
Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

GRASP WITH PATH-RELINKING FOR THE MULTI-TAP
SINGLE-FINGER KEYPAD LAYOUT PROBLEM

Ricardo M. de A. Silva
Centro de Inforḿatica

Universidade Federal de Pernambuco, C.P. 50.740-560, Recife, PE, Brazil
rmas@cin.ufpe.br

Geraldo R. Mateus
Departamento de Ciência da Computação

Universidade Federal de Minas Gerais, C.P. 31270-010, Belo Horizonte, MG, Brazil.
mateus@dcc.ufmg.br

Mauricio G. C. Resende
Internet and Network Systems Research

AT&T Labs Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.
mgcr@research.att.com

Geber L. Ramalho
Centro de Inforḿatica

Universidade Federal de Pernambuco, C.P. 50.740-560, Recife, PE, Brazil
glr@cin.ufpe.br

RESUMO
Este artigo adapta a heurı́stica GRASP with path-relinking, introduzido por Mateus

et al. (2011) para o problema da atribuição quadŕatica generalizada (AQG), a um novo problema
denominado multi-tap single-finger keypad layout problem (MTSFKLP) O MTSFKLP consiste em
atribuir śımbolos de uma linguagem para teclas de um teclado tal que a soma dasáreas das teclas
não exceda áarea dispońıvel da tecla. Dentre todas as atribuições posśıveis, buscamos aquela
que minimiza a soma dos produtos das frequências de transição entre cada par de caracteres e as
dist̂ancias entre as teclas nas quais os caracteres est ao atribuı́dos.

PALAVRAS CHAVE. grasp, path-relinking, keypad layout problem.

Área Principal: Metaheuristics

ABSTRACT
This paper adapts the GRASP with path-relinking heuristic introduced by Mateus et al.

(2011) for the generalized quadratic assignment problem (GQAP), for a novel problem denominated
multi-tap single-finger keypad layout problem (MTSFKLP). The MTSFKLP consists in assigning
symbols (characters) of a language to keys of a keypad such that the total area of the symbols
assigned to a key does not exceed the available area of the key. Among all feasible assignments,
we seek one that minimizes the sum of products of frequency of the transition between each pair of
consecutive characters and distances between keys to which the characters pairs are assigned.

KEYWORDS. grasp, path-relinking, keypad layout problem.

Main Area: Metaheuristics

2260

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

1. Introduction
Thereexists several variants about keyboard layout problem (KLP) in the literature (Del-

lAmico et al., 2009; Mittal and Sengupta, 2009; Lesher et al., 1998; Eggers et al., 2003; Cardinal
and Langerman, 2005; Zhai et al., 2002; MacKenzie and Zhang, 1999; Li et al., 2006; Kreifeldt
et al., 1989; Zhai et al., 2000). In this paper, we consider a novel problem denominated multi-tap
single-finger keypad layout problem (MTSFKLP). The MTSFKLP consists in assigning symbols
(characters) of a language to keys of a keypad such that the total area of the symbols assigned to
a key does not exceed the available area of the key. Among all feasible assignments, we seek one
that minimizes the sum of products of frequency of the transition between each pair of consecutive
characters and distances between keys to which the characters pairs are assigned. More formally,
letN = {1, . . . , n} denote the set of characters andM = {1, . . . ,m} the set of keys. Furthermore,
denote byAn×n = (aii′) the frequency of the transition between each pair of consecutive characters
i ∈ N andi′ ∈ N , such thataii′ ∈ ℜ+ if i 6= i′, otherwiseaii′ = 0; and denote byBm×m = (bjj′)
the distance between keysj ∈ M andj′ ∈ M , such thatbjj′ ∈ ℜ+ if j 6= j′, otherwisebjj′ = 0.
Let qi ∈ ℜ+ be the area demanded by characteri ∈ N , andQj ∈ ℜ

+, the total available area of key
j ∈ M . The MTSFKLP can be modelled as a generalized quadratic assignment problem (GQAP).
It consists in findingXn×m = (xij), with xij = {0, 1}, where characteri ∈ N is assigned to key
j ∈M if and only if xij = 1, such that the constraints

∑

j∈M

xij = 1, ∀i ∈ N, (1)

∑

i∈N

qixij ≤ Qj , ∀j ∈M, (2)

xij ∈ {0, 1}, ∀i ∈ N, ∀j ∈M

are satisfied and the objective function
∑

i∈N

∑

j∈M

∑

i′∈N,i′ 6=i

∑

j′∈M

aii′bjj′xijxi′j′

is minimized. Constraints (1) guarantee that each character is assigned to exactly one key, while
constraints (2) ensure that key capacities are not violated.

