& KLy

SIMPOSI0 BRASILEIRO DE PESRQUISA OPERACIONAL

Pesquisa Operacional na Gestao da Seguranca PUblica

ILS for the Software Module Clustering Problem

Alexandre Fernandes Pinto
Federal University of the State of Rio de Janeiro
Avenida Pasteur 458, Rio de Janeiro, RJ, 22.290-240, Brazil
alexandre.pinto@uniriotec.br

Adriana Cesario de Faria Alvim
Federal University of the State of Rio de Janeiro
Avenida Pasteur 458, Rio de Janeiro, RJ, 22.290-240, Brazil

adriana@uniriotec.br

Marcio de Oliveira Barros
Federal University of the State of Rio de Janeiro
Avenida Pasteur 458, Rio de Janeiro, RJ, 22.290-240, Brazil
marcio.barros@uniriotec.br

ABSTRACT

16 a 19

Setembro de 2014
Salvador/BA

In this work we present an Iterated Local Search (ILS) based heuristic for the Soft-
ware Module Clustering Problem (SMCP). When designing an ILS algorithm there are four free
components left for the algorithm designer: the initial solution, a local search procedure, the per-
turbation strategy and an acceptance criterion. An extensive experiment was conducted to find the
best choices for the initial solution and the perturbation components of the proposed ILS algo-

rithm. Another study compared our best ILS with several configurations of Genetic Algorithms.
Although the ILS metaheuristic is not extensively used to address software engineering problems,

it was proven very effective for our selected problem, outperforming the best configuration for the

Genetic Algorithm in 24 out of 40 instances and using a fraction of the latter’s computing effort.

KEYWORDS. Iterated Local Search, Software Clustering, benchmarks.

Main Area: Metaheuristics.

1972

x L\/[SIMPOSI0 BRASILEIRO DE PESRQUISA OPERACIONAL

1. Introduction

Software systems contain a finite set of software components, for example modules, along
with a finite set of relationships between these components (import, export, inherit, procedure invo-
cation, and variable access). As a software system grows in size, the distribution of its modules in
larger, container-like structures becomes a relevant design decision. A proper module distribution
aids in the identification of the modules responsible for a given functionality, provides easier navi-
gation among software parts and enhances source code comprehension. Therefore, it supports the
development and maintenance of a software system. Apart from that, experiments have shown a
strong correlation between bad module distributions and the presence of faults in software systems.

The Software Module Clustering Problem (SMCP) can be defined as the problem of par-
titioning modules into clusters so as to optimize some criterion. Formally, given a set N =
{1,...,n} of modules and a cost ¢(i, j) which indicates the relation between each pair i,j € N,
the SMCP consists of finding a partition P = {C1,Cy,...,Cy,} of N into m clusters, 1 < m < n,
with C; # 0,i =1,....m; C; N Cj = 0,i,j = 1,...,m,i # jand |J"; C; = N so as to
maximize/minimize some criterion. The relation c(7, j) indicates the dependency between mod-
ules 7 and j, meaning that if ¢(i,j) > 1 then module 7 is dependent of module j. Two criterions
widely used in literature are: (i) minimize connections between modules of two distinct clusters
(inter-connectivity) and (ii) maximize connections between modules of the same cluster (intra-
connectivity). A proper module distribution aids in the identification of the modules responsible
for a given functionality [Briand (1999)], provides easier navigation among software parts and en-
hances source code comprehension [Larman (2002)]. The SMCP is essentially a Graph Partitioning
Problem, which is known to be NP-hard [Garey and Johnson (1979)], for which heuristic algorithms
provide reasonable solutions in acceptable computing times.

In this work we describe an Iterated Local Search (ILS) [Loureno et al. (2002)] based
heuristic for the Software Module Clustering Problem. The contributions of our work are twofold:
(i) to evaluate the efficiency and effectiveness of our proposed heuristic we report on an extensive
empirical study to address the best configuration for the ILS heuristic and compare it to different
configurations of Genetic Algorithms and (ii) we present 40 instances to serve as benchmarks for
experimental evaluations related to the Software Module Clustering Problem.

The paper is organized as follows: Section 2 introduces the SMC problem. In Section 3,
we briefly review the General ILS frame and present our adaptation of ILS for the SMCP. The
effectiveness of our approach is tested through extensive computational experiments in Section 4.
Concluding remarks are made in the last section.

2. The Software Module Clustering Problem

To evaluate the quality of its module distribution, a software system is usually represented
as a Module Dependency Graph, or MDG [Mancoridis et al. (1999)]. The MDG is a directed graph
in which modules are shown as nodes, dependencies are shown as edges, and clusters are partitions.
Weights may be assigned to edges, denoting the strength of the dependency between the modules
represented by the edge’s source and target nodes. These weights may represent, for instance, the
number of calls on the module represented by the source node referring to methods declared in the
target node. In unweighted MDG, all edge weights are set to 1. The coupling of a cluster can be
calculated by summing the weights of edges leaving or entering the partition (inter-edges), while its
cohesion is calculated by summing the weights of edges whose source and target modules pertain
to the partition (intra-edges) [Praditwong et al. (2011)].

Mancoridis et al. (1999) were the first to present a search-based assessment of the SMCP.
They propose a Hill Climbing search to find the best module distribution for a system. The search is
guided by a fitness function called Modularization Quality (M Q). Let m be the number of clusters,
7 the sum of intra-edge weights and j the sum of inter-edge weights for cluster Cy, k = 1,...,m.
M@ is calculated as the sum of the modularization factors (MF) of all clusters. M F' is defined as:

16 a 19

Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

1973

x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

0 ifi=0
MF(Ck):{ ; e
i+§'/2 if ¢ > 0.

