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Abstract

We consider a strategic bidding problem under uncertainty in a wholesale energy
market, where the economic remuneration of each generator depends on the ability of
its own management to submit price and quantity bids. We present a formulation for
the problem as a non-convex quadratically constrained quadratic program (QCQP) and
propose a cutting plane algorithm to solve an extended linear relaxation for the problem.
The linear relaxation is an outer-approximation of the well known SDP relaxation of
the QCQP problem. Valid inequalities are added to an initial linear relaxation at each
iteration of the cutting plane algorithm, improving the bound computed, including the
well known RLT inequalities and sparse SDP cuts that enforce the positive semidefinite-
ness of the matrix variable. Computational results based on instances derived from the
Brazilian system are presented and compare the bounds obtained by different versions
of the cutting plane algorithm with the bound obtained with the continuous relaxation
of a MILP formulation presented for the problem in the literature.

Keywords: cutting plane algorithm; SDP relaxation; quadratically constrained quadratic
problem; strategic pricing.
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1 Introduction

In the strategic pricing problem in electricity markets, generators compete for contracts for
power sales to distribution companies. They make their price offers for energy production
and then are loaded in order of increasing unit price until demand is met. All generators
dispatched receive the most expensive unit price charged among them, which corresponds
to the marginal cost of short-term or spot price of the system, Hunt(2003).

The problem of determining the optimal price bids for a given company that owns one
or more generators is a non-convex problem that may be modeled as a bilevel program,
where the leader represents the company that aims to maximize its expected profit, while
the follower represents the system operator, that aims to minimize the total cost of the
energy production.

Mixed integer linear programming (MILP) reformulations for this strategic bidding
problem were proposed in Fampa (2008) and Pereira (2005). The MILP formulation pre-
sented in Fampa (2008) was also used in Fampa (2012), in order to obtain the optimal
solution of instances derived from the Brazilian system and validate the quality of a genetic
algorithm proposed for solving the problem.

In this paper, we consider the reformulation of the strategic pricing bilevel problem in
electricity markets as a non-convex quadratically constrained quadratic program (QCQP)
and investigate the application of linear programming (LP) in the construction of relax-
ations for the problem, based on strong positive semidefinite (SDP) relaxations. SDP
relaxations of non-convex QCQPs have been studied by a number of researchers, initially
inspired by the seminal works of Lovász (1979), Lovász (1991) and Goemans (1995). The
research in this field is still very active as shown, for example, on the recent works of Anstre-
icher (2009), Burer (2008), Fampa (2013), Rendl (2010), Saxena (2010), Saxena (2011) and
on the survey paper of Bao (2011).

Although SDP relaxations have been very effective in generating strong bounds for
QCQPs, it is well known that the required computation effort to solve the relaxations
may be considerable, especially when the size of the relaxation becomes too big due to
the inclusion of valid inequalities. To overcome this difficulty, LP outer approximations
of the SDP relaxations have been investigated in several works. For example, Margot
(2012) investigates LP relaxations of SDP constraints with the aim of capturing most of
the strength of SDP relaxations, while still being able to use an LP solver to compute bounds
for the problem. In the paper, a basic LP relaxation of the SDP relaxation of the QCQP
is strengthened by well known RLT (Reformulation Linearization Technique) inequalities
and also by SDP cuts, which are sparse valid cuts based on the spectral decomposition of
the matrix variable X that approximate the positive semidefiniteness constraint X � 0. In
this work we study the application of these LP relaxations for the strategic pricing problem
in electricity markets. We also propose a dynamic update of the sparsity of the SDP cut
proposed in Margot (2012) and show its effect on the computation for bounds for instances
derived from the Brazilian system, that were also addressed in Fampa (2012).

This paper is organized as follows: Section 2 presents mathematical formulations of the
strategic bidding problem as a bilevel program and as a QCQP. Section 3 presents the gen-
eral QCQP and discuss semidefinite relaxations for the problem. Section 4 presents linear
relaxations for quadratically constrained quadratic problem, that are outer-approximations
of the SDP relaxation. The well know RLT inequalities are presented as well as SDP cuts
that approximates the positive semidefinite constraint on the matrix variable. Section 5
presents the algorithm proposed in Margot (2012) to generate sparse SDP cuts. Section 6
presents our cutting plane algorithm to solve the linear relaxation of the strategic bidding
problem and Section 7 presents the numerical results comparing the different bounds for
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the problem. Section 8 concludes the paper.

