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ABSTRACT 
The present work proposes a different objective function for smooth DEA (Data 

Envelopment Analysis) models. This new objective function embraces the minimum 
extrapolation principle, according to which the production set should be as minimal as the 
constraints allow. The new proposition may be applied to any smooth DEA model that uses a 
single equation to describe the entire frontier, but we chose a certain model to present the 
necessary demonstrations. Finally, we present a numerical example that uses a three-dimensional 
smooth BCC model, in order to compare the new and the traditional objective functions. 
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1. Introduction 
Data Envelopment Analysis (DEA) seeks a comparative relation between inputs and 

outputs of Decision Making Units (DMUs). The method calculates the DMUs´ efficiencies, 
which, in the original and in the simplest case, is the ratio between the weighted sum of the 
outputs and the weighted sum of the inputs. These weights are calculated for each DMU so that 
its efficiency is maximized. Moreover, the efficient DMUs, i.e. the DMUs with the best practices 
form what is called an efficient frontier. 

There are two basic models in DEA: CCR (Charnes et al., 1978) and BCC (Banker et 
al., 1984). The first assumes constant returns to scale and proportionality between inputs and 
outputs, while the latter assumes variable returns to scale. This distinction between the two basic 
models results in different efficient frontiers, which are formed by the efficient DMUs. 
Therefore, efficiencies in the two models also differ. 

The purpose of Smooth DEA models (SOARES DE MELLO et al., 2002, 2004; 
PEREIRA et al., 2009; NACIF et al., 2009; BRANDÃO & SOARES DE MELLO, 2013; 
BRANDÃO, 2013) is to correct certain problems of standard DEA models, such as multiple 
optimal solutions for extreme efficient DMUs. As a positive outcome, these models also 
eliminate Pareto inefficient regions.  

Smooth models are traditionally a Quadratic Problem (QP) seeking the smooth frontier 
that is, in a certain sense, as close as possible to the original one, and also maintains essential 
properties from standard DEA. In order to find the most suitable smooth frontier, the traditional 
objective function minimizes its arc-length (or its multidimensional generalization). Although 
this is the most adequate objective function for the models that define a different polynomial 
equation for each segment of the original frontier (SOARES DE MELLO et al., 2001, 2002), it 
may not lead to the most appropriate result for models that define a single polynomial equation 
for the entire frontier. This will be further explained in section 3. 

Therefore, the present paper proposes a new objective function for smooth models. The 
new model embraces the minimum extrapolation principle (BANKER et al, 1984), according to 
which the production set should be as minimal as the production assumptions allow. With this 
new objective function, the smoothing problem is now a Linear Problem (LP), which is simpler 
to solve. It may be used with any model that defines a single approximation function for the 
entire frontier and still maintain the same characteristics.  

In this paper, we show the implications of the current modifications on the No Optimal 
Solution Theorem (SOARES DE MELLO et al., 2002). Although the theorem proof differs, its 
result is the same. In other words, there does not exist the best approximating function for the 
proposed smoothing-frontier problem. 

We also present a three-dimensional version of the smooth BCC model proposed in 
Brandão (2013), with slight modifications, in order to demonstrate how the new objective 
function may be applied. Finally, we present a numerical example from Brandão et al. (2013) to 
compare results using the same smooth restrictions with the different objective functions. 

2. Bibliographic Review 
The Multiplier model, which is one of the dual formulations for classic DEA (Cooper et 

al., 2000), allows us to calculate trade-offs between inputs and outputs, as well as shadow prices 
(Coelli et al., 1998). However, we are not able to calculate a unique set of these weights for the 
extreme-efficient DMUs, which are corners of the efficient frontier, because these DMUs have 
multiple optimal solutions (SOARES DE MELLO et al., 2002).  

To understand why this happens, we should consider the Theorem of Complementary 
Slacks, which shows that the DMUs’ weights correspond to the coefficients of the hyperplane 
that is tangent at each point of the efficient frontier (SOARES DE MELLO et al., 2002). Since 
the original frontier is piecewise linear, it has multiple hyperplanes tangent to each of its corners, 
where extreme-efficient DMUs are located. Hence, there are multiple optimal sets of weights for 
each of these DMUs. 
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SOARES DE MELLO et al. (2002) initially proposed Smooth DEA to avoid problems 
of standard DEA, such as multiple optimal solutions for extreme efficient DMUs. As a positive 
outcome, these models also eliminate Pareto inefficient regions, where units that are Pareto 
inefficient are considered to be efficient. 