)

M@ looks for a balance between coupling and cohesion, rewarding clusters with many
intra-edges and penalizing them for dependencies with other clusters. According to Kohler et al.
(2013), M F can be seen as a generalization of the fitness function known as relative density that
measure the quality of a cluster within a graph. Sima and Schaeffer (2005) prove that the decision
problem associated with the optimization task of finding the clusters that are optimal with respect
to the relative density measure is NP-complete. The Hill Climbing search proposed in [Mancoridis
et al. (1999)] aims to find partitions of a MDG with the highest M () possible. Doval et al. (1999)
present a genetic algorithm to address the SMCP, using M () as a mono-objective fitness func-
tion. The genetic algorithm, however, has been found less effective and less efficient than the Hill
Climbing search. Mahdavi et al. (2003) address the SMCP by running 23 independent Hill Climbing
searches upon a MDG, building a partial solution consisting of modules sharing the same cluster
in more than a predetermined number of solutions produced by the initial searches, and then run-
ning a second round of Hill Climbing searches to distribute the remaining modules. The authors
saw improvements in solutions found by the second run of local searches when compared to those
produced in the first round, particularly for large instances.

Semaan et al. (2011) used a ILS based heuristic to tackle the problem of clustering object-
oriented information systems, represented as weighted MDG graph using as objective function the
Basic MQ [Doval et al., (1999)]. The SMCP has also been addressed using multi-objective optimiza-
tion [Abdeen et al. (2013), Praditwong et al. (2011), Barros (2012)], interactive search [Abdeen
et al. (2013), Bavota et al. (2012)], and different metrics. Kohler et al. (2013) presented a math-
ematical optimization model and a preprocessing technique for the SMCP. A broader survey on
search-based applications for software design is provided in [Réihd (2007)].

3. An ILS for the Software Module Clustering Problem

The basic ILS frame is summarized below. Assume we have been given a procedure
called GenerateInitialSolution (Line 1) which constructs an initial solution sg for the
problem we are addressing. Also assume we have a local search procedure called LocalSearch
(Line 2) that when applied to a give input, say sg, always returns the same output s* which costs
less or equal to sg (considering a minimization problem), that is, a local optima. The key idea
underlying the ILS method, for escaping from local optima, is to repeatedly perturb the current
local optima solution s* so as to find a “nearby” solution s’ (Line 4), then apply a local search
procedure (Line 5) to s’ finding a new local optima s* which may be better than s*. In Line 6 an
acceptance test is done to decide whether the new solution s* will replace the current one when the
search returns to solution s*. This process is repeated (Lines 3—7) until a stopping criterion is met.

procedure Iterated Local Search;

1 sg < GeneratelnitialSolution;

2 s* < LocalSearch(sg);

3 repeat

4 s’ < Perturbation(s*, history);

5 s* « LocalSearch(s);

6 s* < AcceptanceCriterion(s*, s*/, history);
7 until termination condition met;

end

In TLS, the two common strategies used to escape from local optima — diversification and
intensification — are implemented in the Perturbation and AcceptanceCriterion proce-
dures, respectively. Let the strength of a perturbation be the number of different elements from one

1974

x L\/[SIMPOSI0 BRASILEIRO DE PESRQUISA OPERACIONAL

Pesquisa Operacional na Gestao da Seguranca PUblica

solution to another. If a perturbation is too strong the search behaves more like a random restart.
On the other hand, if the perturbation is too weak there is much more chance of falling back into
the just visited solution. The AcceptanceCriterion procedure decides from which solution
the search will continue. A strong intensification strategy is achieved when only better solutions
are accepted. Instead, if we always accept the solution produced by the perturbation step, we fa-
vor diversification. Another feature from ILS is the memory mechanism called history. It keeps
information about the search and can be used for deciding whether the search accepts a worst solu-
tion or not in the AcceptanceCriterion procedure. For many problems, a good compromise
between diversification and intensification is not evident to find and is subject of investigation.

A metaheuristic just guides the designer of a specific algorithm for a specific problem.
In general, all metaheuristics have free components for which choices are left for the algorithm
designer. Next, we show our choices for the four ILS free components on regard of the SMCP. We
called the resulting algorithm ILS_SMC. As stopping criterion, we used the number of iterations
equal to 200 times n?, where n is the number of modules, formerly used in Barros (2012).

o [nitial solution: The Agglomerative Hierarchical Clustering Method [Hansen and Jaumard
(1997)] is a classical clustering algorithm in which an initial partition of n single-entity (mod-
ule) clusters is built and, at each step, two clusters are merged, according to a local criterion,
until all entities (modules) belongs to one single cluster. To build an initial solution for the
SMCP we used a variant of this method. First, n clusters are built, each with a single module
of the software. Then, at each step, we evaluate the resulting cost (M @Q)) of merging each pair
of clusters and merge the two cluster that yield the best M (). The procedure stops in the first
iteration that does not find an improvement for M Q.

e Local Search: We adopted a Hill Climbing algorithm guided by the M () measure. The search
departs from a solution built using the procedure described above. At each search step, the
search evaluates all neighbors of the current solution and selects the best neighbor, that is,
the neighbor leading to the larger increase in M () (this strategy is called best-improvement).
The neighborhood relation is defined as the solutions obtained by moving one module from
one cluster to another cluster.

e Perturbation: We used a move operation as our perturbation strategy. Move randomly selects
a module and moves it to a different, randomly-selected cluster.

e Acceptance criterion: We used the “strong” intensification strategy which accepts only better
solutions.