Notation

In this paper, Rn refers to the n-dimensional Euclidean space, ei ∈ Rn represents the i-th
unit vector, Sn is the set of n × n symmetric matrices, Sn+ is the set of n × n positive
semidefinite symmetric matrices, R1+n and S1+n

+ is used to denote the spaces Rn and
Sn+ with an additional 0-th entry or additional 0-th row and column prefixed. Given two
symmetric n × n matrices X,Y , we let X • Y = trace(XTY ) =

∑n
i,j=1XijYij and we use

X � 0 to denote that the matrix X is positive semidefinite.

2 Strategic Pricing in Electricity Markets

In deregulated electricity markets, generators submit a set of hourly generation prices and
available capacities for the following day. Based on these data and on an hourly load
forecast, the system operator carries out the following economic dispatch at each time step,
Fampa (2008):

dual variable
Minimizegj

∑
j∈J λjgj ,

subject to
∑

j∈J gj = d, πd
gj ≤ ḡj , πgj j ∈ J,
gj ≥ 0, j ∈ J,

(2.1)

where the input data d, λj and ḡj represent, respectively, load (MWh), price bid ($/MWh)
and generation capacity bid (MWh) of generator j and the variable gj represents the energy
production of generator j (MWh). The optimal value of the dual variable πd is considered
as the system spot price. The profit of each generator j ∈ J , in each time step, corresponds
to (πd − cj)gj , where cj represents its unit operating cost. Note that cj may be different
from λj , its price bid.

The net profit of a generation company E, which may be a utility or an independent
power producer that owns several different generation units, is given by:∑

j∈E
(πd − cj)gj ,

where E is also used to denote the set of indexes associated to the plants belonging to the
company E (E ⊂ J).

In the optimal price bidding problem, company E aims to determine a set of price bids
λE = {λj , j ∈ E} that maximize its total net profit, considering the quantity bid of each
generator of the company fixed as its maximum generation capacity, denoted by ḡ∗j .

The complexity of this problem is increased by the fact that the calculation of πd and gj
in the dispatch problem (2.1) depends on the knowledge of price vectors for all companies,
as well as their generation availability and system load values. However, this information is
not available to any single company at the time of its bid. Therefore, the bidding strategy
has to take into account the uncertainty around these values. An approach used to deal with
the uncertainty on the data of the problem is to define a set of scenarios for the remaining
agent’s behavior and maximize the profit of the company over all scenarios, in a classical
strategic bidding under uncertainty problem. In this case, the bids from generators not
belonging to company E and the load are considered uncertain, and represented by a set
of scenarios indexed by s, which occur with exogenous probabilities {ps, s=1,...,S}. The
bilevel formulation for the problem is given by

993



Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

MaximizeλE
∑

s∈S ps
∑

j∈E [πsd − cj ]gsj ,
subject to

Minimizegsj
∑

s∈S
∑

j∈E λjg
s
j +

∑
j /∈E λ

∗s
j g

s
j ,

subject to
∑

j∈J g
s
j = ds, s ∈ S,

0 ≤ gsj ≤ ḡ∗j , j ∈ E, s ∈ S,
0 ≤ gsj ≤ ḡ∗sj , j /∈ E, s ∈ S.

(2.2)

The first level of problem (2.2) represents the interest of company E, maximize expected
profits), while the second level represents the interest of the system operator (minimize
operational costs). The company is classified as leader of the bilevel program and controls
the variables λj , for j ∈ E, while the system operator is classified as follower and controls
the variables gsj for j ∈ J , s ∈ S.

Finally replacing the follower linear program by its optimality conditions we derive the
following non-convex quadratically constrained quadratic program (QCQP), with a bilinear
objective function and one bilinear constraint.

