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ABSTRACT 

This work introduces and develops a formal framework for betting theory, proving a 
simple yet powerful result. It is shown that, given a bookmaker that takes bets on events 
outcomes and a set of players, it just needs to estimate the behaviors of the players in each 
outcome instead of the probabilities themselves. A corollary is that a player just needs to be 
sufficiently (and consistently) better than the average behavior of the pool of players to be 
successful (i.e. have a consistent positive payoff). Inspired by and based on this, a new search 
heuristic method is proposed as a practical application, in which the players are actually encoding 
the problem subspaces estimations and the ones that better estimate the optimal results will 
survive. The method is applied to the benchmark asymmetrical traveling salesman problem 
(ATSP). Results are presented and discussed, as well some other possible practical applications. 
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1. Introduction 
Gambling is an activity that always allured the human being. The act of betting in some 

event expecting that some outcome will happen may have the effect of validating some opinion 
(that was so strong that the person felt that it could wager on it) or to protect against some 
undesirable condition (receiving some profit if something bad happens, as in an insurance 
policy). 

At the same time that gambling may have been mostly considered something associated 
with people lacking any moral sense, it has also been a field of some interesting mathematical 
results (Kelly, 1956), (Thorp, 1961). There is also some relationship between stock market, 
overall investment strategies and gambling (Thorp, 1961), (Thorp and Kassouf, 1967), (Thorp, 
1985). 

Someone who can earn enough money with gambling, betting on events, to successfully 
support oneself, might as well as be seen as someone who can infer (or predict) the probabilities 
of events better than the others. That observation alone seems to carry a great resemblance to 
evolutionary theories. 

If we take evolutionary computation as an example (Jong, 2006), (Michalewicz, 1996), 
(Michalewicz and Fogel, 2004), the methods deal basically with solutions that are better than the 
others, that carry some information (or subset of it therefore) that gives them a distinct advantage 
against the others. Well, that means that if we can, somehow, shape a method in which the 
“survival of the fittest” is given by how well they can predict the outcomes of given events 
(which can be seen as subspaces of the search space of a problem in which better solutions are 
more likely to be found), we could use that information to focus our search on those (smaller) 
regions of likely good solutions. 

This work presents a basic formal betting theory framework which in turn will be the 
base for a proposed search heuristic method. With that mindset of adapting and mixing 
evolutionary computation with betting survival, we use the theory described with the new 
algorithm applied to optimization, comparing results of the benchmark problem asymmetric 
traveling salesman (ATSP) (Karp, 1972), (Garey and Johnson, 1979), (Reinelt, 1991). 

Since it has been proven (Wolpert and Macready, 1997), that no search heuristic 
method may be equally applied successfully to all different classes of problems (i.e. the average 
result over all set of problems is constant), it is important to develop and test new methods which 
can have better results against some classes of problems (or even improve over existing ones). 

The next section describes the theoretical framework. The following one proposes the 
search heuristic method, with the results presented after that. We close with a couple of sections 
discussing future works and conclusions, respectively.  

2. A Betting Theory Framework 
In this section a basic framework for a betting theory is presented. Some simple 

concepts and definitions are necessary first, and then an important result will be proven. 

2.1 Basic Definitions 
Let an outcome be anything that can happen as a result of some abstract entity that we 

will call an event. Thus, each event has a collection of possible outcomes such as only one (and 
exact one) of them will actually happen in the future. 

In this context, let a bet 𝛽   𝛽 ∈ ℝ,𝛽 > 0  be a wager on any outcome of a given event. 
When betting on an outcome, the gambler (i.e. the one who placed the bet, which we can simply 
call player from now on) expects to win an amount of resources greater than the amount waged. 
If the player wages on an outcome that happened, we say that the bet was won, otherwise it was 
lost. 