The smooth DEA solution (SOARES DE MELLO et al., 2002, 2004; PEREIRA et al., 
2009; NACIF et al., 2009; BRANDÃO & SOARES DE MELLO, 2013, BRANDÃO, 2013) uses 
Quadratic Programming to replace the original piecewise linear frontier with a new frontier that 
has derivatives at all points. The new frontier contains all efficient DMUs from standard DEA, it 
must maintain the essential properties of traditional DEA, and also be as close as possible to the 
original frontier.  

The first model (SOARES DE MELLO et al., 2002) proposed a different polynomial 
equation for each facet of the original frontier. Considering that linear segments compose the 
original frontier and that a straight line has the minimum arc length between two points, each 
polynomial equation should have the minimum arc length (or its multi dimensional 
generalization) in order be as close as possible to the original frontier.  

Model (1) represents the Quadratic Problem that smoothens the BCC DEA frontier for 
the case with one input  𝑥  and one output 𝑦  (SOARES DE MELLO et al., 2002). In (1), 
𝐷𝑀𝑈𝑖, 𝑖 = 1, … ,𝑝 represents each of the 𝑝 Pareto efficient DMUs, which are organized in rising 
order of input values. 𝑥𝑖  and 𝑦𝑖  are the input and output values for 𝐷𝑀𝑈𝑖 , respectively. The 
frontier will then be described by all the approximating polynomial functions 𝑦 = 𝑎𝑖𝑥2 + 𝑏𝑖𝑥 +
𝑐𝑖, each of them from 𝑥𝑖 to 𝑥𝑖+1, for 𝑖 = 1, … ,𝑝 − 1. 

𝑚𝑖𝑛�� {1 + [(𝑎𝑖𝑥2 + 𝑏𝑖𝑥 + 𝑐)′]2}
𝑥𝑖+1

𝑥𝑖
𝑑𝑥

𝑝−1

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          (1) 

𝑎1𝑥12 + 𝑏1𝑥1 + 𝑐1 = 𝑦1 (𝑓𝑜𝑟 𝐷𝑀𝑈1) 

𝑎𝑝−1𝑥𝑝2 + 𝑏𝑝−1𝑥𝑝 + 𝑐𝑝−1 = 𝑦𝑝 (𝑓𝑜𝑟 𝐷𝑀𝑈𝑝) 

𝑎𝑖−1𝑥𝑖2 + 𝑏𝑖−1𝑥𝑖 + 𝑐𝑖−1 = 𝑦𝑖 =  𝑎𝑖𝑥2 + 𝑏𝑖𝑥 + 𝑐 (𝑓𝑜𝑟 𝐷𝑀𝑈𝑖,∀𝑖 ∈ (2, … ,𝑝 − 1)) 

2𝑎𝑖−1𝑥𝑖 + 𝑏𝑖−1 = 2𝑎𝑖𝑥𝑖 + 𝑏𝑖 (𝑠𝑚𝑜𝑜𝑡ℎ 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 𝑓𝑜𝑟 𝐷𝑀𝑈𝑖 ,∀𝑖 ∈ (2, … ,𝑝 − 1)) 

𝑎𝑖 ≤ 0 (𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦) 

The objective function minimizes the sum of the arc lengths of the approximating 
polynomial functions 𝑦 = 𝑎𝑖𝑥2 + 𝑏𝑖𝑥 + 𝑐𝑖 . The first three restrictions ensure that the new 
frontier contains the extreme efficient DMUs and is continuous; the next restriction ensures 
continuity of the frontier’s derivatives; and the last constraint ensures the BCC property of 
convexity. 