2. GRASP with path-relinking
A GRASP (Feo and Resende, 1989; 1995; Resende and Ribeiro, 2010) is a multi-start

heuristic where at each iteration a greedy randomized solution is constructed to be used as a starting
solution for local search. Local search repeatedly substitutes the current solution by a better solution
in the neighborhood of the current solution. Each such replacement is called amove. If there is no
better solution in the neighborhood, the current solution is declared a local minimum and the search
stops. The best local minimum found over all GRASP iterations is output as the solution. One way
to incorporate memory into GRASP is with path-relinking (Glover., 1996; Ribeiro and Resende,
2012). In GRASP with path-relinking (Laguna and Martı́, 1999; Resende and Ribeiro, 2005), an
elite set of diverse good-quality solutions is maintained to be used during each GRASP iteration.
After a solution is produced with greedy randomized construction and local search, that solution
is combined with a randomly selected solution from the elite set using the path-relinking operator.
The combined solution is a candidate for inclusion in the elite set and is added to the elite set if it
meets certain quality and diversity criteria.

Mateus et al. (2011) introduced a GRASP with path-relinking for the GQAP. Algorithm 1
shows pseudo-code for this algorithm, adapted for the MTSFKLP as a GQAP problem. The al-
gorithm takes as input the setN of characters, the setM of keys, the flow matrixA, the distance
matrixB, the areaqi demanded by characteri ∈ N , and the key capacitiesQj , j ∈M , and outputs

2261

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

a feasible solutionp∗ specifyingthe key of each character in the best solution found. After initializ-
ing the elite setP as empty, the GRASP with path-relinking iterations are computed until a stopping
criterion is satisfied. This criterion could be, for example. a maximum number of iterations, a target
solution quality, or a maximum number of iterations without improvement. During each iteration,
a greedy randomized solution is generated and local search is applied using it as a starting point,
resulting in a solutionp. If the greedy randomized solution is infeasible, a feasible solution is
randomly selected from the elite set and local search is applied on this solution. Path-relinking is
applied betweenp and some elite solutionq only if the elite set has at least a minimum number of
elements. Otherwise, solutionp is simply added to the elite set if it is sufficiently different from
the solutions already in the elite set. To more precisely define the termsufficiently different, let the
symmetric difference∆(x, y) between two solutionsx andy be defined as the number of moves
needed to transformx into y or vice-verse. For a given level of differenceδ, we sayx is sufficiently
different from all elite solutions inP if ∆(x, p) > δ for all p ∈ P , which we indicate by the nota-
tion x 6≈ P . If the elite set is not yet full, the solutionr resulting from path-relinking is added to
the elite set ifr 6≈ P . Otherwise, ifr is not of worse quality than any elite solution andr 6≈ P ,
then it will be added to the elite set in place of some elite solution. Among all elite solutions having
cost no better than that ofr, the one most similar tor, i.e. with smallest symmetric difference with
respect tor, is selected to be removed from the elite set. At the end, the best elite set solution is
output as the solution of the GRASP with path-relinking heuristic.

Data : N,M,A,B, qi, Qj .
Result : Feasible solutionp∗.
P ← ∅;
while stopping criterion not satisfieddo

p← GreedyRandomized(·);
if elitesetP has enough elementsthen

if p is not feasiblethen
Randomly select a new solutionp ∈ P ;

end
p← LocalSearch(p);
Randomlyselect a solutionq ∈ P
r ← PathRelinking(p, q);
if elite setP is full then

if c(r) ≤ max{c(s) | s ∈ P} andr 6≈ P then
replace the element most similar tor amongall
elements with cost worse than r;

end

else ifr 6≈ P then
P ← P ∪ {r};

end

else ifp is feasible andp 6≈ P then
P ← P ∪ {p};

end
end
return p∗ = argmin{c(s) | s ∈ P};

Algorithm 1: A GRASP with path-relinking heuristic for the MTSFKL problem.