Each outcome of an event has associated odds 𝜔  (𝜔 ∈ ℝ,𝜔 > 1) with it. It means that 
when placing a bet β on an outcome that has odds 𝜔, the player will receive 𝜔𝛽 back if the bet is 
won for a total profit of 𝜔𝛽 − 𝛽ω. Thus, if the probability of that outcome to happen is 
𝑝  (𝑝 ∈ ℝ, 0 ≤ 𝑝 ≤ 1), the expected return EV for the player is given by: 
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𝐸𝑉 = 𝑝 𝜔𝛽 − 𝛽 − 1 − 𝑝 𝛽  

= 𝑝𝜔𝛽 − 𝛽  
= 𝛽(𝑝𝜔 − 1) 

Equation 1 

We assume that there is an entity called bookmaker (or the house), which is 
responsible for picking events and outcomes, associating odds to outcomes, receiving wagers and 
paying the winners. 

Lets say that B is the set of all bets placed on all outcomes of the set of outcomes 𝛺 
with bi the sum of bets on outcome 𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ |𝛺| (notice that 𝐵 = |𝛺|). Thus, the total 
amount of bets received by the house is 𝑏!

|!|
!!! . If the outcome that happened is 𝑘 ∈ ℕ, 1 ≤ 𝑘 ≤

|𝛺| that means that the house EV is given by: 
 

𝐸𝑉 = 𝑏! − 𝜔!𝛽!

|!|

!!!

 

Equation 2 

The total amount of resources that a player has to bet or that the house has to pay the 
players are both called a bankroll. The bankroll changes over time, since a player may win or 
lose bets, and the house receives bets and pays the winners. 

2.2 Outcomes and Odds 
For every outcome of a given event, the house has to define its associated odds. This is 

important, since it will make players decide in which outcome to bet (if they decide to bet at all). 
To simplify, first we assume that the house is ideal, which means it will not make any 

profit from the bets (of course this is not very realistic, but good enough to develop the 
definitions we will need). 

First, how should an ideal house define the odds for the outcomes of a given event? We 
suppose that we know for sure the probability 𝑝! of each outcome i happening (𝑝! ∈ ℝ, 0 ≤ 𝑝! ≤
1, 𝑝!

!
!!! = 1). This is very unrealistic and just for the sake of argument, since we usually have 

at most some rough estimate. 
We know that 𝛽! is the sum of bets on outcome i and that 𝜔!𝛽! is the total payoff that 

the house will pay for players should outcome i happens. It means that the expected payoff for 
each outcome i is 𝑝!(𝜔!𝛽! − 𝛽!). So, a different way of writing Equation 2 is: 

 

𝐸𝑉 = ( 1 − 𝑝! 𝛽! − 𝑝! 𝜔!𝛽! − 𝛽! )
|!|

!!!

 

Equation 3 

For an ideal house, we would want 𝐸𝑉 = 0. A simple way to do this is to make the 
expected payoff zero for each outcome. That leads us to: 

 
1 − 𝑝! 𝛽! − 𝑝! 𝜔!𝛽! − 𝛽! = 0, 1 ≤ 𝑖 ≤ 𝛺  

𝛽! − 𝑝!𝜔!𝛽! = 0  

𝜔! =
1
𝑝!

 

Equation 4 

Basically Equation 4 tells us that for an ideal house, the probability of an event and its 
odds are inversely proportional. And it makes sense that the lower the probability of an outcome 
happening the higher its payoff should be. 
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The way that a real house (i.e. not ideal) could work is to cut a commission from the 
odds, which is the same as slightly increasing each probability. In this way, the odds could be 
defined as 𝜔! =

!
(!!!!)

 for some small 𝜖. 
This seems good enough, but we usually do not have the precise probabilities of each 

outcome in a real life event. Having a very a good estimate might not be enough, since in large 
scale a small error can be a disaster. However, as we will see in the next section, even if the 
house knew precisely the probabilities and defined a 𝜖 as commission, it would not be good 
enough. 

2.3 Maximizing Expected Returns 
One's expected goal is normally to maximize its own expected return EV, which is 

given by Equation 1 for players and Equation 2 for the house. 
To maximize a players EV, from Equation 1 we know that it should be the case that 

𝑝𝜔 > 1. It is also clear that, since 0 ≤ 𝑝 ≤ 1 there would be no point in betting if 𝜔 ≤ 1. Thus, 
if Equation 4 holds, the player's EV will always be zero. 