4. Computational Results

In this section we report on two computational experiments performed with ILS_SMC.
The first experiment aimed to find the best configuration for the free components that have been
designed for TL.S_SMC. The best configuration for these components has already been presented in
Section 3, but here we report on how these settings were found. The second experiment compared
results produced by IL.S_SMC with several configurations of genetic algorithms designed for the
SMCP. All algorithms were run on an Intel Core 17-2600 3.40 GHz with 4 GB of RAM memory.
They were coded in Java 7 and compiled with JDK 1.7.0-b147. Running times are reported
in seconds and do not include the cost of reading the input data.

4.1. Test problems

Table 1 describes the 40 test problems instances considered in this work. These instances
are available at https://github.com/smcp/smcp_instances and can serve as an exten-
sive benchmark for further studies on the SMCP. Java code that reads these instances to memory is
also available. A subset of these instances were firstly presented in the work of Barros (2012). The

16 a 19

Setembro de 2014
Salvador/BA

1975

first column of Table 1 indicates the name of the instance, which acts as an identifier to be used in

x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL

Pesquisa Operacional na Gestao da Seguranca PUblica

16 a 19

Setembro de 2014
Salvador/BA

further data tables. Next, we show a short description for the instance, including its source software
system along with its version if applicable. The next two columns show, respectively, the number
of modules (# Mod.) and the number of module dependencies for each instance (# Dep.).

Instance name Description # Mod. | # Dep.
JSTL JSP Standard Tag Library 18 20
* JNANOXML XML parser for Java 25 64
JODAMONEY Money management library 26 102
JXLSREADER Library for reading Excel files 27 73
SEEMP Small information system 31 61
* APACHE file compression utility 36 86
UDTIJAVA Native impl. for the UDT protocol v0.5 56 227
JAVAOCR Written text recognition library 59 155
SERVLET Java Servlets API 63 131
PFCDA_BASE Source code analisys (model) v1.1.1 67 197
FORMS GUI form handling library v1.3.0 68 270
* JSCATTERPLOT Scatter plot library (JTreeview) v1.1.6 74 232
JFLUID Java Profiler v1.7.0 82 315
JXLSCORE Library to represent Excel files 83 330
JPASSWORD Password management program 96 361
* JUNIT Unit test support library 100 276
XMLDOM Java XML DOM Classes 119 209
* TINYTIM Tiny TIM: Topic Maps Engine 134 564
JKARYOSCOPE Karyoscope charts (JTreeview) v1.1.6 136 460
* GAE_PLUGIN Eclipse Google Plugin 140 375
JAVACC Java CC: Yacc for Java 154 722
JAVAGEOM Java geometry library v0.11.0 172 1445
*+ JDENDOGRAM Dendogram plot (JTreeview) v.1.1.6 177 583
XMLAPI Java XML API 184 413
JMETAL JMetal: heuristic search algorithms 190 1137
DOM4] DOM4]: alternative XML API for Java 195 930
+ PDF_RENDERER Java PDF renderer v0.2.1 199 629
JUNG_GRAPH_-MODEL | Jung Graph - model classes v2.0.1 207 603
JCONSOLE Java Console (part of JDK) v1.7.0 220 859
* JUNG_VISUALIZATION | Jung Graph - visualization classes v2.0 221 919
* PFCDA_SWING Source code analisys - GUI v1.1.1 252 885
JPASSWORD_FULL Password management program full v0.5 269 1348
* JML MSN Messenger library for Java v1.0 270 1745
* NOTEPAD_FULL Tablet editor v0.2.1 299 1349
POORMANS CMS Poor Man’s CMS 304 1118
LOG4] Logging library for Java 1.2 308 1078
JTREEVIEW Stanford Treeview for Java 329 1057
JACE Java Apple computer emulator 340 1524
JAVAWS Java Web Start from JRE v7 378 1403
RES_COBOL COBOL translator to Java 483 7163

Table 1: Test instances used in our experimental studies. All instances were used in our second study, while

only instances marked with an asterisk were used in the first one.

4.2. Experimental Design

Heuristic search algorithms contains random components and, thus, may return different
solutions for each independent run. To account for this stochastic behavior, each algorithm involved
in the studies described in this section was run 30 times for each instance. For each trial, we obtained

the M@ of its best solution and the execution time of the algorithm.

M@ values were used to compare different algorithms or different configurations of the
same algorithm in terms of effectiveness, that is, its ability to produce good solutions. In this sense,
algorithms were compared in a per instance basis and a solution A in considered better than a
solution B if A has higher M @ than B. Execution times were used for efficiency comparisons. In
this context, an algorithm is considered more efficient if it executes in shorter time.

Statistical tests were applied to determine whether results obtained by distinct algorithms
or different configurations of the same algorithm can be considered significantly different from each

1976

7/
/ x L\/[SIMPOSI0 BRASILEIRO DE PESRQUISA OPERACIONAL

Pesquisa Operacional na Gestao da Seguranca PUblica

other. The Wilcoxon-Mann-Whitney non-parametric statistical inference test was used to compare
the means of two independent samples. This test does not require the underlying dataset to be nor-
mally distributed or two samples to have equal variance. The test was applied at 95% significance
level, but p-values are presented whenever possible.

Effect-size measures denote how often an algorithm is better than another in a set of pair-
wise comparisons. We have used the A5 non-parametric effect-size measure [Vargha and Delaney
(2000)] in our studies. This measure yields a value between 0 and 100%. A value of 80% means
that algorithm 1 is expected to produce better solutions than algorithm 2 in 8 out of 10 independent
runs. Values closer to 50% denote that the algorithms tend to produce similar results.