2262

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

2.1. Greedy randomized construction.
The construction procedure builds a solution one assignment at time. Suppose a partial

solution is on hand, i.e. a number of assignments have already been made. To make the next
assignment, the procedure needs to select a new character and a key. Keys are made available,
one at time. The procedure randomly determines whether to use a new key or a previously chosen
key, favoring a new key when the previously chosen keys have insufficient or barely sufficient
available capacity. If the procedure determines that a previously chosen key is to be selected, it then
determines which characters can be assigned to that key with the maximum available capacity and
randomly selects one of these characters to be assigned. Of the keys that can accommodate this
character, one is selected at random and the assignment is made. On the other hand, if there is no
previously chosen key with sufficient capacity or if the available capacity is barely sufficient, a new
key is selected at random from the set of yet unchosen keys.

The above procedure is not guaranteed to produce a feasible solution. The greedy random-
ized construction procedure, shown in Algorithm 2, addresses this difficulty by repeatedly applying
the steps described above. The main loop in lines 1 to 21 is repeated a maximum number of times
or until all characters are assigned, i.e. whenF = ∅. In each iteration of the procedure, the working
sets are initialized in line 2 and the threshold probability is set to 1 in line 3. The purpose of the
threshold is to control whether a new key should be selected. Since it is initially set to 1, then in the
first iteration of the until loop in lines 4 to 19, the procedure always selects a new (first) key. At each
iteration of the until loop, the threshold is updated in line 17 such that it will be more likely that a
new key is selected when there are few characters that can be assigned to keys in the current setR.
The until loop consists of two stages. With probability equal to the threshold, the first stage (lines 5
to 9) selects a new key in line 6, updates the setsL andCL in line 7, and in line 8 determines the
setT of characters that can be assigned to some selected key. In the second stage (lines 10 to 18),
the procedure randomly selects a character from setT in line 11, updates the setsT , F , andCF
in line 12, creates the key setR in line 13, randomly selects a key from that set in line 14, makes
the assignment of the character to the key in line 15, determines the setT of characters that can be
assigned to some selected key in line 16, and updates the threshold probability in line 17. The until
loop is repeated until both setsT andL are empty in line 19. The while loop ends either with a
valid assignment in line 25 (indicated byF = ∅) or with no solution found determined in line 23.

2.2. Approximate local search.
The construction procedure of Subsection 2.1 produces a feasible solutionp that is not

guaranteed to be locally optimal. A local search procedure is applied starting atp to find an ap-
proximate local minimum. The local search procedure makes use of two neighborhood structures
which we call1-moveand2-move. A solution in the 1-move neighborhood ofp is obtained by
changing one character-to-key assignment inp. Likewise, a solution in the 2-move neighborhood
of p is obtained by simultaneously changing two character-to-key assignments inp.

One way to carry out a local search in these neighborhoods is to evaluate moves in the
1-move neighborhood and move to the first improving solution. If no 1-move improving solution
exists, 2-move neighborhood solutions are evaluated and a move is made to the first improving solu-
tion. Another way to carry out the local search is to evaluate all 1-move and 2-move neighborhood
solutions and move to the best improving solution. In both variants, the search is repeated until no
improving solution in the neighborhoods exists. We propose a tradeoff approach here. Instead of
evaluating all of the 1-move and 2-move neighborhood solutions, we sample these neighborhoods
and populate a candidate list with improving solutions. One of the solutions from the candidate list
is randomly selected and a move is made to that solution. The search is repeated until no improving
solution is sampled. Because solutions are sampled, not all neighbors may be evaluated. Conse-
quently, the best solution found may not be a local minimum. Mateus et al. (2011) call this solution
anapproximate local minimum.