For the house, however, it might not be a good idea to follow Equation 4, if it is 
possible to know with all precision the probabilities of the outcomes happening. If we suppose 
that the house's bankroll is not infinite, and that the sum of bankrolls of a large amount of players 
may account for a good ration of the house's bankroll, then a short streak of “bad luck” may 
actually bankrupt the house even if the expected returns are positive in the long run. 

Suppose that there is some improbable (i.e. low probability, approaching zero) 
outcome. In this case, since 𝜔 = !

!
, that means that 𝜔 will be really large. If many players decide 

to bet on this outcome hoping for a big win and it turns out to happen, the house might be in big 
trouble. 

So, it is not enough to make sure that your expected return, in the long run, is positive. 
The house has to make sure that it has a positive expected return for every event. 

Looking again at Equation 2 we can conclude that the house will break even (i.e. not 
profit nor loss) if, and only if, for every k: 

 

𝜔! =
𝑏!

!
!!!
𝛽!

  

1
𝜔!

=
𝛽!
𝑏!

|!|
!!!

 

Equation 5 

What Equation 5 means is that, instead of being inversely proportional to the 
probability of an outcome, the odds must actually be inversely proportional to the ratio of bets 
made on the outcome. So, by bringing the commission 𝜖 into account, the house will be certain to 
have a positive expected return for all outcomes of every event. 

This is a simple yet powerful result. It is basically saying that it is better to know the 
probability that each player will bet in each outcome than to know the actual probabilities of the 
outcomes. It does not even matter the event or the outcomes if the house knows how players will 
behave. In short, knowing the players behavior is better than knowing the event outcome 
chances. 

If we take in consideration the efficient market hypothesis (Jones and Netter, 2008) it 
would mean that the ratio of bets on any outcome could be interpreted as close to the probability 
of that outcome. 

By this result, the odds of an event set by the house will be based in the player's 
behaviors. Thus, a corollary of this result is that in order to have a positive return in the long run, 
a player has to consistently infer the odds of the events better than the other players. This means 
that a player does not have to predict correctly (as neither does the house), it just has to be better 
than the pool of all players (even though this might not look as a direct competition in the first 
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place). 

2.4 Discussion 
One of the interesting consequences of last section results is that it is perfectly possible 

for a player to have a positive EV, even if the house will always have a positive EV too. 
If we interpret the ratios of bets in each outcome (which in turn decide the odds) as the 

estimates of the group of players for each outcome, then it basically means that, as briefly 
discussed, in order to have 𝐸𝑉 > 0, a player must be able to estimate the probabilities of the 
outcomes better than all of the players as a group. 

It is also the case that the house has to, somehow, estimate the ratio of bets for each 
outcome in order to define the odds. While this is true, it is always possible for the house to 
adjust the odds if its estimates turn out to be a little off. 

So, assuming that the house will keep its positive EV, it means that its bankroll will 
always grow. This is not, however, true for all players. Supposing that there are no external 
sources of income (i.e. a player's bankroll only grows if it wins a bet), a negative EV player will 
eventually be bankrupt. 

3. Application 
In the last section a framework for betting theory was defined and described with an 

important result. This section aims to take advantage of all of this to derive a search heuristic 
method. 

As discussed in 2.4, it is perfectly possible that a player (or even more than one) and the 
house have a positive EV. In this context, it seems that a player with a positive EV is basically 
better, in some sense, than the other players. 

If we think of players as algorithms, we can interpret this as competing algorithms and 
the eventually bankrupt ones are removed from the pool of players and possibly replaced with 
new algorithms. 

This is a very high level and broad definition of how what we have described so far 
may be applied on a more practical level. We still have to decide what the algorithms (players) 
actually mean, what are the bets they are taking, what do the bankrolls represent, and who is the 
house etc. 

