etc. route), for both routes are generated four random numbers; the first indicates the edge required in 
the first route, the second the other required edge present in the new route, the third determines the 
value of the position of the edge of the first route and analogously the fourth, determines the value of 
the position of the edge required in the new route. Subsequently, the edges are exchanged under all 
possible combinations, if that is feasible in terms of capacity, determining also new values in 
positions that do not affect the ordering of positions. This method is effective if  there is a reduction 
in the cost of the route, representing a reduction. If this is the case, the modification is done and this 
solution is used as the base for future improvements (the point is replaced by ), otherwise, 
modification is not performed.  
 
3.4. Splitting method 

The splitting method exploits the concept of divide and conquers, breaking iteratively in 
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subproblems that are themselves smaller instances of the same type of problem, Juan et al. (2011). 
Basically, the problem is randomly divided in different subproblems, each of them corresponding to 
a subset of required arc that is solved with the heuristic RandSHARP. This principle exploits the 
properties of RandSHARP: the heuristic has proven to be a very good choice for small problems and 
low computation time. 

The above method considers two parameters: the first with the number of times that is 
applied RandSHARP (nSplittings) and the second parameter associated with the maximum size of 
the sub problem (nRoutes). 

 
3.5. Calculation of forces 

The principle of superposition (Figure 1), in the theory of electromagnetism states that "the 
force exerted on a point via other points is inversely proportional to the distance between the two 
points squared and directly proportional to the product of the two charges,Cowan (1968), thereby 
determining a key concept for calculating the forces between points.  

 
Figure 2: Principle of superposition.  

In (Peitsang et al., 2012),  shows the procedure for calculating the force. It can ensure that 
between two particles, the particle which has the greatest value attracts the other. Conversely, the 
point which has the worst value of FO repels the other. Now, has the minimum value of FO, 
acting as an absolute point of attraction, i.e., can attract all other points of the population. Note also, 
that determine a direction through force vectors resembles the statistical estimation of the slope of . 
However, the estimate obtained by the algorithm is calculated in a different way, because the 
direction depends on the Euclidean distance among the points. 

 
Algorithm 2: Move of force 

 
1:      
2:      
3:      
4:      
5:      

6:      
7:      
8:      
9:      
10:    
11:     
12:      
13:      
14:      
15:     

3.6. Movement 
This work has considered a fairly simple methodology to perform the movement. Basically, 

we consider that if more than one point has the same target value, for the repeated points, the 
algorithm development movement that is adjusted for . The procedure adjusted 
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the solution without changing the order of edges, i.e., iteratively modifies the direction of each edge 
selected randomly. Then, after evaluating the total force of the vector , the point is moved respect 

between 0 and 1 (due to ease of calculation). Then, the length is randomly selected to ensure that the 
points have a non-zero probability to move to regions unvisited. The algorithm 2 defines the phase of 
move in EM, whereas the best point and no repeated points, is not moved and is transported to 
subsequent iterations, thus avoiding the calculation of the total force. 

 
3.7. The stopping criterion 
  

The stopping criterion of HEM is given by a time limit equal to 180 seconds. This is in 
order to compare the results obtained with the solutions obtained by González et al. (2012).  

4. Computational Experiments and Analysis of Results 
To assess the performance of the proposed algorithm, four sets of classical instances were 

considered (Table 3), all of them obtained from http://www.wohlk-son.dk/sanne/research_carp.html. 
 

Table 3: Four sets of benchmarks with a total of 87 instances 

Instance # of instances Nodes Arcs Density Source 
gdb 23 12 29 53.77% Golden et al. (1983) 
val 34 36 63 10.59% Benavent et al. (1992) 

kshs 6 8 15 55.95% Kiuchi et al. (1995) 
egl 24 109 144 2.65% Li (1992) and Li & Eglese (1996)  

It is worth to mention that egl instances come from real problems are considered one of the 
most difficult sets to solve.  These dataset refers to winter gritting in the county of Lancashire, UK. 
The egl instances contain both required and not required arcs. These instances are grouped in two 
different network configurations with very low arc density. On the other hand, instances gdb and 
kshs are artificially generated and all the instances, in both sets, contain only required edges.  Finally, 
the val instances are considered relatively difficult due to their large size (Wohlk, 2005).  Table 3 
shows averages of nodes, arcs and density for each set of instances. 
 
4.1. A comparison using the BEST10 and AVG10 metrics 

For each instance we compare the performance of  HEM with the results of RandSHARP and 
with the Best Known Solution (BKS). To evaluate the performance of the proposed algorithm, we 
implemented it in Java over NetBeans IDE 7.4 using Windows XP.  A standard personal computer 
with an Intel® Core2® Duo 2.4 GHz processor and 2 gigabytes of memory was used in all the tests. 
10 independent iterations (replicas) were run and the following parameters for HEM: number of 
particles = 10; MAXITER = 500, LSITER = 1000, u_k = number of requested edges, l_k = 1, 
nSplittings = 50, nRoutes < 9 and wImprov = 200 for all requested edges. These values determine 
better convergence of the hybrid approach, in a limit time of 180s. The consideration of a time limit 
was with the objective to compare the performance of RandSHARP with HEM. Both studies were 
developed in similar environments, RandSHARP with a standard personal computer Intel® Core2® 
Quad CPU Q9300@2.50 GHz and 8 GB RAM running the Windows®7 Pro operating system. 