Soares de Mello et al. (2004) identified that for cases with more variables, we might not 
be able to find specific approximating functions for each facet. So they proposed a model with a 
single polynomial equation for the whole frontier, in the BCC case with 2 inputs (𝑥,𝑦) and 1 
output (𝑍), as in (2). The frontier would be described by a polynomial equation such as 𝑍 =
𝐹(𝑥,𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥2 + 𝑒𝑥𝑦 + 𝑓𝑦2 + ⋯ 

In (2), 𝑥𝑒𝑓𝑓 ,𝑦𝑒𝑓𝑓 are the input values for each extreme efficient DMUs, and 𝑍𝑒𝑓𝑓 are 
the output values. The model only considers extreme efficient, which are “corners” of the 
efficient frontier, is that Soares de Mello et al. (2002) detected QP unfeasibility when modeling 
with more than one non-extreme efficient DMU. Moreover, 𝑥𝑚𝑎𝑥,𝑦𝑚𝑎𝑥 are the greatest inputs of 
all DMUs. 
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𝑀𝑖𝑛 � � � �1 + �
𝜕𝑍
𝜕𝑥
�
2

+ �
𝜕𝑍
𝜕𝑦
�
2

�𝑑𝑦

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

𝑑𝑥

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

� 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          (2) 

𝑍�𝑥𝑒𝑓𝑓 ,𝑦𝑒𝑓𝑓� = 𝑍𝑒𝑓𝑓  ∀ 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐷𝑀𝑈  
𝜕𝑍
𝜕𝑥

(𝑥𝑚𝑎𝑥,𝑦𝑚𝑎𝑥) ≥ 0 

𝜕𝑍
𝜕𝑦

(𝑥𝑚𝑎𝑥,𝑦𝑚𝑎𝑥) ≥ 0 

𝜕2𝑍
𝜕𝑥2

≤ 0, ∀𝑥,𝑦 

𝜕2𝑍
𝜕𝑦2

≤ 0, ∀𝑥,𝑦 

In (2), the first constraint ensures that the smooth frontier includes the same efficient 
DMUs from standard DEA. The following couple of constraints ensure that the output is an 
increasing function of the inputs. Finally, the last two constraints would ensure the frontier’s 
convexity. The last two restrictions are not linear, and should be substituted with 𝑑,𝑓… ≤ 0 
(SOARES DE MELLO et al, 2004) .  

 Nacif et al. (2009) generalized the smooth model for cases with multiple inputs and 
multiple outputs, using a polynomial for the inputs and another for the outputs. The frontier 
would be described by their difference as in 𝑈 = 𝐹(𝑥,𝑦) −𝐻(𝑧,𝑤) = 1 + 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3𝑥2 +
𝑏4𝑥𝑦 + 𝑏5𝑦2 + ⋯− 𝑐1𝑧 − 𝑐2𝑤 − 𝑐3𝑧2 − 𝑐4𝑧𝑤 − 𝑐5𝑤2 −⋯  

Further on, Brandão & Soares de Mello (2013) proposed an additional restriction to 
Smooth BCC models in order to ensure that all DMUs are projected in a viable region of the 
frontier. In other words, their model guaranteed that no DMU target would have negative inputs.  

Brandão (2013) restricted the approximating functions of Smooth BCC models to 
polynomials with no crossed terms, which are terms with more than one variable. For the case 
with 2 inputs (𝑥,𝑦) and 1 output (𝑍), the approximating function would be 𝑍 = 𝐹(𝑥,𝑦) = 𝑎 +
𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥2 + 𝑒𝑦2 + 𝑓𝑥3 + 𝑔𝑦3 … The author proved that only with this modification, the 
restrictions in the model ensure the frontier´s convexity. 

Brandão et al. (2013) used the Smooth Theory to correct the BCC distortion, in which a 
DMU0 is necessarily efficient if it is the unique DMU with 𝑥𝑖0 = 𝑚𝑖𝑛𝑘=1…𝑛𝑥𝑖𝑘  or if it is the 
unique DMU with 𝑦𝑗0 = 𝑚𝑎𝑥𝑘=1…𝑛𝑦𝑗𝑘 , where 𝑛 is the number of DMUs, 𝑥𝑖𝑘  is the value of 
DMU 𝑘 for input 𝑖, and 𝑦𝑗𝑘 is the value of DMU 𝑘 for output 𝑗 (ALI, 1993). According to Gomes 
et al. (2012), we may name this distortion efficiency by default, based on the Free Disposal Hull 
(FDH – DEPRINS et al., 1984) approach. Moreover, the authors used a broadened version of this 
concept, in which every BCC efficient DMU that is not CCR efficient might me considered 
efficient by default, depending on the smooth frontier results. 

Gomes et al. (2004) proposed an extension of DEA-ZSG (Zero Sum Game), using the 
tri-dimensional smooth model of Soares de Mello et al. (2004), in order to simplify calculations. 
Without the smooth frontier, it wouldn’t be possible to apply the model to multidimensional 
cases.  

