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ABSTRACT

Individual behaviour has an effect on the optimal control of queueing systems, which is an idea that
sits at the intersection of queueing theory and game theory. The role of this paper is to discuss some
work in this area applied to healthcare systems.

One aspect considered is the effect of patient behaviour when choosing between service facilities.
Various pieces of work will be discussed that have looked at this area.

A second aspect is the effect that managers may have when acting rationally in their control of
queueing systems.

Thoughts for future directions of work are also considered.
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1. Introduction

Arguably, the best known work applying Game Theory to Healthcare is Roth’s Noble prize winning
work [18]. This work uses matching game algorithms to assign medical interns to hospitals. The
purpose of the present manuscript is to discuss some work relevant to a different area of healthcare:
congestion.

Understanding the effect of selfish individuals in queueing systems can be traced back to a series of
short communications between Leeman [11, 12] and Saaty [20].

In [1, 2, 4, 9, 14, 15, 23] a variety of models are discussed that obtain optimal and equilibrium
behaviour in situations where individuals can choose between a best queue to join. Most of the
cited papers consider these systems in a theoretical context but most come to a common conclu-
sion:

Selfish users make busier systems.

Research where game theory and queueing theory is applied to healthcare has mainly concentrated
on Emergency Departments (EDs) and how to deal with diversions of patients and ambulances.
In [5] cooperative strategies for hospitals are considered, in order to reduce occurrences where
ambulances are turned away due to the ED being full. In [3] a queueing network model of two
EDs is proposed to study the network effect of ambulance diversion. Each ED aims to minimise the
expected waiting time of its patients (walk-ins and ambulances) and chooses its diversion threshold
based on the number of patients at its location.

In these settings, how do we measure the effect of selfish behaviour?

This is a question that is answered using the Game theoretical concept referred to as the Price of
Anarchy (PoA). This was first defined in [10] but an excellent overview is given in [19]. The PoA
is defined as the ratio of the selfish utility to the optimal utility.

Section 2 will discuss some PoA analysis applied to individuals choosing between queues. Section
3 will discuss similar analysis in the case of selfish behaviour related to the management of queues.
Finally, Section 4 will conclude with a summary and thoughts for further work.

2. Choosing queues

This section describes how patient choices between various congestion affected service centres may
be modelled. In particular the situation shown diagrammatically in Figure 1 is considered: patients
have a choice amongst M/M/c queues. Each M/M/c queue corresponds to a (simple) model of a
hospital (or indeed any other public service facility).

The parameters of this system are summarised in Table 1.

Parameter Interpretation

m ∈ Z Number of sources
n ∈ Z Number of service centers

β ∈ Rm
≥0 Worth of service

Λ ∈ Rm
≥0 Demand rate

wj for j ∈ [n] A convex utility function
dij for i ∈ [m], j ∈ [n] Distance from source i to service center j
λij for i ∈ [m], j ∈ [n] Traffic from source i to service center j

Tabela 1: Parameters of choice model
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Figura 1: Routing patients from m hospitals to n services.

There are two approaches to modelling this situation: assuming that patients observe or not the sys-
tem state before choosing a facility. A rigorous comparison of these two approaches for individuals
choosing to join (or not) an M/M/1 queue is given in [22].

An unobservable study is given in [6] where routing games [19] are used to study the system des-
cribed. The routing game used is shown in Figure 2.

...Λ1

..

Λ2

.

...

..

Λm

...

...

..

w
1

.

wn

.
d11

.

d
1n

.

d21

.

d
2n

.

dm
1

.

dmn

.

β1

.

βm

.
β2

Figura 2: Routing game: m hospitals to n services.

The corresponding cost function for a given traffic flow λ is given by:

C(λ) =
m∑
i=1

αi

n∑
j

dijλij +
n∑

j=1

m∑
i=1

λijwj

(
m∑
i=1

λij

)
+

m∑
i=1

βi

Λi −
n∑

j=1

λij

 (1)

The constant αi ∈ R≥0 is simply a weighting statistic for the relative importance of travel distances
to the other factors. The Nash flow corresponding to the flow at which all traffic from a given
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source travels on minimal paths can be shown to be given by the flow that minimises the following
function:

Φ(λ) =
m∑
i=1

αi

n∑
j

dijλij +
n∑

j=1

∫ ∑m
i=1 λij

0
wj(x)dx+

m∑
i=1

βi

Λi −
n∑

j=1

λij

 (2)

As a utility function wi is taken to be the mean waiting time in an M/M/c queue. From known
results on convexity of this measure [13] the following optimisation problems can be solved straight-
forwardly so as to be able to obtain the PoA for a given instance:

OPTMP: NASHMP:
minimise (1) minimise (2)

such that:
n∑

j=1

λij ≤ Λi for all i ∈ [m] (3)

λij ∈ Rm×n
≥0 for all i ∈ [m], j ∈ [n] (4)

m∑
i=1

λij < cjµj for all j ∈ [n] (5)

In [6] various theoretical results are proven with regards to the effect of worth of service on the PoA
but also with regards to demand. The profile of Figure 3 is shown to hold in general. A system
under very high or very low demand will not suffer greatly from the removal of central control.
Most public service systems are however built to match demand which implies a large PoA.
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Figura 3: General profile of PoA.
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Further to the theoretical consideration the PoA was calculated for a large case study using hospitals
in Wales offering knee surgeries and a high PoA was calculated for the current demand which
verifies the previous observation.