In order to adjust the parameters for the algorithm, various experiments were performed 
using instances egl. They consisted on changing parameters and observing the behavior of the 
algorithm. The formula used for quantifying the solution quality was the error percentage with 
respect to the BKS: , and the cost for the solution obtained by 
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HEM. Thus, the smaller the GAP is obtained, the better the HEM solution will be. 10 executions 
were executed for every instance and taking two different values: (i) AVG10 with the average of the 
solutions found during the 10 executions, for measuring the variance of the solutions found; and (ii) 
BEST10, with the best solution found among the 10 executions, for measuring quality solution. 
 

Figure 3: Best HEM initial solution vs best HEM solution (after 10 runs) 

 
In order to evaluate the contribution of the initial solution  HEM, Figure 3 shows a box plot 

comparing both GAPs: the one between the initial solution of HEM and BKS; and the one between 
the best solution obtained with HEM (after 10 runs) and BKS. HEM greatly improves the average 
quality of the solution and the variability of this. Furthermore, the GAP distribution is skewed and 
there are upper outliers, mainly by instances of the group val that have high GAP (see Table 5 HEM).  

 

 
Figure 4: Comparation between RandSHARP, RandSHARP+Splitting and HEM using AVG10 

Additionally, in order to evaluate the contribution of the splitting phase to the final solution, 
we performed a comparative study for all instances. We obtain an initial solution from RandSHARP 
and then we iteratively applied the splitting method, with a time limit of 180s., in order to find 
improvements. This proposal incorporates only one extra parameter (nRoutes) with respect to the 
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original RandSHARP. The box plot in Fig. 4 shows a comparison in terms of average gaps (AVG10), 
among RandSHARP, the modified RandSHARP with a splitting phase and HEM. 

From the results in Figure 4: (i) the 50% of the solutions found by HEM are very close to 
BKS; (ii) the 75% of the solutions found by HEM  are under a limit GAP that approximately reflects 
50% of the solutions for the other proposals; and (iii) the variance of the GAPs for RandSHARP is 
greater than RandSHARP + splitting, analogously, the variance of RandSHARP + splitting method is 
greater than HEM. Considering also that the new HEM has an average error of 0.58% (AVG10), for 
the 87 instances, surpassing the results obtained for the RandSHARP and RandSHARP + splitting, 
with average results of 1.78% and 1.47% respectively. The proposed HEM presents a favorable 
structure that incorporates the help from splitting method with concepts based on an electromagnetic 
analogy to improve results of RandSHARP.  