2263

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

Data : t̄ = maximumnumber of tries
Result : Solutionx ∈ X
while k < t̄ and F 6= ∅ do1

F ← N ; CF ← ∅; L←M ; CL← ∅; T ← ∅;2

Setthreshold← 1;3

repeat4

if L 6= ∅ and random([0, 1]) ≤ threshold then5

Randomly select a keyl ∈ L;6

UpdatesetsL← L \ {l} andCL← CL ∪ {l};7

SetT ⊆ F to be all characters with area demands less8

than or equal to the maximum slack inCL;
end9

if T 6= ∅ then10

Randomly select a characterf ∈ T ;11

UpdatesetsT ← T \ {f}; F ← F \ {f}; and12

CF ← CF ∪ {f};
Create setR ⊆ CL to be all keys having slack greater13

than or equal to area demand of characterf ;
Randomly select a keyl ∈ R;14

Assign characterf to keyl;15

SetT ⊆ F to be all characters with area demands less16

than or equal to the maximum slack inCL;
Setthreshold← 1− | T |/| F |;17

end18

until T = ∅ andL = ∅;19

k ← k + 1;20

end21

if F 6= ∅ then22

Solution not found;23

else24

return assignmentx ∈ X ;25

end26

Algorithm 2: Pseudo-code forGreedyRandomized : Greedy randomized construction
procedure.

2264

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

Pseudo-code for the approximate local search is shown in Algorithm 3. Theprocedure
takes as input the starting solutionπ and two parameters,MaxCLS andMaxItr , which control the
sampling. The repeat until loop in lines 1 to 13 is repeated until an approximate local minimum
is produced. In line 2, the sampling countercount and the candidate listCLS are initialized. At
each iteration of the inner loop in lines 3 to 9, the 1-move and 2-move neighborhoods ofπ are
sampled without replacement by procedureMove(π) in line 4. If this neighbor is an improving
feasible solution, it is inserted intoCLS in line 6. This is repeated until either the candidate list
is full or a maximum number of neighbors have been sampled. In lines 10 to 12, if the candidate
list is not empty, an assignmentπ ∈ CLS is randomly chosen. If the setCLS is empty after
the sampling process, the procedure terminates returningπ as an approximate local minimum in
line 14. Otherwise, the procedure moves to a solution inCLS , repeating the outer loop.

Data : π,MaxCLS ,MaxItr

Result : Approximate local minimumπ
repeat1

count ← 0; CLS ← ∅;2

repeat3

π′ ← Move(π);4

if π′ is feasibleand cost(π′) < cost(π) then5

CLS ← CLS ∪ {π′};6

end7

count ← count + 1;8

until |CLS | ≥ MaxCLS or count ≥ MaxItr ;9

if CLS 6= ∅ then10

Randomly select a solutionπ ∈ CLS ;11

end12

until CLS = ∅;13

return π;14

Algorithm 3: Pseudo-code forApproxLocalSearch : Approximate local search pro-
cedure.

2.3. Path-relinking

Motived by the fact that a single move from a solutionx in the direction of a target solution
xt does not guarantee the feasibility of the new constructed solution, a new variant of path-relinking
is proposed in Mateus et al. (2011).

Suppose that among the differences betweenx andxt is the key assigned to characterf .
In other words, while the key assigned tof in xt is l, the key assigned tof in x is l′, with l 6= l′. In
this case, is not necessarily feasible to perform a move inx that assignsf to l. If the capacityQl is
not violated, then the new solution is feasible. Otherwise, a repair procedure must be applied to try
to make it feasible.

In this repair procedure, a character setF is created with all not yet fixed characters
assigned to keyl for which capacity is violated. Next, the setT ⊆ F is constructed with all
characters inF having area demands less than or equal to the maximum available capacity of
keys inM . After a character fromT is randomly selected, setR consists of keys inM that can
accommodate it. A key is selected from setR and the character is assigned to it. This process is
repeated until the capacity of keyl has a nonnegative slack.

2265

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

The path-relinking process is a sequence of steps fromxs to xt. In each step a move
is performed from the current solutionx with or without repair. Next, a characteri is randomly
selected from a set composed of all not yet fixed characters corrected in the step. A character is
correctedwhen its key becomes the same as the one assigned to it in the target solutionxt. After
characteri is fixed, the next step begins. This process continues until the target solutionxt is
reached or when no feasible solution is obtained fromx.