3.1 A Betting Game 
Let 𝑓:𝐷 → ℝ,𝐷 ⊂ ℕ be a function for which we want to find 𝑥∗ ∈ 𝐷 such as 

𝑓 𝑥∗ ≥ 𝑓 𝑥 ,∀𝑥 ∈ 𝐷. We are assuming that 𝑓(𝑥) can be evaluated in polynomial time, given x. 
At every step of the method, we will have a current best-known candidate solution 𝑥∗. 

The first thing we have to define is how we represent each candidate solution. Since 
𝑥 ∈ 𝐷 is a natural number, each candidate solution could be represented by a string of N bits, 
which means the total search space for our function would be 2!. That does not prevent, of 
course, other ways of representation, like an array of integers that could possibly represent a 
permutation of nodes of a graph, for instance. Either way, we will use N to represent the size of 
our candidate solutions, which means the number of elements in this set. 

The next important concept is the mask M, which is a set of size |𝑀|. Every step of our 
method will deal with the possibility of making changes to the current best-known solution by 
applying this mask. Because of this, the mask can be either of the same encoding as the candidate 
solution but can also be of something else, for instance a list of unique indices.  

There will also be m different applications of the mask, which directly translates to all 
possible outcomes of an event (this will be what the players will bet on). So, if we think that each 
element in M may or may not be applied to the current best solution 𝑥∗, that would mean that 
𝑚 = 2 ! . It could also be the case that we just apply each element of M to 𝑥∗, so in that case we 
would have 𝑚 = |𝑀|. 

Overall, we can think of the mask as a transformation 𝜏!:𝐷 → 𝐷, 0 ≤ 𝑖 ≤ 𝑚, in which 
each 𝜏! is defined based on M, and we apply 𝜏! 𝑥∗ , 0 ≤ 𝑖 ≤ 𝑚 to create new candidate solutions 
that represent the possible outcomes of an event. 
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For instance, suppose that we have a string of bits representing each candidate solution, 
that M is a set of the indices of the string (thus0 ≤ 𝑀! < 𝑁), with 𝑚 = 2 !  and that each 𝜏! 𝑥∗  
is defined as flipping the bit 𝑀! of 𝑥∗ if, and only if, the 𝑀!-th bit of i is set. In this case, suppose 
that 𝑁 = 200 and 𝑀 = {57, 123, 190}, then for 𝜏! we would not flip any bits, for 𝜏! we would 
flip bit 123 and for 𝜏! we would flip bits 57 and 190. 

Each one of the m applications of the mask will be an outcome, so each outcome is 
defined by 𝜏!. The winner outcome 𝜏! will be the one such that 𝜏!   > 𝜏! , 0 ≤   𝑖   <   𝑚, 𝑖 ≠   𝑗. 

Each player will consist of an algorithm or formula to decide the weight of a given 𝜏!. 
That means that each player should be able to, given mask M, and knowing the definition of 𝜏, to 
calculate the weight w of each outcome. What this basically means is that there will be m 
candidate solutions (possible outcomes) that will be creating by applying a transformation in the 
current known best, one of those will be the best one (winner). Given the calculated weights 
𝑤!,… ,𝑤! for every combination of m, the estimated probability 𝑝′ for each outcome is: 

 
𝑝!! =

𝑤!
𝑤!!

!!!
 

Equation 6 

The way to calculate the weights can vary and is probably one of the most important 
definitions for applying the method to find a solution to a problem. So, for instance, we will keep 
using the example definition of 𝜏! we did before. One simple way of defining the weight 
calculation for each player would be to have an array p1 (with 𝑝1 = 𝑁 of real numbers that 
define probability that this particular bit being changed is good. It means that, given M and m, 
and considering 𝑀! for all j bits set in i and 𝑀! for all bits not set in i, we would have 𝑤! =

𝑝1!! × 1 − 𝑝1!! . 
So, for instance, for the example above with 𝜏! (bits 0 and 2 set, 1 unset with 

𝑀   =    {57, 123, 190}) we would have 𝑤! = 𝑝1!"×𝑝1!"#×(1 − 𝑝1!"#). 
Each player will, therefore, calculate its estimated probabilities for each outcome and 

then look for all the odds for the one that maximizes the value of Equation 1, which is 𝑝!!𝜔!. 
The size of the bet 𝛽 will follow the Kelly Criterion (Kelly, 1956), which is a fraction 

of the current bankroll 𝜌 of the player and is given by: 
 

𝛽
𝜌
=
𝑝! 𝜔 − 1 − 1 − 𝑝!