In a different context, other authors proposed continuously differentiable DEA frontiers 
in order to redistribute resources among the DMUs. In this sense, Avellar et al. (2005, 2007) and 
Silveira et al. (2011), proposed hyperbolic, spherical, and parabolic DEA frontiers. Milioni et al. 
(2011) proposed an ellipsoidal frontier model, and showed that their model assures strong 
efficiency and behaves coherently with sensitivity analysis, which are properties that other 
technical papers in the found literature do not assure. 
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3. Modifying the Objective Function 
When Soares de Mello et al. (2002) first proposed a smooth model, they calculated a 

different polynomial equation to replace each facet of the original frontier, as explained in the 
previous section. In this original model, each segment of the smooth frontier needed to be as 
close as possible to a straight line in order to approximate the new and the original frontiers. This 
is why the objective function needed to minimize the function’s arc length.  

However, if we minimize the curve’s arc length when calculating a single 
approximating function for the entire frontier, we will find a frontier that is as close as possible to 
a single straight line (or its multidimensional generalization) all across the observed DMUs. One 
may observe that original frontier contrasts significantly with a single straight line. 

We must highlight that the smooth model’s constraints are typically very strong and do 
not allow the new frontier to be anywhere near a single straight line. However, it is important to 
revise the objective function.  

First, there is a chance of coming across special cases, and the more we avoid 
distortions in such cases, the more resilient smooth models will be. Second, authors may wish to 
modify the original smooth model for certain purposes. Brandao & Soares de Mello (2013), for 
example, relaxed several equality constraints in order to correct a BCC distortion. Modifications 
such as the latter may lead to unrealistic results if the objective function is not properly defined. 
Finally, the new model is a LP, and therefore much simpler to calculate. 

Hence, our proposal is to minimize the area limited by the curve, in the two-
dimensional case, provided that the constraints are satisfied. In other words, the smooth model 
will minimize the production possibility region. With this modification, we wish to embrace the 
minimum extrapolation principle (Banker et al., 1984), according to which the DEA production 
set should be as minimal as the production assumptions allow.  

Figure 1 illustrates the region that the model minimizes, represented by A, for the 1 
input (𝑥) and 1 output (𝑦) case. In more general cases, we will minimize the n-dimensional 
generalization of the area limited by the frontier. 

 
Figure 1 – Minimum production possibility region when the frontier is described by 𝒁 = 𝑭(𝒙) 

Standard DEA models are in line with this principle because they maximize the DMUs’ 
efficiencies, as long as the restrictions are satisfied. Different models, such as CCR, BCC and 
FDH, with and without weight restrictions, define different production frontiers, yet they all limit 
the production frontier as much as the restrictions allow. 

We must highlight that the two-dimensional model in Soares de Mello et al. (2001, 
2002), already embraced the minimum extrapolation principle. This is true because their model 
defined different polynomial equations for each facet of the frontier. By minimizing their arc 
lengths, the model approximated the smooth frontier with the original one, as much as the 
assumptions allowed. Since standard DEA determines the minimum production set, their smooth 
model also did so.  

Therefore, this new objective function is most appropriate for models that calculate a 
single approximation function for the entire frontier. Yet it may be used with any model with this 
characteristic because the restrictions are the ones that determine a model’s properties, not the 
objective function. We may observe this from the demonstrations in smooth DEA studies 
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(SOARES DE MELLO, 2002; NACIF et al., 2009; BRANDÃO, 2013). They all use the 
restrictions to prove the models’ properties. 

The degree of the approximating polynomial function, which we select prior to 
applying the smoothing problem, will also be the same, despite the modification of the objective 
function. The choice of the degree depends on the polynomial equation (if it includes crossed 
terms or not) and on the number of efficient DMUs.  

Therefore, we are able to apply the new objective function to minimize the production 
set, using with the restrictions from the three-dimensional smooth BCC model in Soares de Mello 
et al. (2004), the multi-dimensional smooth BCC model in Nacif et al. (2009), the smooth CCR 
model proposed by Pereira et al. (2009), etc. 