Algorithm 4 shows pseudo-code for the path-relinking procedure. The algorithm takes as
input πs andπt, the starting and target solutions, respectively, and outputs the best solutionπ∗ in
path fromπs to πt. Initially, the best solution in the path is set asπ∗ in line 1 and its corresponding
objective function is assigned tof∗ in line 2. In line 3, the current solutionπ′ is initialized with
πs, and the working setsFix andnonFix are respectively initialized empty and withN . The while
loop in lines 5 to 35 is repeated until all characters inπ′ are assigned to the same keys assigned to
them inπt, i.e. the setϕ(π′, πt) = {i ∈ N | π′(i) 6= πt(i)} is empty, whereπ′(i) andπt(i) are the
keys assigned to characteri in solutionsπ′ andπt, respectively.

After the setB of best solutions is set to empty in line 6, each while loop iteration con-
sists of two stages. The first stage in lines 7 to 20 implements the path-relinking step. It creates
setB with the best feasible solutions constructed from the current solutionπ′. In line 6,B is ini-
tialized as empty. Each characterv ∈ ϕ(π′, πt) is analyzed in lines 7 to 20 to create the setB
with the best feasible solutions constructed from the current solutionπ′. ProceduremakeFeasible
is applied in line 8 to characterv to attempt to create a new solution̄π from π′. The applica-
tion of makeFeasible to characterv can either result in a feasible or infeasible solution. In case
makeFeasible returns a feasible solution̄π 6∈ B, π̄ is added toB if B is not yet full. Otherwise,
if B is full and solutionπ̄ 6∈ B is not worse than any elite solution, thenπ̄ is added toB replacing
some other elite solution.

In the second stage (lines 21 to 34), the procedure first randomly selects a solutionπ from
setB in line 22. Then, in line 25, it selects at random a characteri ∈ I = ϕ(π′, πt) \ (ϕ(π

′, πt) ∩
ϕ(π, πt)), whereI is defined in line 24 as the set containing all unfixed characters whose keys were
corrected in the previous path-relinking step. A character is corrected when its key becomes the one
assigned to it in the target solution. After fixing characteri ∈ I, setsFix andnonFix are updated
in line 26. Finally, the next path-relinking step solutionπ′ is set asπ in line 27 and, iff(π′) < f∗,
then the best costf∗ and best solutionπ∗ are updated in lines 29 and 30, respectively. However, if
in some path-relinking step no feasible solution is obtained fromπ′, the while loop is interrupted,
returning the current solutionπ∗ as the result in line 33. If the target solution is reached, thenπ∗ is
returned in line 36.

This path-relinking is different from the standard variant because given solutionsxs and
xt, their commons elements are not kept fixed a priori, such that a small portion of the solution
space spanned by the remaining elements is explored. The new variant fixes one character at time
at each step.

3. Experimental results
In this section, we present results on computational experiments with the GRASP with

path-relinking (GRASP-PR) for MTSFKP. Due to the fact that this KLP variant is original, there
are not algorithms available in the literature for comparison of results. Therefore, we will present
just the results of our algorithm. First, we describe our test environment. Next, we apply our
implementation on four real language benchmarks: English, French, Spanish, and Italian.

3.1. Test environment.
All experiments with GRASP-PR were done on a Dell PE1950 computer with dual quad

core 2.66 GHz Intel Xeon processors and 16 Gb of memory, running Red Hat Linux nesh version