𝜔 − 1
  

𝛽 =
𝑝!𝜔 − 1
𝜔 − 1

𝜌 
Equation 7 

If Equation 7 yields a result lesser than some predetermined minimum 𝛽!"#, then that 
minimum should be used instead, unless it is greater than the bankroll. So, the actual value of 𝛽 
is: 

 

𝛽 = min 𝜌,𝑚𝑎𝑥 𝛽!"#,
𝑝!𝜔 − 1
𝜔 − 1

𝜌  

Equation 8 

The size of the player pool is given by P. Each player 𝜋 will start with a bankroll of 𝜌!. 
We assume that when a player goes bankrupt, another one will be summoned to take its place. 
The new player can be a completely random one (with regards to its weight calculation) or it 
could be created based on the players with currently top bankroll (applying any transformation or 
delta change on its values), or even a combination of both (with probabilities for each one). 
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3.2 The Method 
The method is divided in two stages (second being optional). In the first stage, we have 

a number of arbitrary iterations (or any kind of stopping condiation may apply). Each iteration is 
an event consisting of m outcomes, with the mask M created randomly. As mentioned before, a 
known best solution 𝑓 𝑥∗  is kept (and used as base to apply the masks), so for the first step a 
completely random solution may be used as 𝑥∗ (if desired, some known good solution may be 
used). In each step, initially 𝜔! =

!
!
,∀𝑖. Another way to possibly solve this is to precalculate all 

players weights (since they will not change anyway) and have all 𝜔! estimated based on that (i.e. 
the average probability in each one), which might also require some adjustments. 

There is a player pool from which players are randomly picked to bet (actually a simple 
linear shuffle may be performed on an array consisting of players indices). 

Each player then calculates the estimated probabilities for each outcome (based on its 
own rules and formulas) and selects the outcome k which gives the maximum EV (tie breaking 
rules may apply). The size of the bet 𝛽 is given by Equation 8. 

After each player bets, the values for all odds 𝜔 may be recalculated to adjust to any 
trend, since we discussed before that the house have to adjust its estimates based on how the 
players behave.  

When all players have bet, each outcome m is evaluated applying 𝑓(. )and the one with 
the overall best solution is the winner. The players which bet on the winner outcome receive their 
respective payoffs. If there are any players bankrupt, they are removed from the player pool and 
new players are summoned to take their place. As discussed, new players may be created either 
by randomizing each bit or by adjusting the current best players (with bigger bankrolls) by adding 
some random value −𝜖 < 𝑥 < 𝜖 to each weight. If the winning solution have a better 𝑓(. )than 
𝑓(𝑥∗) then update 𝑥∗ accordingly. 

After the adjustments are done, a new iteration is run, with new masks. When a certain 
number of iterations were run (or some other criteria is met), the first stage is over. 

The second stage is run with a given (possibly small) number of the top players from 
the first stage. In this stage, candidate solutions may be created given the best players weight 
calculations randomized. For instance, with the examples discussed before, the p1 encoding could 
be seen as probabilities and randomly selecting each one. This means that, for each 𝑝1! for a 
player, set that bit as 1 with 𝑝1! probability. The reasoning behind this approach is that each 
player has a well-adjusted probability for each bit, and using it directly (in a randomized manner) 
tends to yield the best results. This can be run for some fixed amount of time or until some other 
arbitrary criteria are met. 

The reasoning behind this step is that after a (sufficient) large number of iterations in 
the first stage, the players who best calculate the weights of the masks are the ones to survive 
and, thus, they are the best “pickers”. 