In this paper, we will use a smooth BCC model very similar to the one proposed by 
Brandão (2013), for the three-dimensional case, with 2 inputs and 1 output. Besides guaranteeing 
convexity and all existing projections, the model also eliminates the BCC efficiency by default 
distortion. However, in the present work, we will use the original concept of efficiency by default 
defined in Ali (1993) and in Gomes et al. (2012), instead of its broadened version, defined in 
Brandão (2013).  

In order to illustrate the objective function change, suppose there are two inputs (𝑥, 𝑦) 
and one output (𝑧) and that polynomials of second degree are sufficient for the problem. In this 
case, the polynomial equation that describes the frontier is 𝑧 = 𝐹(𝑥,𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥2 +
𝑒𝑦2. In order to minimize the area limited by this frontier, the new objective function should 
minimize the integral of its function, as in (3).  

 

𝑀𝑖𝑛� � � 𝐹(𝑥, 𝑦)

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

𝑑𝑦𝑑𝑥� = 

           (3) 

𝑀𝑖𝑛 �𝑎(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) +
𝑏
2

(𝑥𝑚𝑎𝑥
2 − 𝑥𝑚𝑖𝑛

2)(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) +
𝑐
2

(𝑥𝑚𝑎𝑥

− 𝑥𝑚𝑖𝑛)(𝑦𝑚𝑎𝑥2 − 𝑦𝑚𝑖𝑛
2) +

𝑑
3

(𝑥𝑚𝑎𝑥
3 − 𝑥𝑚𝑖𝑛

3)(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) +
𝑒
3

(𝑥𝑚𝑎𝑥

− 𝑥𝑚𝑖𝑛)(𝑦𝑚𝑎𝑥3 − 𝑦𝑚𝑖𝑛
3)� 

We may observe that the objective function in (3) is a linear function of 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒, 
which are the variables for the smoothing problem. Since the model’s restrictions are linear 
(SOARES DE MELLO et al., 2004), the smoothing problem with the new objective function is 
now a Linear Problem.  

3.1 The No Optimal Solution Theorem 
The change in the objective function affects the No Optimal Solution Theorem proven 

in Soares de Mello et al. (2002). This Theorem demonstrates that it is impossible to determine a 
smooth frontier that is closest to the original BCC frontier, when taking into account all possible 
approximating functions, and using a topology based on the arc length. In other words, it will 
always be possible to determine a better approximation to the original frontier.  

The smoothing problem with the new objective function modifies the theorem proof, 
but the result remains the same, i.e., it will still be impossible to determine the global optimum 
approximating function for the smooth frontier.  

To demonstrate this, we must use Variational Calculus, which studies the functions that 
optimize functionals. A functional commonly takes a function in its input argument and returns a 
scalar, and therefore it is usually considered a “function of functions”. Both types of smoothing 
problems (with the traditional and the new objective functions) are a matter of Variational 
Calculus. The new objective function, for example, seeks the function that defines the smallest 
possible area (or its multidimensional generalization).  
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With a function of two variables, as used in the present work, where 𝑈 = 𝑓(𝑥,𝑦), 
𝑓(𝑥1,𝑦1) = 𝑈1, and 𝑓(𝑥2,𝑦2) = 𝑈2, a functional may be represented by:  

𝐼[𝑈(𝑥,𝑦)] = � 𝐹�𝑥,𝑦,𝑈,
𝜕𝑈
𝜕𝑥

,
𝜕𝑈
𝜕𝑦
� 𝑑𝑦 𝑑𝑥

𝑥2𝑦2

𝑥1𝑦1

 

To find the function that minimizes the functional, we may use the tri-dimensional form 

of the Euler-Lagrange equation �𝐹𝑈 −
𝜕
𝜕𝑥
� 𝜕𝐹
𝜕𝑈𝑥

� − 𝜕
𝜕𝑦
� 𝜕𝐹
𝜕𝑈𝑦

� = 0�  and the adequate boundary 

conditions (ELSGOTZ, 1980).  
In the case presented in this paper, 𝐹 = 𝑈(𝑥,𝑦), so 𝐹 does not explicitly depend on 𝜕𝑈

𝜕𝑥
 

or 𝜕𝑈
𝜕𝑦

. In such cases, the Euler-Lagrange equation is reduced to 𝜕𝐹
𝜕𝑈

= 0. On the other hand, 

𝐹 = 𝑈(𝑥,𝑦), so 𝜕𝐹
𝜕𝑈

= 1, which leads to an impossible problem, i.e., 1=0. In other words, there 
isn’t a global optimum for this smoothing problem, when taking into account all possible 
approximating functions. 