To consider systems where individuals are able to observe the system (before making a decision)
there are two approaches: the first is to use a simulation based approach that allows individuals to
choose their most desirable queue. One such piece of work that was considered specifically in the
context of healthcare is [8].

Given that individuals will consider a simple selfish decision rule this approach is relatively straight-
forward and can also be considered using straightforward analytical Markov models. The difficulty
with this approach appears when attempting to obtain the PoA which requires an optimal routing
decision.

In [21] various dynamic programming and approximate dynamic programming techniques are pro-
posed that are able to not only give an optimal policy but also prove the following observation holds
once again:

Selfish users make busier systems.

In the next section selfish congestion related decisions by managers will be considered.

3. Managing queues

Following recent analysis of two critical care units (CCUs) it was found that only a state dependent
queueing model (where the demand rate to each CCU depended on the state of the CCU) would
give a valid representation of the system. Upon discussion with the CCU managers in question, it
was acknowledged that a certain behavioural control of admissions, even if it was at a subconscious
level. Indeed when one CCU was at high capacity it was likely to divert patients to the other
CCU.

In [7] a normal form game consideration of this situation is given akin to the work on EDs in [3]. A
pictorial representation of the situation considered is given in Figure 4 where each CCU can choose
a capacity threshold at which to divert patients. Table 2 shows the parameters used.

..1. 2.

Divert?

.

Divert?

Figura 4: Diagrammatic representation of CCU interaction through patient diversion.

Parameter Interpretation

h ∈ {1, 2} CCU
ch Capacity of CCU
Kh Cutoff strategy of CCU
λarea
h Demand rate as described in Figure 5
µh Service rate of CCU

Tabela 2: Parameters of CCU model

The capacity thresholds are denoted as Kh ∈ Z for h ∈ {1, 2}, once diverted the arrival rate is
modified as shown in Figure 5. In general it is assumed that setting a diversion threshold implies a
reduction of patient flow. Note that 0 ≤ Kh ≤ ch.
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Figura 6: Generic Markov chain underpinning the queueing model of this paper
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Throughput of patients is a natural choice of utility for the game theoretic model given that most
hospitals are financially rewarded per served patient [17]. For each threshold pair (K1,K2), the
utilisation rate Uh and throughput Th can easily be obtained for each CCU: h ∈ {1, 2}, using the
following formulas:

Uh =

∑ch
n=0 nP

(h)
n

ch

Th = µh

ch∑
n=0

nP (h)
n

where P (h) = P (h)(K1,K2) is the steady state probability distribution function (obtained from by
analysing the Markov chain of Figure 6).

The optimisation problem faced by each hospital that gives rise to the game is:

For all h ∈ {1, 2} minimise:
(Uh − t)2 (6)

Subject to:
0 ≤ Kh ≤ ch (7)

Kh ∈ Z (8)

This game is equivalent to a bi matrix game with restriction to pure strategies where both players
aim to get their utilisation as close as possible to a certain target. As such a Nash Equilibrium is
not guaranteed by traditional game theoretical results [16], but based on discussions with ABUHB,
long term threshold policies are a realistic consideration. In [7] theoretical results are proved that
guarentee pure strategy Nash equilibria in certain cases.

Using this and structural properties of the problem a Nash equilibria can be found. A variety of
numerical results are shown giving the PoA for various scenarios but importantly this approach can
aid in the informed assignment of a policy t. For example, figure 7 show the smallest value of t that
gives a PoA for a variation of demand (x = 0 corresponds to the actual demand of the system in
consideration). This value was obtained in a model where CCUs could divert demand unless both
CCUs are in diversion in which case CCUs must deal with their own demand.

We see that a value of t = .72 is recommended for the actual demand of the system. While this
value does not necessarily give an exact target worth installing as policy the methodology gives a
valid approach to indicating a sensible target. Furthermore, as demand increases, we see that the
recommended target value increases so as to align the goals of the facilities align with the goals of
the overall system.

4. Conclusions

In this manuscript two game theoretic models applied to healthcare have been considered:

• Modelling choices of patients;

• Modelling choices of managers.

The effect of stochasticity in healthcare systems is well understood and there is a wealth of research
to match this. The effect of individual behaviour is less understood. Game theory and Price of
Anarchy analysis offers one way to measure this effect.

Importantly, there are a variety of further avenues for this exciting area of research:
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Figura 7: Lowest value of t ensuring PoA= 1

• Games involving players from different parts of a hospital and/or multiple hospitals;

• Machine loading games which can be applied to scheduling tasks;

• Further policy informing work.

With regards to methodological approaches there are a variety of tools available. Firstly, one can
model particular systems with parameters corresponding to the strategies of players (similar to
the work described in Section 3). Secondly, there are specific game theoretic models that can be
applied directly to healthcare systems (similar to the work described in Section 2). Finally there
are also a variety of novel approaches that can be used such as using evolutionary game theoretic
models. Specific heuristic approaches relevant to Markov Decision Process in both optimal and
selfish calculations offer interesting avenues for research.

The fact that optimal behaviour and selfish behaviour are two sides of the same coin is well unders-
tood in unobservable queues. Finding similar connections in observable queues is an open research
problem.
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