Maximizeλj ,gsj ,πs
d,π

s
gj

∑
s∈S

ps
∑
j∈E

[πsd − cj ]gsj

subject to∑
j∈J

gsj = ds, s ∈ S,

0 ≤ gsj ≤ ḡ∗j , j ∈ E, s ∈ S,
0 ≤ gsj ≤ ḡ∗sj , j /∈ E, s ∈ S,
πsd − πsgj − λj ≤ 0, j ∈ E, s ∈ S,
πsd − πsgj ≤ λ

∗s
j , j /∈ E, s ∈ S,

πsgj ≥ 0, j ∈ J, s ∈ S,∑
s∈S

(
∑
j∈E

λjg
s
j +

∑
j /∈E

λ∗sj g
s
j − dsπsd +

∑
j∈E

ḡ∗jπ
s
gj +

∑
j /∈E

ḡ∗sj π
s
gj ) = 0.

(2.3)

3 SDP Relaxations of Quadratically Constrained Quadratic
Programs

A general non-convex Quadratically Constrained Quadratic Program (QCQP) may be for-
mulated as:

(QCQP)


maximize xTQ0x+ 2qT0 x+ r0
subject to xTQjx+ 2qTj x+ rj ≤ 0, j = 1, . . . ,mq

pTj x = θj , j = 1 . . . ,mle

αTj x ≤ γj , j = 1 . . . ,ml1

βj ≤ δTj x, j = 1 . . . ,ml2

where Qj ∈ Sn, qj ∈ Rn, rj ∈ R, for j = 0, . . . ,mq, pj ∈ Rn, θj ∈ R, for j = 1, . . . ,mle ,
αj ∈ Rn, γj ∈ R, for j = 1, . . . ,ml1 , δj ∈ Rn, βj ∈ R, for j = 1, . . . ,ml2 .

A standard approach to derive a convex relaxation of QCQP is to introduce the variable
Y ∈ S1+n

+ in the formulation, obtaining the following lifted reformulation of the problem:
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(LIFT)



maximize S0 • Y
subject to Sj • Y ≤ 0, j = 1, . . . ,mq

pTj x = θj , j = 1 . . . ,mle

αTj x ≤ γj , j = 1 . . . ,ml1

βj ≤ δTj x, j = 1 . . . ,ml2

Y =

(
1 xT

x X

)
, (X = xxT )

where Sj =

(
rj qTj
qj Qj

)
, j = 0, . . . ,mq.

The only non-convex constraint in LIFT is the last one, which imposes Y to be a positive
semidefinite rank-1 matrix with Y00 = 1. A convex relaxation of LIFT is then given by the
following SDP problem obtained by relaxing the rank-1 constraint:

(SDP)



maximize S0 • Y
subject to Sj • Y ≤ 0, j = 1, . . . ,mq

pTj x = θj , j = 1 . . . ,mle

αTj x ≤ γj , j = 1 . . . ,ml1

βj ≤ δTj x, j = 1 . . . ,ml2

Smq+1 • Y = 1,
Y � 0, (X − xxT � 0)

where Smq+1 = e0e
T
0 and e0 ∈ R1+n.

This approach can be applied to obtain bounds on the optimal value of the QCQP
problem using a solver of semidefite programming. However, our aim is to work with
linear programming extended relaxations for the problem, which are the subject of the
next session.

4 Linear outer-approximation of the SDP relaxation

A linear relaxation of LIFT can be obtained from the previous SDP relaxation, replacing
the last constraint, Y � 0, by Y = Y T , i.e., imposing only symmetry to the matrix variable
Y . We thus get the following linear extended formulation:

(QCQP-L)



maximize S0 • Y
subject to Sj • Y ≤ 0, j = 1, . . . ,mq

pTj x = θj , j = 1 . . . ,mle

αTj x ≤ γj , j = 1 . . . ,ml1

βj ≤ δTj x, j = 1 . . . ,ml2

Smq+1 • Y = 1,
Y = Y T ,

QCQP-L is a linear relaxation in x and Y with n(n+3)/2 variables and the same number
of constraints as SDP. Note that the optimal value of QCQP-L is usually a weak upper
bound for the SDP relaxation, as no constraint links the values of x and Y . We propose
to strengthen this relaxation by adding with a cutting plane algorithm, RLT inequalities
as well as SDP cuts derived from the spectral decomposition of the solution value of the
matrix variable Y .
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4.1 Adding RLT Inequalities