Nevertheless, we may still have good approximating functions to describe the smooth 
frontier, particularly using polynomial functions (SOARES DE MELLO et al., 2002). 
Approximating polynomial functions have been used in every smooth DEA paper in the found 
literature and also in the present work.  

3.2 Three-Dimensional Case 
For the case with a single output and two inputs, the frontier is described as 𝑍 =

𝐹(𝑥,𝑦) = 𝑎 + 𝑏1𝑥 + 𝑏2𝑦 + 𝑐1𝑥2 + 𝑐2𝑦2 + 𝑑1𝑥3 + 𝑑2𝑦3 + ⋯, with no crossed term in order to 
guarantee convexity (Brandão, 2013). The objective function that minimizes the possible 
production frontier, i.e., the region limited by the approximation function, is 
𝑀𝑖𝑛 �∫ ∫ 𝐹(𝑥,𝑦)𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

𝑑𝑦 𝑑𝑥�.  
We present in (4) the smooth BCC model formulation proposed by Brandão (2013), 

with the modification aforementioned, and the objective function developed in this paper, for the 
tri-dimensional case. 

𝑀𝑖𝑛 � � � 𝐹(𝑥,𝑦)

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

𝑑𝑦 𝑑𝑥� 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜         (4) 

𝐹�𝑥𝑒𝑓𝑖, 𝑦𝑒𝑓𝑖� ≥ 𝑍𝑒𝑓𝑖  ∀ 𝐷𝑀𝑈 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑏𝑦 𝑑𝑒𝑓𝑎𝑢𝑙𝑡   

𝐹�𝑥𝑒𝑓𝑖, 𝑦𝑒𝑓𝑖� = 𝑍𝑒𝑓𝑖  ∀ 𝑜𝑡ℎ𝑒𝑟 𝐵𝐶𝐶 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐷𝑀𝑈 

𝜕𝐹
𝜕𝑥

(𝑥𝑚𝑎𝑥,𝑦𝑚𝑎𝑥) ≥ 0 

𝜕𝐹
𝜕𝑦

(𝑥𝑚𝑎𝑥,𝑦𝑚𝑎𝑥) ≥ 0 

𝑐1, 𝑐2,𝑑1,𝑑2, … ≤ 0 
𝑎 ≤ 𝑧𝑚𝑖𝑛 

The first constraint allows the frontier to be more efficient than the DMUs considered 
efficient by default. The following constraint ensures that the smooth frontier contains the other 
efficient DMUs from standard DEA. 𝜕𝐹

𝜕𝑥
≥ 0 and 𝜕𝐹

𝜕𝑦
≥ 0 ensure that the output is an increasing 
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function of both inputs. The following restriction imposes convexity to every coefficient of the 
terms with second derivatives, which is a strong but simple way to guarantee convexity 
(SOARES DE MELLO et al., 2004). Finally, the last constraint guarantees existing targets for all 
DMUs.  

We should mention that these integration limits are an approximation when the output 
is written as a function of the inputs, but the model is input oriented. In these cases, the range of 
inputs will be lower then the integration limits. Previous smooth models also use this 
approximation, with no major distortion. Hence, we will not be concerned about this 
approximation in this paper. 

4. Numerical Example 
To illustrate the effects of the objective function modification, we will use the data set 

presented in Brandão et al. (2013) to apply the restrictions of the model presented in (4), but with 
the traditional and the new objective functions. The original data, the results for standard DEA, 
and the results for the two objective functions are shown in Table 1.  

In Table 1, 𝑥  represents input 1 (team´s market value), 𝑦  represents input 2 (FIFA 
points) and 𝑍 represents the output-oriented projection in the frontier (the DMU’s target for the 
MACBETH´s transformation of the tournament ranking). All variables were normalized in 
Brandão et al. (2013), in order to simplify calculations and also avoid eventual distortions. 

 

 
Note: Efficient DMUs are in grey and DMUs efficient by default are in bold font. 

Table 1 – Comparison between smooth models with different objective functions 

With the original objective function, the smooth frontier is described by 𝑍 = 𝐹(𝑥,𝑦) =
−0.155 + 1.081𝑥 + 0.273𝑦 − 0.199𝑥3 . With the new objective function, the polynomial 
equation is found to be 𝑍 = 𝐹(𝑥,𝑦) = −0.193 + 1.216𝑥 + 0.341𝑦 − 0.318𝑥2 − 0.046𝑦2.  