The R Statistical System v.2.15.2 was used to perform inference tests, as well as to calcu-
late the means, standard deviations, and effect-sizes reported in the following sections.

4.3. Comparing different ILS_CMS configurations

To select the best configuration for ILS_CMS, we designed and executed an experimental
study on which 228 different configurations of the algorithm were examined using the 12 instances
marked with an asterisk in Table 1.

The configurations selected for the experimental study differed according to (a) the strat-
egy for creating the initial solution; (b) the perturbation strategy; and (c) the number of solutions
produced by the selected perturbation strategy which were examined before restarting the local
search. On regard of the initial solution, two alternatives were tested: a solution created by the Ag-
glomerative Hierarchical Clustering Method (see Section 3) or a randomly-created solution. On re-
gard of the perturbation, 57 distinct strategies were examined. Finally, concerning the local search,
we have evaluated two settings: accepting the first solution produced by perturbation as the new
starting point for the local search or testing up to 5 solutions produced by perturbation and selecting
a solution only if it improves the best M () known so far (local search was started from a random
solution in case none of the 5 solutions improved the objective function).

To build the 57 perturbation strategies, five operations were examined: (i) moving 10%
of the modules of a given solution from their clusters to different, randomly-selected clusters; (i7)
exchanging the position of 10% pairs of modules, each module in a pair coming from a different
cluster; (i7i) merging 10% of the clusters; (iv) selecting 10% of the clusters and dividing each
of them into two new clusters; and (v) exploding 10% of the clusters into many cluster, each
conveying a single module. Each of these operations was tested in isolation (5 configurations), was
combined in groups of two (10 configurations), three (10 configurations), four (5 configurations),
or five operations (1 configuration). For each configuration with at least two operations, they were
either executed in a predefined order (move, exchange, merge, division, and split) or one operation
was randomly-selected whenever a perturbation was required.

Each ILS_CMS configuration was executed 30 times for each instance. Results were
compared in a per instance basis. For each instance, we calculated the mean M) produced by
each configuration, selected the larger mean, and marked all configurations whose mean was equal
to the larger one as winners for that instance (means were considered equal if their difference was
less than 0.01). Finally, we selected the configurations that won more often as the best settings for
ILS_CMS.

The best configurations have used the greedy algorithm to create their initial solutions
and their local search started from the first solution produced by the selected perturbation strategy.
Configuration ILS1 won on 7 out of 12 instances using only the move operation in perturbations.
Configurations ILS2 (sequence of move, exchange, and merge for perturbation), ILS3 (exchange for
perturbation), and ILS4 (random selection of move or exchange for perturbation) scored 6 victories
each. These configurations were selected for a final comparison using statistic inference tests and
effect-sizes. The means and standard deviations for M () found by each configuration are shown in
Table 2.

16 a 19

Setembro de 2014

Salvador/BA

1977

/ x L\/[SIMPOSI0 BRASILEIRO DE PESRQUISA OPERACIONAL 16 a 19

Pesquisa Operacional na Gestao da Seguranca PUblica

Instances ILS 1 ILS 2 ILS 3 ILS 4
JNANOXML 3.82+0.00 3.82+0.00 3.82+0.00 3.82+0.00
APACHE 5.77+0.00 5.77+0.00 5.77+0.00 5.77+0.00
JSCATTERPLOT 10.74 4 0.02 10.74 £ 0.02 10.74 4+ 0.00 10.74 £ 0.01
JUNIT 11.09 £ 0.00 11.09 £ 0.00 11.09 + 0.00 11.09 &+ 0.00
TINYTIM 12.51 +£0.02 12.47+0.02 12.51 +0.02 12.50 £ 0.02
GAE_PLUGIN 17.28 £0.02 17.33 £ 0.02 17.294+0.02 17.29 40.02

JDENDOGRAM 26.07 £ 0.01 26.07 £ 0.01 26.07 = 0.01 26.07 £ 0.01
PDF_RENDERER 21.85+0.14 21.72+£0.14 21.784+0.20 21.82+0.11
JUNG_VISUALIZ 20.88+0.21 20.794+0.20 20.76£0.16 20.81£0.21
PFCDA_SWING 28.99 +0.03 28.944+0.02 28.97+0.03 28.98+0.03
JML 17.40+0.05 17.36 £0.03 17.39+£0.04 17.40+0.03
NOTEPAD_FULL 29.48 £0.05 29.414+0.06 29.48 4+ 0.05 29.49 %+ 0.06

Table 2: Means and standard deviations of MQ for the best ILS_CMS configurations.

ILS1>1LS2 ILS1>1LS3 ILS4>1I1LS2 ILS4>1LS3 ILS1>I1LS4

Instances PV ES PV ES PV ES PV ES PV ES
JNANOXML - 50% - 50% - 50% - 50% - 50%
APACHE 1.000 50% 0.161 47% 0.161 53% - 50% 0.161 47%
JSCATTERPLOT 0.452 53% 0.161 47% 0.371 54% 0.161 47% 0.959 50%
JUNIT - 50% - 50% - 50% - 50% - 50%
TINYTIM < 0.001 93% 0.684 53% < 0.001 90% 0.399 44% 0.217 59%
GAE_PLUGIN < 0.001 8% 0.435 44% < 0.001 8% 0.510 45% 0.833 48%
JDENDOGRAM 0.797 52% 0.881 49% 0.884 51% 0.477 45% 0.858 51%
PDF_RENDERER < 0.001 77% 0.208 60% 0.001 76% 0.662 53% 0.208 60%
JUNG_VISUALIZ 0.088 63% 0.015 68% 0.719 53% 0.343 57% 0.224 59%
PFCDA_SWING < 0.001 91% 0.004 71% < 0.001 83% 0.234 59% 0.115 62%
JML < 0.001 79% 0.483 55% < 0.001 83% 0.181 60% 0.483 45%
NOTEPAD_FULL < 0.001 82% 0.965 50% < 0.001 84% 0.356 57% 0.356 43%

Table 3: P-values and effect-sizes for pair-wise comparisons of the best ILS_CMS configurations.