2266

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

Data : Starting solutionπs, target solutionπt, and candidate size
factorη

Result : Best solutionπ∗ in path fromπs to πt
π∗ ← argmin{f(πs), f(πt)};1

f∗ ← f(π∗);2

π′ ← πs; Fix ← ∅; nonFix ← N ;3

Compute differenceϕ(π′, πt) between solutionπ′ andπt;4

while ϕ(π′, πt) 6= ∅ do5

B ← ∅;6

for ∀v ∈ ϕ(π′, πt) do7

Move the characterv in π′ to the same keyl assigned tov in8

πt;
π̄ ← makeFeasible(π′, v);9

if π̄ is feasiblethen10

if |B| ≥ η · |ϕ(π′, πt)| then11

if c(π̄) ≤ max{c(π) | π ∈ B} and π̄ 6∈ B then12

replace the element most similar toπ̄ amongall13

elements with cost worst than̄π;
end14

15

else ifπ̄ 6∈ B then16

B ← B ∪ {π̄};17

end18

end19

end20

if B 6= ∅ then21

Randomly select a solutionπ ∈ B;22

Compute differenceϕ(π, πt) between solutionπ andπt;23

SetI = ϕ(π′, πt) \ (ϕ(π
′, πt) ∩ ϕ(π, πt));24

Randomly select a characteri ∈ I;25

Fix ← Fix ∪ {i}; nonFix ← nonFix \ {i};26

π′ ← π;27

if f(π′) < f∗ then28

f∗ ← f(π′);29

π∗ ← π′;30

end31

else32

return assignmentπ∗;33

end34

end35

return assignmentπ∗;36

Algorithm 4: Pseudo-code forPathRelinking : Path-relinking procedure.

2267

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

5.1.19.6 (CentOS release 5.2, kernel 2.6.18-53.1.21.el5). The GRASP-PR heuristicwas imple-
mented in Java and compiled into bytecode withjavac version1.6.0 05. The random-number
generator is an implementation of the Mersenne Twister algorithm (Matsumoto and Nishimura.,
1998) from the COLT1 library. The stopping criteria used in the experiments were a target solution
equals to zero, associated with a maximum number (100,000) of iterations without improvement.

We adopt the same procedure reported by DellAmico et al. (2009) as follows. A list of the
most frequent words of each language has been taken from the following sources. For English and
Spanish frequency lists web sitehttp://www.wiktionary.org ; for French a list of words
extracted from the CDROM of Monde Diplomatique (1987-1997) by prof. Jean Véronis (http:
//www.up.univ-mrs.fr/ ˜ veronis); for Italian the word’s list has been taken from the lin-
guistic laboratory of the Scuola Normale Superiore of Pisa (http://alphalinguistica.
sns.it). These lists give us the frequency of appearance of each word in the corresponding lan-
guage. The first 10,000 words were selected from each list. Using a parsing method the frequency
of the transition between each pair of consecutive symbols has been obtained. Punctuation has been
omitted from our count, while space at the beginning and at the end of each word was included, as
well as the apostrophe and symbol ’-’ (minus), for the English language.

For each of the real language benchmarks, we report in Figure 1 the layout and the cor-
responding solution value of the best assignment found by the GRASP with path-relinking for
MTSFKLP during all runs: 4194.0 (English), 86.0 (French), 1290.0 (Spanish) and 0.0 (Italian).
We can observe that the GRASP-PR heuristic was able to find the optimal solution for Italian lan-
guage. The running times spent to find these solutions were 1.395, 0.655, 0.438, and 0.183 seconds,
respectively.

4. Conclusions
In this paper, we revisted the GRASP with path-relinking heuristic for the generalized

quadratic assignment problem (GQAP) of Mateus et al. (2011) and applied the heuristic to solve the
multi-tap single-finger keypad layout problem (MTSFKLP) as a generalized quadratic assignment
problem (GQAP). We illustrate the solution method using four real language benchmarks: English,
French, Spanish, and Italian. The promising results shown here illustrate the potential of GRASP-
PR for MTSFKLP.

Acknowledgment
The research of R.M.A Silva was partially supported by the Brazilian National Council

for Scientific and Technological Development (CNPq), the Foundation for Support of Research
of the State of Minas Gerais, Brazil (FAPEMIG), Coordination for the Improvement of Higher
Education Personnel, Brazil (CAPES), Foundation for the Support of Development of the Federal
University of Pernambuco, Brazil (FADE), the Office for Research and Graduate Studies of the
Federal University of Pernambuco (PROPESQ), and the Foundation for Support of Science and
Technology of the State of Pernambuco (FACEPE).

References
Jean Cardinal and Stefan Langerman. Designing small keyboards is hard.Theoretical computer

science, 332(1):405–415, 2005.