To strengthen the QCQP-L relaxation, we first consider the well known RLT inequalities
(see for example, McCormick (1976), Sherali (1999) and Sherali (1995)). Specifically, the
following valid bilinear inequalities

(xi − ui)(xj − lj) ≤ 0
(xi − li)(xj − uj) ≤ 0
(xi − li)(xj − lj) ≥ 0

(ui − xi)(uj − xj) ≥ 0

generate the RLT inequalities, given by

Xij − ljxi − uixj + ljui ≤ 0
Xij − lixj − ujxi + liuj ≤ 0
Xij − ljxi − lixj + lilj ≥ 0

Xij − ujxi − uixj + uiuj ≥ 0.

(4.1)

4.2 More RLT Inequalities

Using the idea introduced in Sherali (1995) we multiply the linear constraints among each
other and also by each variable of the problem generating valid quadratic constraints to
strengthen the identity between Xij and xixj for i, j = 1, . . . , n.

Considering the first type of linear equality constraints in QCQP-L, given by

pTx = θ (4.2)

we derive the valid quadratic equalities

(pTx− θ)xi = 0,

for each variable xi in the problem and include in the relaxation

pTx = θ, and (pTx− θ)xi = 0,∀i = 1, . . . , n. (4.3)

Considering now the second type of inequality constraints:

αTx ≤ γ (4.4)

we derive the valid quadratic inequalities

(αTx− γ)xi ≤ 0 ∀xi ≥ 0. (4.5)

For the third type of linear inequality constraint

δTx ≥ β, (4.6)

we derive the valid quadratic inequalities

(δTx− β)xi ≥ 0 ∀xi ≥ 0. (4.7)

Finally, we derive the valid quadratic inequalities derived of :

(αTx− γ)(δTx− β) ≤ 0, (4.8)

(αTx− γ)(αTx− γ) ≥ 0, (4.9)
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(δTx− β)(δTx− β) ≥ 0, (4.10)

and include in the relaxation.

Note that all valid quadratic inequalities are introduced in the QCQP-L relaxation as

a linear constraint on Y , given by S • Y ≤ 0, where S =

(
r qT

q Q

)
, with properly chosen

vectors q and r and symmetric submatrix Q.

4.3 SDP cuts

Finally, we also consider SDP cuts which are based on the fact that the matrix Y is positive
semidefinite if and only if

vTY v ≥ 0,∀v ∈ Rn+1 (4.11)

The SDP cuts that are considered in our algorithm are detailed in the next section.

5 Generating sparse SDP cuts

We can reformulate the SDP relaxation as the semi-infinite Linear Program:

(SDP-L)



maximize S0 • Y
subject to Sj • Y ≤ 0, j = 1, . . . ,mq

pTj x = θj , j = 1 . . . ,mle

αTj x ≤ γj , j = 1 . . . ,ml1

βj ≤ δTj x, j = 1 . . . ,ml2

Smq+1 • Y = 1,
Y = Y T ,
vTY v ≥ 0,∀v ∈ Rn+1,

Let Ỹ be an arbitrary point in the space of the Y variables. The spectral decomposition
of Ỹ is used to decide whether Ỹ is in the SDP cone or not, it is always possible to apply
such decomposition to a real symetric matrix, Y = Y T , Golub (2013). Let the eigenvalues
and corresponding orthonormal eigenvectors of Ỹ be λk and vk for k = 1, 2, ..., n, and
assume without loss of generality that λ1 ≤ λ2 ≤ ... ≤ λn and let t ∈ 0, ..., n such that,
λt ≤ 0 ≤ λt+1. If t = 0, then all the eigenvalues are non negative and Ỹ is positive
semidefinite.

Otherwise, vTk Ỹ vk = λk < 0 for k = 1, ..., t. Hence, the valid cut vTk Y vk ≥ 0 is violated
by Ỹ and may be added to the relaxation to eliminate this solution from the feasible set.