The four configurations with greater M () means were compared using the selected non-
parametric inference test and effect-size measures. Table 3 shows the comparative results of sta-
tistical tests between these configurations. P-values shown as hyphens correspond to samples that
produced identical results and thus cannot be statistically different.

The first column of Table 3 shows instance identifiers, these instances being listed in the
increasing order of their size, measured in number of modules. The second and third columns re-
spectively report the p-value of the inference test and the effect-size for comparing ILS1 to ILS2.
A p-value under 0.05 indicates significantly different M () means with 95% confidence. The com-
parison between ILS1 and ILS2 shows that sample means are statistically different for 7 out of 12
instances, with effect-size favoring ILS1 (particularly on the three largest instances).

The next columns work in pairs and follow the same pattern used in the second and third
columns. The comparison between ILS1 and ILS3 shows that sample means are statistically differ-
ent for only 2 out of 12 instances, but effect-sizes tend to favor ILS1 for instances with more than
199 modules (from PDF_RENDERER on). The comparison between ILS4 and ILS2 shows that
sample means are statistically different in half of the instances, but ILS4 outperforms ILS2 while
searching solutions for the largest ones. The comparison between ILS4 and ILS3 did not find any
significant differences among means, but effect-size slightly favors I1LS4 for large instances. Fi-
nally, no significant difference among means was found in the comparison between ILS1 and ILS4:
only small effect-sizes were found, in average favoring ILS1 (52%).

These results indicate that ILS1 and ILS4 are the most promising settings for ILS_CMS.
Although solutions found by these settings were not significantly different, ILS1 has shown a
slightly greater effect-size and is selected for the next study, which compares ILS1 with genetic
algorithms designed to address the SMCP. Furthermore, it is important to notice that we do not re-
port on execution times for this study because execution times for all selected configurations were

Setembro de 2014
Salvador/BA

1978

x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

very close for practical purposes.
4.4. Comparing ILS_CMS to genetic algorithms

After determining the best configuration for ILS_CMS, we designed and executed an ex-
perimental study to compare its effectiveness and efficiency with two GA-based approaches. To
allow for a fair comparison, the same procedure used to select the best ILS configuration for the
SMCP was used to select the best configuration for both GA-based approaches. Then, the best GA
of each kind was compared to ILS_CMS in order to find the most appropriate algorithm for the
mono-objective formulation of the SMCP.
4.4.1. Genetic Algorithms for SMCP

Many GA-based algorithms were built to address the SMCP, using both mono-objective
[Doval et al. (1999), Bavota et al. (2012)] and multi-objective [Abdeen et al. (2013), Praditwong
et al. (2011), Barros (2012)] formulations for the problem. Most of these works use the group-
numbers encoding (GNE) representation. In this representation, a chromosome has one gene per
module and each gene encodes the number of the cluster where the module belongs in the solution.
One problem of this encoding schema is its high degree of redundancy, since different numbers may
refer to the same cluster in distinct solutions.

To deal with this issue, Falkenauer (1996) presented the Grouping Genetic Algorithm
(GGA) in which clusters, instead of modules, become genes in the chromosome. Since the number
of clusters may vary from one solution to another, the size of the chromosome may change from
solution to solution and special genetic operators are used for crossover and mutation. Falkenauer
(1996) suggests dividing the chromosome into two parts: one to identify the modules pertaining to
each clusters and the second to identify the cluster themselves. Praditwong (2011) applied the GGA
approach to the SMCP and found that it outperformed the GNE approach for large-sized software
projects represented as unweighted MDG.

In the present work, we implemented two GA-based algorithms for the SMCP: one using
GNE (GA_GNE) and the other using GGA (GA_GGA). Both algorithms use M () as their objective
function. We have tested different configurations of each algorithm to find their best genetic oper-
ators using the same 12 instance that were used to find the best configuration for ILS_CMS. Next,
we outline our specific choices for the best configuration for the GA_GNE algorithm:

e Crossover operator: two-point crossover, with random selection of the two cutting positions.
The probability of applying the crossover operator is set to 80% for systems with less than 100
modules and 100% for larger systems. The two parents subjected to crossover are replaced
by their two offspring in the new generation;

e Parent selection: binary tournament with 30% elitism (that is, the best 30% instances are
selected before binary tournament is applied to select parents for crossover in order to com-
plement the population);

e Mutation operator: uniform mutation with 0.04 x log,(n) probability.
A similar procedure was used to select the best configuration for GA_GGA:

e Crossover operator: same crossover proposed by Praditwong (2011). First, two parents are
selected using binary tournament. For each parent, select one position in the list of clusters.
Then, select a second position, necessarily after the first one, so that at most 10% of all
clusters are contained in the region between the two positions. A similar procedure is applied
to the second chromosome and the clusters in each selected region are exchanged between the
chromosomes. In case any of the transferred clusters carries a module that already pertains to
another cluster in the target chromosome, the module is removed from its original cluster and
maintained in that received as part of the crossover. Finally, clusters with a single module are
merged to a randomly-selected cluster;

1979

x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

e Mutation operator: the mutation is applied on the two offspring. It randomly chooses one
of the following three options: a) join two clusters randomly selected; b) split a randomly
selected cluster in two clusters; and ¢) move a module from one cluster to another, both
randomly selected. The probability of applying mutation is 0.04 * logy(n).

e Population diversity: in order to introduce diversity in the population, the algorithm counts
the number of individuals in a new generation having the same fitness. If this number exceeds
0.1% of the individuals, a uniform mutation is performed on the newly inserted individual
(5% randomly-selected modules are moved to other clusters).