The smooth efficiencies were calculated as in equation (5), which is the same as in 
standard DEA with one output and output orientation. We would only need to substitute “𝑍” with 
“DMU’s Output Projection in the Frontier”. 

%𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑆𝑚𝑜𝑜𝑡ℎ = 𝐷𝑀𝑈′𝑠 𝑂𝑢𝑡𝑝𝑢𝑡
𝑍

       (5) 

We may observe from Table 1 that most DMUs have higher efficiency values with the 
new objective function, which results in a higher efficiency average. Besides, Poland, which is 
considered inefficient in the original smooth model is now considered efficient.  
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As a sensitivity analysis, we adopted the broad concept of efficiency by default in 
Brandão et al. (2013), i.e., we relaxed the equality restriction for C. Republic, as well as for 
Poland and Ireland. Using the traditional objective function, the efficiency values for C. Republic 
and Poland are found to be 97% and 86%, respectively; and the average efficiency is 58.6%. On 
the other hand, when we apply the new objective function to this relaxed model, the result is the 
same as the one presented in Table 1, without relaxing the equality restriction for C. Republic. As 
we may observe from Table 1, both C. Republic and Poland are efficient, and the average 
efficiency is 60%. 

6. Conclusions 
The purpose of this work was to propose a new smooth DEA model, by modifying the 

objective function. The suggested function approximates standard and smooth DEA, because 
both models calculate the frontier that results in the minimum possible production region, 
provided that restrictions are satisfied. 

The new objective function may be used with any smooth DEA model that calculates a 
single equation for the entire frontier. This is true because DEA models maximize the DMUs’ 
efficiencies, with the correct constraints, as described in the minimum extrapolation principle. 
Besides, the models’ properties depend on their restrictions, and not on the objective function.  

However, in order to demonstrate how to apply the new objective function, we used a 
variation of the model proposed in Brandão (2013), which eliminates the BCC efficiency by 
default distortion, and ensures convexity as well as targets in viable regions, for every case. With 
this modification, we consider efficiency by default only what is traditionally considered as such 
(ALI, 1993; GOMES et al., 2012). 

We have also demonstrated the implications of the proposed modification on the No 
Optimal Solution Theorem (SOARES DE MELLO et al., 2002). Although the theorem proof 
differed, the result remains the same, so there also does not exist a best approximating function 
for the proposed smoothing problem. 

Finally, we presented a numerical example with two inputs and one output using the 
data set from Brandão et al. (2013). We observed that the average efficiency was higher with the 
new objective function. Not only that, some DMUs that were efficient in the standard BCC 
model, but inefficient in the traditional smooth model, became efficient in the new smooth 
model, presented in this paper. 

As a slight sensitivity analysis, we decided to broaden the concept of default efficiency, 
as in Brandão et al. (2013), by relaxing the constraints for all three DMUs that were efficient in 
the BCC model, but inefficient in the CCR model. With the traditional objective function, the 
average efficiency was considerably lower, and the smooth frontier didn’t contain any of these 
relaxed DMUs. When we used the same model with the new objective function, two of the three 
DMUs were considered efficient. Moreover, the frontier equation was found to be exactly the 
same as in the previous model, with less relaxed restrictions. 

This is an indication that the new objective function provides more consistent and 
reliable results. It may even allow the model to have even more equality restrictions relaxed. If it 
were possible to relax all equality restrictions, we wouldn’t need to use standard DEA prior to 
smooth models, simply to define which DMUs must be in the frontier. However, this depends on 
future studies on the subject. 

Future studies should also generalize the application of the new objective function, for 
every case, i.e., the single output and multiple input case, the single input and multiple output 
case, and the multiple input and output case. 

Smooth models with the new objective function are more similar to standard DEA 
models than the previous smooth models, because the new model embraces the minimum 
extrapolation principle, as do standard DEA models. The smooth models proposed in this paper 
are also more robust and resilient because they provide more consistent results, particularly when 
modifying the equality constraints. Finally, we must point out that the new model is easier to 
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solve because it is a Linear Problem, instead of a Quadratic Problem, as were previous smooth 
models.  
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