Mauro DellAmico, Jośe Carlos D́ıaz D́ıaz, Manuel Iori, and Roberto Montanari. The single-finger
keyboard layout problem.Computers & Operations Research, 36(11):3002–3012, 2009.

Jan Eggers, Dominique Feillet, Steffen Kehl, Marc Oliver Wagner, and Bernard Yannou. Optimiza-
tion of the keyboard arrangement problem using an ant colony algorithm.Eur. J. of Operational
Research, 148(3):672–686, 2003.

1COLT is a open source library for high performance scientific and technical computing in Java. Seehttp://acs.
lbl.gov/ ˜ hoschek/colt/ .

2268

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

Figure 1: Best layouts for the real language benchmarks with the followingvalues for the objective function:

4194.0 (English), 86.0 (French), 1290.0 (Spanish) and 0.0 (Italian). The running times (in seconds) spent to

find these solutions were 1.395, 0.655, 0.438, and 0.183, respectively.

T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a computationally difficult set covering
problem.Operations Research Letters, 8:67–71, 1989.

T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures.J. of Global
Optim., 6:109–133, 1995.

F. Glover. Tabu search and adaptive memory programing – Advances, applications and challenges.
In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors,Interfaces in Computer Science and
Operations Research, DIMACS Series in Discrete Matehematics and Theoretical Computer Sci-
ence, pages 1–75. Kluwer, 1996.

JG Kreifeldt, SL Levine, and C Iyengar. Reduced keyboard designs using disambiguation. In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, volume 33, pages
441–444. SAGE Publications, 1989.

M. Laguna and R. Martı́. GRASP and path relinking for 2-layer straight line crossing minimization.
INFORMS Journal on Computing, 11:44–52, 1999.

Gregory W Lesher, Bryan J Moulton, and D Jeffery Higginbotham. Optimal character arrangements
for ambiguous keyboards.Rehabilitation Engineering, IEEE Transactions on, 6(4):415–423,
1998.

Yanzhi Li, Lijuan Chen, and Ravindra S Goonetilleke. A heuristic-based approach to optimize

2269

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

keyboard design for single-finger keying applications.International journal of industrial er-
gonomics, 36(8):695–704, 2006.

I Scott MacKenzie and Shawn X Zhang. The design and evaluation of a high-performance soft
keyboard. InProceedings of the SIGCHI conference on Human factors in computing systems,
pages 25–31. ACM, 1999.

G. R. Mateus, M. G. C. Resende, and R. M. A. Silva. GRASP with path-relinking for the generalized
quadratic assignment problem.J. of Heuristics, 17:527–565, 2011.

M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed uniform
pseudo-random number generator.ACM Transactions on Modeling and Computer Simulation, 8:
3–30, 1998.

Arpit Mittal and Arijit Sengupta. Improvised layout of keypad entry system for mobile phones.
Computer Standards & Interfaces, 31(4):693–698, 2009.

M. G. C. Resende and C. C. Ribeiro. Greedy randomized adaptive search procedures: Advances
and applications. In M. Gendreau and J.-Y. Potvin, editors,Handbook of Metaheuristics, pages
293–319. Springer, 2nd edition, 2010.

M.G.C. Resende and C.C. Ribeiro. GRASP with path-relink.: Recent advances and applic. In
T. Ibaraki, K. Nonobe, and M. Yagiura, editors,Metaheuristics: Progress as Real Prob. Solvers,
pages 29–63. Springer, 2005.

C. C. Ribeiro and M. G. C. Resende. Path-relinking intensification methods for stochastic local
search algorithms.J. of Heuristics, 18:193–214, 2012.

Shumin Zhai, Michael Hunter, and Barton A Smith. The metropolis keyboard-an exploration of
quantitative techniques for virtual keyboard design. InProceedings of the 13th annual ACM
symposium on User interface software and technology, pages 119–128. ACM, 2000.

Shumin Zhai, Michael Hunter, and Barton A Smith. Performance optimization of virtual keyboards.
Human–Computer Interaction, 17(2-3):229–269, 2002.

2270