Both GA_GNE and GA_GGA used a population of 10n individuals, where n is the number
of modules of the instance under analysis. The initial population was randomly-generated. For the
stopping criterion, we used the same maximum number of evaluations as for ILS_CMS.

4.4.2. Analysis of Solution Quality

In this section the algorithms are compared on regard of the quality of the solution they
produced, that is, on the mean values of their best solution’s M) over the course of their 30 in-
dependent runs. Means and standard deviations for M () for each of the 40 instances are shown in
Table 4. The table is divided into three sections, separating small, medium, and large instances. The
best means for each instance are shown in bold.

The first column in Table 4 contains instance identifiers. The second column shows the
means and standard deviations of the best M () found by ILS_CMS. The next column shows means
and standard deviations found by GA_GNE and the following column shows similar results for
GA_GNE. As can be seen, GA_GNE is outperformed by GA_GGA or ILS_CMS in all but one in-
stance, on which all algorithms find solutions with similar M (). Thus, from this point on GA_GNE
is left out of further comparisons. The fifth column in Table 4 shows the p-value for comparing
ILS_CMS and GA_GGA with the statistical inference test and the last column shows the effect-size
for the pair-wise comparison of these algorithms.

Considering small instances (with up to 100 modules), ILS_CMS produced the best means
for 13 out of 16 instances, while GA_GGA produced the best solutions for 9 instances. ILS_CMS
significantly outperformed GA_GGA in 7 out of 16 instances. Overall, ILS_CMS proved slightly
superior to GA_GGA for small instances, showing an average effect-size of 52%.

For mid-sized instances (from 101 to 200 modules), ILS_CMS produced the best mean
MQ@ in 8 out of 11 instances, while GA_GGA produced the best average in 3 instances. The
differences between the algorithms were considered significant in 8 out of 11 instance and again
ILS_CMS has shown a slightly greater effect-size (61%) when compared to GA_GGA.

In large instances (with more than 200 modules), ILS_CMS obtained the best average in
9 out of 13 instances, while GA_GGA outperformed the former in only 4 instances. 8 compar-
isons were statistically significant, 7 of them favoring ILS_CMS. Finally, as it happened with small
and mid-sized instances ILS_CMS showed a slightly higher effect-size than GA_GGA for large
instances (67%).

ILS_CMS was superior in terms of solution quality to the selected genetic algorithms
while addressing the SMCP. ILS_CMS obtained the best values for M () in most instances, regard-
less of their sizes and number of dependencies, demonstrating its scalability as instance size grows.
The second best performing heuristic was GA_GGA, with average effect-size for all instances of
59% favoring ILS_CMS. Comparing the two genetic algorithm approaches, GA_GGA obtained a
mean effect-size of 88% in comparisons with GA_GNE. Thus, we can conclude that there is evi-
dence that ILS_CMS can find better solutions for the mono-objective formulation of the SMCP than
genetic algorithms based on GNE and GGA representation.