After a predetermined number of iterations (or any other criteria, like time elapsed), the 
stage is over and the method reports the best solution it founded. 

3.3 Algorithmic Description 
The algorithms below formulate the method described in previous sections. We are 

using the same variables and arguments and they have been used throughout this text. In that way 
𝜔 refers to odds, M is the mask (with |𝑀| its size), m is the total number of masks permutations, 
𝜏 is the transformation applied to the best solution, N is the size of candidate solutions, 𝛽 is a bet, 
𝜌 is the bankroll, 𝑤 is the weight of a given mask permutation calculated by the player, 𝑝1 is the 
probability of a given bit to be set (1), 𝑃 is the player pool (with size |𝑃|), 𝑥∗ is the current best 
known solution and 𝑓(. )is the function being optimized. We also assumed some constant 
arguments are also set (like the number of iterations of the method, size of player pool etc). 

One thing to keep in mind is that, while the pseudo-code below assumes that we want to 
maximize function 𝑓(. ), it might be the case that we want to minimize it and, of course, 
adjusments should be done accordingly. 
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Algorithm 1 describes the first stage of the method, while Algorithm 2 describes one 
possible application of a second stage. Also, Algorithm 3 describes a way to create a new player 
based on some other player (instead of plainly random). 

 

 
Algorithm 1 
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Algorithm 2 

 
Algorithm 3 

3.4 Parameters 
As with all search heuristics (Michalewicz and Fogel, 2004), there are a few parameters 

that should be set to run this method, and fine tuning them might yield better results. 
Given the function 𝑓(. )we are trying to optimize, the search space size should be 

defined by each candidate solution encoding size. 
For each iteration of the method, we should define a mask M (which can be random or 

obeying some kind of criteria). The size |𝑀| of the mask can vary on each iteration or stay the 
same. 

The amount of candidate solutions evaluation executed for each mask combination m in 
order to verify the winning outcome should also be determined. It could be a function of the mask 
size or just constant, but it should be the same for every outcome in the same event. 

The size of the player pool P, each player's bankroll 𝜌 and the minimum bet 𝛽!"# 
should also be predetermined a possibly stay constant throughout the execution of the method. 

Finally, the amount of iterations in each stage of the method could also be 
predetermined (or complying to some external criteria like execution time). 

4. ATSP 
In this section we discuss the results of applying the proposed method on the 

asymmetric traveling salesman problem (ATSP). Given a directed graph 𝐺 = {𝑉,𝐸} and a 
distance matrix 𝐷 = (𝑑!") of dimension 𝑛×𝑛, the ATSP can be defined as calculate a closed 
circuit (which can be represented by a any permutation P of the set of vertices {1,… , 𝑉 }) that 
minimizes  

 

𝑑!!!! + 𝑑!!!!!!

!!!

!!!

 

Equation 9 

If we had 𝑑!" = 𝑑!" ,∀𝑖, 𝑗, then that would be the symmetric variation of TSP, but in this 
case there can be cases where this does not hold. 

The TSP is a good example of an NP-hard problem (Karp, 1972), (Garey and Johnson, 
1979), (Cormen et al, 2009) and thus very suitable as a benchmark to application of optimization 
techniques and search heuristic methods. The examples used here are from the well-known 
TSPLIB (Reinelt, 1991) that are broadly available and used in benchmark experiments. 
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4.1 Setup 
We applied the method to some instances of the ATSP found in (Reinelt, 1991). There 

were 20 independent runs for each instance, with the average, minimum and maximum results 
recorded and shown on Table 1. 

Each candidate solution was encoded as an array of integers, being a simple 
permutation of the set {1,… , 𝑉 }, which means that there are no repeated elements. 

A mask of size 3 was used, and the application of the mask meant that if 𝑀! was used 
then 5 elements are removed from the candidate solution (with indices 𝑀! ,𝑀!!!,… ,𝑀!!!) and 
reinserted greedly (which means reinserting them in the permutation in the way that minimizes 
the weight increase). We have to note that 𝑀! ≤ 𝑉 − 4. Given that each element of the mask 
might or might not be used to create a new solution we have 𝑚 = 2 ! = 8 possible outcomes. 