Margot (2012) states that this procedure has two major weaknesses: First, only one
cut is obtained from each eigenvector vk for k = 1, . . . , t, while computing the spectral
decomposition requires a non trivial investment in cpu time, and second, the cuts are
usually very dense, in other words, almost all entries in vkv

T
k are nonzero. The authors

also state that dense cuts are not good to be used in a cutting plane approach, as they
might slow down considerably the reoptimization of the linear relaxation. To address these
weaknesses, they propose a procedure to generate sparse cuts from the eigenvectors. The
simple idea to compute the sparse cuts is to start with the vector w = vk, for k = 1, . . . , t,
and iteratively set to zero some component of w, provided that wT Ỹ w remains sufficiently
negative. If the entries are considered in random order, several cuts can be obtained from
a single eigenvector vk.

The algorithm to generate one sparse cut from a given eigenvector vk is reproduced from
Margot (2012) in the SparseCut procedure, shown in Figure 1. The algorithm receives as

997



Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

input the eigenvector vk, the matrix Ỹ , and two numbers between 0 and 1, pctNZ and
pctV IOL, that control the maximum percentage of nonzero entries in the final vector and
the minimum violation requested for the corresponding cut, respectively. In the procedure,
the parameter length[vk] identifies the size of vector vk.

1 SparseCut(vk,Ỹ , pctNZ and pctV IOL)

2 minV IOL=(−vTk Ỹ vk)*pctV IOL;
3 maxNZ = blength[vk] ∗ pctNZc;
4 w=vk;
5 perm = random permutation of 1 to length[w];
6 for (i = 1, . . . , length[w]) do
7 z = w;
8 z[perm[i]] = 0;

9 if (−zT Ỹ z > minV IOL) then
10 w = z;

11 if (number of non-zeroes in w < maxNZ) then
12 return w;

13 else
14 return null;

Fig. 1: Sparsification procedure for SDP cuts

6 Our cutting plane algorithm

In this section we propose a cutting plane algorithm to obtain an upper bound for the
strategic pricing problem in energy markets. The idea of the algorithm is to start considering
the weak linear extended relaxation of the problem given by formulation (QCQP-L) and
then iteratively add the RLT inequalities described in Subsessions 4.1 and 4.2 and the sparce
SDP cuts described in Session 5, as proposed in Margot (2012). In our work, however, we
propose a dynamic update of the parameters pctNZ and pctV IOL used in the SparceCut
routine presented in Session 5. The objective of this dynamic update is to increase the
number of SDP cuts that are added to the relaxation on the final steps of the algorithm.
We allow the inclusion of less sparse SDP cuts, aiming to improve the bound obtained.

In Figure 2, we present our cutting plane algorithm. The input of the algorithm is com-
posed by the parameters pctNZ , pctV IOL, λMAX and MAXCUT . The two first parameters
were introduced in the previous section, the parameter λMAX is negative and corresponds
to the maximum value of the eigenvalue used to generate SDP cuts, and the parameter
MAXCUT corresponds to the maximum number of cuts added to the relaxation at each
iteration of the cutting plane algorithm. The algorithm is divided into two phases. In
the first phase (lines 1-10) the most violated RLT inequalities are iteratively added to the
formulation until no RLT inequality is violated by the solution of the current relaxation.
Then, on a second phase (lines 11-25), at each iteration of the algorithm, sparse SDP cuts
computed by the SparseCut routine, are added. If no sparse eigenvector is generated by
the routine with the current values of the parameters pctNZ and pctV IOL, their values are
updated (lines 20-22). Each time the parameters are updated their values get 0.5% bigger.
In both phases of the algorithm, at most MAXCUT cuts are added to the relaxation at
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each iteration. The values of the parameters used in our numerical experiments, as well as
the stopping criterion adopted in line 12, are presented in the next section.