1980

XLV

SIMPOSI0 BRASILEIRO DE PESRQUISA OPERACIONAL

Pesquisa Operacional na Gestao da Seguranca PUblica

Instance ILS_.CMS GA_GNE GA_GGA PV ES
JSTL 3.31 £+ 0.04 3.30 £0.04 3.29 £ 0.06 0.039 | 64%
JNANOXML 3.82 £+ 0.00 3.77 £0.03 3.81 £0.01 0.006 | 62%
JODAMONEY 2.75 £+ 0.00 2.734+0.03 | 2.75+0.00 - | 50%
JXLSREADER 3.60 £+ 0.00 3.58+0.03 | 3.60+0.00 - | 50%
SEEMP 4.65 £+ 0.00 4.644+0.02 | 4.65=+0.00 - | 50%
APACHE 5.77 4+ 0.00 5.744+0.03 | 5.77 £0.00 0.161 | 47%
UDTJAVA 5.28 £+ 0.01 5.244+0.03 | 5.28 +0.01 0.246 | 44%
JAVAOCR 9.00 £ 0.03 8.95+0.04 | 9.02+0.01 | < 0.001 | 28%
SERVLET 9.47 £ 0.06 9.45+0.11 | 9.50 £ 0.07 0.039 | 35%
PFCDA_BASE 7.33 +£0.01 7.30 £ 0.03 7.32+£0.01 0.028 | 66%
FORMS 8.33 £+ 0.00 8.30 £0.03 8.32+0.01 0.011 | 60%
JSCATTERPLOT 10.74 +£0.02 | 10.68 = 0.05 | 10.74 & 0.00 0.161 | 47%
JFLUID 6.58 = 0.00 6.51 £+ 0.05 6.54 £0.05 | < 0.001 | 78%
JXLSCORE 9.30 £+ 0.09 | 9.30 £+ 0.04 9.29 £+ 0.09 0.367 | 57%
JPASSWORD 10.29 +0.04 | 10.28 £ 0.06 | 10.34 = 0.04 | < 0.001 | 21%
JUNIT 11.09 £ 0.00 | 11.06 & 0.05 11.08 £0.01 | < 0.001 | 78%
XMLDOM 10.86 +0.03 | 10.84 £ 0.07 | 10.88 & 0.05 0.083 | 38%
TINYTIM 12.51 £ 0.02 | 12.31 +0.07 12.45+£0.05 | < 0.001 | 87%
JKARYOSCOPE 18.98 £+ 0.02 | 18.90 + 0.05 18.96 £+ 0.04 0.014 | 64%
GAE_PLUGIN 17.28 £0.02 | 17.29£0.04 | 17.29 &+ 0.04 0.026 | 33%
JAVACC 10.60 + 0.05 | 10.43 +0.07 | 10.62 £ 0.06 0.145 | 39%
JAVAGEOM 14.07 £ 0.02 | 13.67 £ 0.08 14.01 £0.04 | < 0.001 | 93%
JDENDOGRAM 26.07 £ 0.01 | 25.58 +0.12 26.03 = 0.03 | < 0.001 | 87%
XMLAPI 18.99 +0.04 | 18.49+0.11 18.97 £ 0.08 0.636 | 54%
JMETAL 12.41 +£0.03 | 11.87 +£0.11 12.39 £ 0.09 0.790 | 52%
DOM4J 18.83 £0.10 | 17.97 +£0.19 18.77£0.13 0.053 | 65%
PDF_RENDERER 21.85 4+ 0.14 | 21.194+0.19 21.82+0.12 0.277 | 58%
JUNG_GRAPH 31.52+0.14 | 30.16 +0.34 | 31.55 £ 0.11 0.636 | 46%
JCONSOLE 26.51 £+ 0.01 | 24.99 +0.19 26.43 + 0.06 | < 0.001 | 94%
JUNG_VISUALIZ 20.88 +0.21 | 20.16 £0.16 | 21.05 4+ 0.07 0.001 | 24%
PFCDA_SWING 28.99 + 0.03 | 26.25 4+ 0.30 28.85 + 0.08 | < 0.001 | 94%
JPASSWORD_FULL | 27.89 4+ 0.08 | 24.74 £+ 0.23 27.87 +0.08 0.176 | 60%
JML 17.40 £ 0.05 | 15.28 +0.16 17.35 £ 0.09 0.005 | 71%
NOTEPAD_FULL 29.48 +£0.05 | 25.47 +0.28 | 29.49 £ 0.10 0.941 | 51%
POORMANS 34.13 £ 0.03 | 28.79 +0.28 34.06 + 0.12 0.006 | 71%
LOG4] 31.43 +£0.21 | 26.71 +0.30 | 31.49 £ 0.18 0.371 | 43%
JTREEVIEW 47.59 & 0.15 | 39.28 £ 0.47 47.55 +0.12 0.198 | 60%
JACE 26.63 + 0.02 | 23.16 +0.17 26.59 + 0.08 0.007 | 70%
JAVAWS 38.27 4+ 0.02 | 29.73 +0.36 38.19+0.09 | < 0.001 | 89%
RES_COBOL 15.97 +£0.01 | 12.86 £ 0.10 15.89 £0.06 | < 0.001 | 97%

Table 4: Means and standard deviations for M () found by the selected algorithms.

4.4.3. Analysis of Execution Time
On regard of efficiency, Figure 1 shows that the computational time required by GA_GGA
increases much faster than the time required by ILS_CMS as instance size grows. The X axis in

this chart shows instance sizes, while the Y axis denotes the time required to run the algorithms,

16 a 19

Setembro de 2014
Salvador/BA

measured in seconds. While GA_GGA requires ten times the computational effort required by
ILS_CMS for the smallest instances, this ratio grows to more than a thousand times for the largest
ones. Thus, we can conclude that ILS_CMS outperforms GA_GGA in terms of computational
efficiency for all instances.

4.5. Threats to Validity
A fundamental question concerning experimental studies is how valid and general are their

results. According to Wohlin et al. (2000) threats to validity can be divided into four categories:
Construct, Internal, External and Conclusion.

Construct threats deals with the relationship between theory and observation. As a mea-
sure against the construct validity threats, the theoretical definition of the problem was presented in
Section 2, while the experimental design was detailed in Section 4. Valid and well-known metrics
were used to address efficiency (execution time) and effectiveness (MQ) of the selected algorithms
while addressing the SMCP.

1981

/ x L\/[SIMPOSI0 BRASILEIRO DE PESRQUISA OPERACIONAL 16 a 19

Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014
Salvador/BA

10000 4
9000 A

8000

7000

6000

——ILs_cms
5000 =-GA_GNE

—+—GA_GGA
4000 /
3000 /
2000 / —
1000 —

0 100 200 300 400 500 600
Problem size (number of modules)

Average time in seconds

Figure 1: Average CPU time as a function of problem size (number of modules) for algorithms ILS_CMS,
GA_GGA and GA_GNE.

Internal validity threats ascertain that if a relationship is observed between the treatment
and the output, it is a causal relationship and not the result of a uncontrolled or unmeasurable
factor introduced in the experimental design. These threats have been treated by reusing algorithm
configurations and parameters used in previous studies addressing the SMCP. Also, a systematic
procedure was devised to determine the best configuration for each algorithm. Finally, real open-
source instances were used in the experiments and made available for replication purposes.

External validity relates to our ability to generalize the results of the study for other in-
stances. Although instances have been collected mainly from software written in Java, the selected
systems are real applications developed for distinct domains and presenting different sizes. We have
also used a large number of instances and thus are confident that our results hold for other samples.