The weight calculation for players follow the simple rules already exemplified before. 
That means that each player has an array of real numbers stating the probability that the particular 
mask index should be set. 

There was used a pool of 25 players and 200,000 iterations of the method. The 
bankroll was defined as 1000, the minimum bet as 1 and there was a maximum bet of 200. The 
new players created after a removal of the pool were done 50% of the time as completely random 
and 50% using Algorithm 3. 

4.2 Results and Discussion 
Results are given on Table 1. Each instance is referred by the name as in (Reinelt, 

1991), with the respective |𝑉| size and optimal values. We also represented the average value of 
the 20 runs, as well as the best and worst results. The percentage column is given by the ratio of 
the average and the optimal in excess. All runs were done in less than 10 seconds in a 2012 
MacBook Pro 2.3 GHz and 8 Gb RAM. The code was done all in C++ and compiled using gcc. 

 
Instance |V| average best worst original % 

br17 17 39.0 39 39 39 0.00 
ftv33 34 1355.0 1298 1392 1286 5.37 
ft53 53 7437.0 7017 7907 6905 7.71 
ft70 70 40416.1 39853 40874 38673 4.51 
kro124 100 40875.4 38075 44159 36230 12.82 
rbg323 323 1521.00 1484 1560 1326 14.71 

Table 1 

The proposed method seems promising. It is based on novel criteria and it may suit 
problems of interest. Although it looks more suitable for dynamic problems it still does a nice job 
of finding fast good solutions for hard problems with huge search spaces, as shown by the results, 
which we can also compare with some other works and results such as (Glover et al, 2000), (Sun 
et al, 2005) (Nagata and Soler, 2012). We can see that the current implementation of the method 
performs better than some implementations of the cited works, and even than some heuristics. 

5. Conclusion 
This work introduced a basic framework for a betting theory, showing the important 

result that it is better to know what your opponents are likely to do (i.e. bet in different outcomes) 
than to actually know the probabilities of the outcomes happening. 

That result and the theoretical framework presented inspired a new search heuristic 
method. This new method was applied on benchmark optimization problem asymmetric traveling 
salesman (ATSP) to test its real potential. 

While there is still much left to do and improve, as illustrated last section, this work 
presented some novel basic theory and a new optimization technique that can be really usefull in 
tackling different hard problems. 

The results also show some great potential, and this new approach might prove to be 
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very useful for different classes of problems in the future. 

6. Future Works 
There are still some improvements left to do, either on the theoretical part as well as in 

the application part. 
The betting theory framework can be expanded to make it more generic and 

accommodate some different forms of betting and wagering. 
On the optimization field, application of the method to a broader and different 

benchmark problems, as well as unique and different ones, possibly real-time optimization. There 
is also the need to apply the method to classes of problems in which evolutionary computation 
(with methods like genetic algorithms) are known to perform poorly, which given the “No Free 
Lunch” theorem (Wolpert and Macready, 1997) may be a good investigation. 

Some tweaks and improvements on the method may prove to be very useful too, such 
as testing hybrid algorithms and methods to verify in which cases better results can be achieved. 
One of the paths that might yield good results is to combine the method with genetic algorithms, 
using the betting as the environment for solvers of problems (thus, surviving the best solvers that 
can estimate better how to deal with different classes of problems). This is a little more complex 
approach, but definitely worth investigating. 

Trying better and more complex weight calculation for the masks might be also very 
important in order to achieve better results. Better calculations for the odds in each iteration of 
the method may also prove useful. 

Some interesting further work that may be done with the proposed method is to reuse 
players from different instances (i.e. different functions) but in the same class of problems (e.g. 
different instances of the traveling salesman problem). 

There is also some interesting work that can be done with parallelization. Any given 
number of top k players chosen for the second stage may be parallelized. It is also possible to 
parallelize the weight calculation for all players in the first stage (although is not possible to 
parallelize the odds and bet size calculations, since those rely in serial betting). 
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