Input: pctNZ , pctV IOL, λMAX and MAXCUT
1 Let (LR) be the extended linear relaxation (QCQP-L);

2 Let (x̃, Ỹ ) be the optimal solution of (LR);

3 Let nviol be the number of RLT inequalities violated by Ỹ ;
4 while nviol > 0 do
5 if nviol ≤MAXCUT then
6 Add all the violated RLT inequalities to (LR);

7 else
8 Add the MAXCUT most violated RLT inequalities to (LR);

9 Let (x̃, Ỹ ) be the optimal solution of (LR);

10 Let nviol be the number of RLT inequalities violated by Ỹ ;

11 Let λk and vk for k = 1, . . . , n be respectively, the eigenvalues and corresponding

orthogonal eigenvectors of Ỹ , such that λ1 ≤ λ2 ≤ . . . ≤ λn;
12 while stopping criterion do
13 tot = 0; k = 1;
14 while λk < λMAX and tot < MAXCUT do

15 wk =SparseCut(vk, Ỹ , pctNZ , pctV IOL);
16 if (wk 6= null) then
17 Add the constraint wTk Y wk ≥ 0 to (LR);
18 tot = tot+ 1;

19 k = k + 1;

20 if (tot == 0) then
21 pctNZ = pctNZ ∗ 1.005;
22 pctV IOL = pctV IOL ∗ 1.005;

23 else

24 Let (x̃, Ỹ ) be the optimal solution of (LR);
25 Let λk and vk for k = 1, . . . , n be respectively, the eigenvalues and

corresponding orthogonal eigenvectors of Ỹ , such that λ1 ≤ λ2 ≤ . . . ≤ λn;

Output: The optimal solution value of (LR)
Fig. 2: Our cutting plane algorithm

7 Numerical Results

Our main goal with the numerical experiment discussed, in this section, is to analyze the
quality of the upper bounds for the strategic pricing problem in energy markets, computed
by our cutting plane algorithm. We present computational results considering some small
instances of the problem with configurations derived from the Brazilian power system, as it
was done in Fampa (2013). Each instance is characterized by the total number of generators
|J |, the number of generators that belong to company E, |E|, and the number of scenarios
|S|.
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We used the MILP formulation of the problem, presented in Fampa (2008), to obtain
the optimal solution of the instances considered, and also the upper bound given by its
continuous relaxation.

Our code was implemented in C and compiled with gcc (GNU COMPILE C). All runs
were conducted on a 2GB Ram, 2.13GHz Intel Core processor running under Linux Ubuntu,
Version: 9.10. The solver CPLEX (IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer
12.5.0.0), Gay (2009), was used to obtain the optimal solution of the instances, with the
MILP formulation, the solution of the continuous relaxation of the MILP formulation and
the solution of the linear relaxations (LR) in our cutting plane algorithm. LAPACK v.
3.4.2. was used to compute the spectral decomposition of the matrices Ỹ .

As the stopping criterion for our cutting plane algorithm, we adopted a time limit of
21600 seconds (6 hours). The stopping criterion in line 12 of Figure 2, is based on the
convergence of the algorithm, and was also used in Margot (2012). Considering zt as the
optimal solution of the relaxation at iteration t, the cutting plane algorithm stops if t ≥ 50
and zt ≥ (1−0.0001).zt−50. Note that a purification procedure was implemented to remove
the inactive cuts at each t iterations if t ≥ maxIterPurif and zt ≥ (1 − 0.0001).zt−1.
To avoid premature convergence, the parameter t is reset at each purification. We use
maxIterPur = 5, updating it in 5% at each iteration, which guarantees a minimum number
of iterations to the procedure, i.e., the procedure can only stop if maxIterPurif ≥ 50,
ensuring that t ≥ 50 may occur.

In our numerical experiments, we have used pctV IOL = 0.6, pctNZ = 0.4, λMAX = −0.5,
and MAXCUT equal to 25% of n, the number of variables on our original problem QCQP,
i.e., n = |S|.(2.|J |+ 1) + |E|. For example in Table 1, for the first instance, Inst108,02,02, we
have n = 36 and for the last instance, Inst1110,04,04, we have n = 88.

Table 1 compares the bounds computed by our cutting plane algorithm (CPA1) with
the bounds obtained by our algorithm when we do not update the parameters pctV IOL and
pctNZ (CPA2). In this last case the algorithm becomes very similar to what was proposed
in Margot (2012). For each instance we ran the cutting plane algorithms 5 times. Because
of the random permutation in line 5 of the SparceCut routine presented in Figure 1, we
obtain a different result in each run. The results presented in Table 1 correspond to mean
values (x̄) and standard deviation (σ) considering the 5 runs. In the first column of the
table we especify the instance considered.