Finally, conclusion validity is related to the relationship between treatment and outcomes.
Among the measures against such threats, we considered the random nature of the selected algo-
rithms by running 30 independent trials for each algorithm and each instance. We also adopted
non-parametric statistical inference tests and effect-size measures to make sure that the require-
ments of statistical tests would be satisfied by our samples.

5. Conclusions

We proposed a new ILS based heuristic to solve the Software Module Clustering Prob-
lem. To demonstrate the effectiveness of our approach we made two experiments. The first study
examined 228 different configurations of the proposed algorithm with the purpose to characterize
the algorithm’s performance in isolation. The goal of the second experiment was to compare the
performance of different algorithms for the same class of problem. To achieved this task we com-
pared the best version of our ILS_CMS heuristic, obtained in the first study, with two GA-based
algorithms on a set of 40 benchmark instances, up to 483 modules and 7163 dependencies. An
extensive comparative empirical analysis showed that ILS_CMS heuristic outperformed the two
other approximated algorithms, in terms of solution quality and computation times. A basic ILS
is simple to implement and can be used to heuristically solve other problems in the Search Based
Software Engineering (SBSE) area. Future work aims to apply the proposed heuristic on instances
from literature and compare our results with those recently presented in the work of Kdohler et al.
(2013). To make our work comparable, we also introduced 40 benchmarks instances, available at
https://github.com/smcp/smcp_instances. We hope that these problems will consti-
tute a comparison base for future resolution methods.

Acknowledgments

The two first authors thanks FAPERJ (Project E-26/110. 552/2010). Mércio de O. Barros
thanks CAPES and CNPq for the financial support given to this project.
References

1982

7!
x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

Abdeen, H., Sahraoui, H., Shata, O., Anquetil, N. and Ducasse, S. (2013), Towards Automat-
ically Improving Package Structure while Respecting Original Design Decisions, Proceedings of
the Working Conference on Reverse Engineering, 212-221.

Barros, M. (2012), An Analysis of the Effects of Composite Objectives in Multiobjective Soft-
ware Module Clustering, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2012), 1205-1212.

Bavota, G., Carnevale, F., De Lucia, A., Di Penta, M. and Oliveto, R. (2012), Putting the De-
veloper in-the-loop: an Interactive GA for Software Re-Modularization, Proceedings of the 4th
Symposium on Search Based Software Engineering (SSBSE 2012), 75-89.

Briand, L., Morasca, S. and Basili, V. (1999), Defining and Validating Measures for Object-based
High-Level Design, IEEE Transactions on Software Engineering, 25, 722-743.

Doval, D., Mancoridis, S. and Mitchell, B.S. (1999), Automatic clustering of software systems
using a genetic algorithm, Proceedings of the Software Technology and Engineering Practice, 73—
81.

Falkenauer, E. (1996), A Hybrid Grouping Genetic Algorithm for Bin Packing, Journal of Heuris-
tics, 2, 5-30.

Garey, ML.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, New York, 1979

Hansen, P. and Jaumard, B. (1997), Cluster Analysis and Mathematical Programming, Journal of
Math. Program., 79, 191-215.

Kohler, V., Fampa, M. and Olinto, A. (2013), Mixed-Integer Linear Programming Formulations
for the Software Clustering Problem, Computational Optimization and Applications, 55, 113—-135.
Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis and the
Unified Process, Prentice Hall, Upper Saddle River, NJ, 2002.

Loureno, H.R., Martin, O.C. and Stiitzle, T., Iterated Local Search, in Handbook of Metaheuris-
tics, Glover, F. and Kochenberger, G. A. (Eds.) International Series in Operations Research and
Management Science, Kluwer Academic Publishers, 321-353, 2002.

Mahdavi, K., Harman, M. and Hierons, R.M. (2003), A Multiple Hill Climbing Approach to
Software Module Clustering, Proceedings of the International Conference on Software Mainte-
nance (ICSM ’03), 315-324.

Mancoridis, S., Mitchell, B.S., Chen, Y. and Gansner, E.R. (1999), Bunch: A Clustering Tool
for the Recovery and Maintenance of Software System Structures, Proceedings of the IEEE Inter-
national Conference on Software Maintenance, 50-59.

Praditwong, K. (2011), Solving Software Module Clustering Problem by Evolutionary Algorithms,
Eighth International Joint Conference on Computer Science and Software Engineering, 154—159.
Praditwong, K., Harman, M. and Xin Yao (2011), Software Module Clustering as a Multi-
Objective Search Problem, IEEE Transactions on Software Engineering, 37(2), 264-282.

Réiha, O., A Survey on Search-Based Software Design, Technical Report D-2009-1, Department
of Computer Sciences University of Tampere, March 2007.

Semaan, G.S., Botelho, S.L..V. and OCHI, L.S. (2011), Heuristica Baseada em Busca Local It-
erada para a resolucao do Problema de Agrupamento de Sistemas Orientados a Objetos, Simpdsio
Brasileiro de Pesquisa Operacional (XLIII SBPO).

Sima, J. and Schaeffer, S.E., On the NP-Completeness of Some Graph Cluster Measures, in Proc.
of the 32th Conf. on Current Trends in Theory and Practice of Computer Science, Wiedermann, J.,
Tel, G., Pokorny, J., Bielikova, M, and Stuller, J. (Eds.), LNCS 3831, 530-537, 2006.

Vargha, A. and Delaney, H.D. (2000), A critique and improvement of the CL. common language
effect size statistics of McGraw and Wong, Journal of Educational and Behavioral Statistics, 25,
101-132.

Wohlin, C., Runeson, P. and Host, M., Experimentation in Software Engineering: An Introduc-
tion, Kluwer Academic Publishers Group, Massachusetts, 2000.

1983