 
Table 4: Comparison between BKS, HEM and RandSHARP for the egl instances 

          Max. Time = 180 s 

          BEST10 AVG10 

          RandSHARP HEM RandSHARP HEM 

Instance V E/Er K BKS Value GAP Value GAP Value GAP Value GAP 

egl-e1-A 77 98/51 5 3548 3548 0.0% 3548 0.0% 3548 0.0% 3548 0.0% 

egl-e1-B 77 98/51 7 4498 4498 0.0% 4498 0.0% 4512 0.3% 4508 0.2% 

egl-e1-C 77 98/51 10 5595 5632 0.7% 5613 0.3% 5632 0.7% 5613 0.3% 

egl-e2-A 77 98/72 7 5018 5022 0.1% 5018 0.0% 5043 0.5% 5018 0.0% 

egl-e2-B 77 98/72 10 6317 6344 0.4% 6342 0.4% 6366 0.8% 6357 0.6% 

egl-e2-C 77 98/72 14 8335 8477 1.7% 8335 0.0% 8518 2.2% 8406 0.9% 

egl-e3-A 77 98/87 8 5898 5924 0.4% 5898 0.0% 5941 0.7% 5909 0.2% 

egl-e3-B 77 98/87 12 7775 7847 0.9% 7799 0.3% 7868 1.2% 7824 0.6% 

egl-e3-C 77 98/87 17 10292 10386 0.9% 10338 0.4% 10494 2.0% 10366 0.7% 

egl-e4-A 77 98/98 9 6444 6504 0.9% 6476 0.5% 6530 1.3% 6490 0.7% 

egl-e4-B 77 98/98 14 8983 9120 1.5% 9020 0.4% 9185 2.2% 9068 0.9% 

egl-e4-C 77 98/98 19 11559 11886 2.8% 11649 0.8% 11907 3.0% 11736 1.5% 

egl-s1-A 140 190/75 7 5018 5018 0.0% 5018 0.0% 5025 0.1% 5018 0.0% 

egl-s1-B 140 190/75 10 6388 6435 0.7% 6416 0.4% 6450 1.0% 6437 0.8% 

egl-s1-C 140 190/75 14 8518 8518 0.0% 8518 0.0% 8529 0.1% 8518 0.0% 

egl-s2-A 140 190/147 14 9884 10076 1.9% 9962 0.8% 10140 2.6% 10021 1.4% 

egl-s2-B 140 190/147 20 13088 13356 2.0% 13273 1.4% 13457 2.8% 13347 2.0% 

egl-s2-C 140 190/147 27 16425 16752 2.0% 16609 1.1% 16803 2.3% 16712 1.7% 

egl-s3-A 140 190/159 15 10220 10478 2.5% 10368 1.4% 10519 2.9% 10447 2.2% 

egl-s3-B 140 190/159 22 13682 13986 2.2% 13863 1.3% 14081 2.9% 13988 2.2% 

egl-s3-C 140 190/159 29 17189 17538 2.0% 17360 1.0% 17653 2.7% 17439 1.5% 

egl-s4-A 140 190/190 19 12268 12647 3.1% 12469 1.6% 12737 3.8% 12547 2.3% 

egl-s4-B 140 190/190 27 16267 16693 2.6% 16475 1.3% 16776 3.1% 16596 2.0% 

egl-s4-C 140 190/190 35 20484 21071 2.9% 20791 1.5% 21149 3.2% 20900 2.0% 

        Avg:   1.4%   0.6%   1.8%   1.0% 
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Table 4 shows a comparison for instances egl, between HEM and RandSHARP, both 
compared with BKS. The first column identifies the instance name. The column V refers to the 
number of nodes in the instance, the column E refers to the total number of arcs, the column E_r 
refers to the subset of required edges, the column K is the total number of vehicles for BKS. The 
values under the BEST10 column refer to the best solution obtained by HEM or RandSHARP after 
10 independent runs.  The values under the AVG10 column refer to the average solution obtained 
after 10 independent runs. In particular, for each tested instance, 10 independent replicas were run. 
Each replica was run for a maximum time of 180 s. Then, for each set of replicas, the best solution 
found (BEST10) as well as the average value of the replicas (AVG10) were registered. 

From Table 5, the results of HEM outperform those of the RandSHARP and, in fact, they are 
able to obtain almost negligible gaps with the best-known results in the literature.  Taking into 
account the limited computational time allowed for each test, this shows that the HEM can be 
successfully implemented for CARP in order to generate state-of-the-art results.  
 

Table 5: Comparation between HEM and RandSHARP for the four instances studied 

        Max. Time = 180 s 

        AVG (BEST10) AVG (AVG10) 

Instance Set # of 
instances Nodes Arcs RandSHARP HEM RandSHARP HEM 

gdb 23 12 29 0.3% 0.0% 0.5% 0.1% 
val 34 36 63 1.6% 0.2% 2.8% 0.7% 

kshs 6 8 15 0.6% 0.0% 0.6% 0.0% 
egl 24 109 144 1.4% 0.6% 1.8% 1.0% 

 
4.2. A comparison using time-evolution of the GAP 

In order to discuss the effect of computing time, several instances have been randomly 
selected and then solved using each of  the discussed approaches. Note the execution time limit is 
180 s., so that is interesting compare the evolution of both algorithms in one instance (see Fig. 5).  

 
Figure 5: GAP time-evolution for the egl-s4-C instance 
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Figure 5 shows the evolution for the egl-s4-C instance, defined with 190 required edges and 
140 nodes, where each proposal differs by a line type and point. Despite considering similar initial 
solutions between RandSHARP and HEM, being even worse the starting point for our HEM, it easily 
outperforms after 10 seconds the RandSHARP. After executing for 40 seconds it maintained a 
significant difference approximately constant. On the other hand, it is usually very difficult to beat a 
good solution in a very short time. However, our HEM reached a gap of approximately 1.8% within 
40 seconds, showing that it is a very good option in terms of solution quality and time. 

 

5. Conclusions 
In this work we have developed a new HEM algorithm to solve the CARP. HEM has 

shown itself to be able to generate state-of-the-art solutions in short computing times, and it is even 
able to overcome other recent algorithms for the CARP. As far as we know, this is the first time that 
an algorithm inspired in the Electromagnetism-like Method has been able to provide state-of-the-art 
solutions in combinatorial optimization problems, which might reactive the interest of other 
researchers in this approach.  

Particularly, the hybridization proposed consists in a mix between EM and two 
improvement methods (local search and splitting). Regarding the EM, we have made a modification 
to the local search and movement phases, for other side, the splitting method helps improving the 
solutions. The results showed finally the good performance of HEM, where the proposed algorithm is 
competitive compared to BKS and outperforming RandSHARP.  
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