In order to compare the bounds we first computed for each instance the relative gap
between the solution obtained by the cutting plane algorithms (z(CPAi)) and the optimal
solution of the problem obtained with the MILP formulation (z(MILP)), which is given by
(z(CPAi)-z(MILP))/z(MILP) ×100, for i = 1, 2. The mean and standard deviation of these
relative gaps are presented in columns 2-3 and 6-7, identified by ”MILP”. In order to analyze
the improvement on the bounds computed by the cutting plane algorithms when compared
to the bounds given by the continuous relaxation of the MILP formulation (z(LP)), we
also present in the table the mean and standard deviation of the relative gaps given by
(z(CPAi)-z(LP))/z(LP) ×100. These statistics are in the columns identified by ”LP”, i.e.,
columns 4-5, for CPA1 and 8-9, for CPA2.

We note from the results presented that the cutting plane algorithms generate much
stronger bounds than the continuous relaxation of MILP. We also see an improvement on
the bounds when using CPA1, compared to CPA2. Concerning the comparison between the
running times of algorithms CPA1 and CPA2, we note that in average the time to compute
the results with CPA1 is about 34% bigger than with CPA2. The average running time for
CPA1 was about 1000 seconds.
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Table 1: Comparison of bounds for the strategic bidding problem
CPA1 CPA2

MILP LP MILP LP
Inst|J |,|E|,|S| x̄gap σgap x̄gap σgap x̄gap σgap x̄gap σgap
Inst108,02,02 0.27% 0.0008 -34.99% 0.0005 4.01% 0.0153 -32.57% 0.0099
Inst208,02,03 0.15% 0.0005 -32.43% 0.0004 0.20% 0.0014 -32.39% 0.0010
Inst308,02,03 0.00% 0.0000 -35.05% 0.0000 0.00% 0.0000 -35.05% 0.0000
Inst408,02,03 0.00% 0.0000 -6.98% 0.0000 0.00% 0.0000 -6.98% 0.0000
Inst508,02,03 1.27% 0.0023 -24.93% 0.0017 4.75% 0.0070 -22.35% 0.0052
Inst608,02,03 8.32% 0.0016 -28.38% 0.0011 10.53% 0.0034 -26.91% 0.0023
Inst708,02,04 3.31% 0,0000 -41.92% 0.0000 3.31% 0.0000 -41.92% 0.0000
Inst809,03,02 1.28% 0.0007 -48.84% 0.0004 3.44% 0.0035 -47.75% 0.0018
Inst909,03,04 8.98% 0.0000 -7.16% 0.0000 8.98% 0.0000 -7.16% 0.0000
Inst1010,04,02 4.43% 0.0022 -15.04% 0.0018 4.68% 0.0005 -14.83% 0.0004
Inst1110,04,04 2.42% 0.0000 -33.58% 0.0000 2.42% 0.0000 -33.58% 0.0000

8 Conclusion

In this paper we present a cutting plane algorithm to solve a linear programming relaxation
for the strategic bidding problem under uncertainty, which is formulated as a non-convex
quadratically constrained quadratic program. In our previous work (Fampa (2013)) we
have discussed the application of semidefinite programming relaxations to compute bounds
to the strategic bidding problem, considering different relaxations with different strength
levels, where we obtain stronger relaxations with the addition of valid inequalities to the
weaker ones. As expected from the results presented in the literature for other applications
of SDP relaxations, we concluded that we can obtain very tight bounds using strong SDP
relaxations of the strategic bidding problem. However, the computational effort to solve the
stronger relaxations is quite big. The study motivated the research presented in this work,
where we solve an extended linear relaxation of the problem, based on the SDP relaxation,
adding at each iteration of the algorithm groups of constraints that strengthen the initial
relaxation. These constraints are the well known RLT inequalities and SDP cuts that
enforce step by step the positive semidefiniteness of the matrix variable of the original SDP
relaxation. Numerical results show that the cutting plane algorithm obtain much better
bounds than the continuous relaxation of a MILP formulation of the problem, presented in
the literature, and can be computed much faster than the strong SDP relaxations presented
in Fampa (2013).
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